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Abstract

We describe a machine learning architecture for hier-
archical vision systems. These vision systems work by
successively grouping visual constructs at one level, se-
lecting the most promising, and passing them up to
higher levels of processing. This continues from the
pixel-level of the image to the object-model level. Tra-
ditionally, researchers have used static heuristics at
each level to select the best constructs. In practice, this
approach is brittle, because people have not been suc-
cessful at surveying the evidence necessary for robust
performance, and is static, because designers have not
incorporated learning mechanisms that would let the
system improve its performance with the aid of user
feedback. The machine learning architecture proposed
herein is an attempt to address both of these issues.

Introduction

We have devised a novel machine learning architecture
that shows promise of significantly improving the ac-
curacy of hierarchical machine vision systems. The
proposed approach organizes learning and recognition
modules into a hierarchy. Modules at the lower image-
level survey local information, such as pixel intensities
and shape features, and form simple visual constructs,
which they pass to higher construct- and object-level
modules. These modules higher in the hierarchy take
into account more global types of information, such as
spatial or geometric properties. In general, modules in
the hierarchy take lower-level constructs and use per-
ceptual grouping operators to form new constructs. To
avoid computational bottlenecks, the modules evaluate
new constructs and select only the most promising to
pass to the next level of processing.

Traditionally, people have programmed heuristics for
construct selection, and, as a result, these heuristics
often lack robustness because of our inability to sur-
vey large amounts of evidence. A greater problem is
that these mechanisms are static, meaning that they
cannot adapt and improve once deployed in a system.
People often interact directly with such systems, or at
least supervise their operation, which suggests a role
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for interaction on the part of the user, and a role for
adaptation and learning on the part of the intelligent
vision system.

The proposed approach uses on-line learning algo-
rithms, instead of static heuristics, to induce concept
descriptions for selecting the most promising visual con-
structs at each level in the hierarchy. If a system based
on this approach makes a mistake, then an operator or
technician can provide feedback interactively, which is
used to update the concept descriptions for selecting
constructs associated with each module. This presents
a challenge because we must develop strategies for cor-
rectly and efficiently propagating feedback to the mod-
ules in the hierarchy that produced the error.

Ours is the first learning approach to take advan-
tage of the decomposition of visual objects into con-
stituent parts that is inherent to model-based and hi-
erarchical vision systems. We anticipate that our ap-
proach will yield systems that attain higher accuracy
than systems that use a single learning process at the
top of a recognition hierarchy to map features to ob-
ject classes, which is characteristic of many current ap-
proaches. This work also promises a methodology for
managing user feedback in hierarchies of heterogeneous
learning algorithms.

Our plan is to build an experimental vision system
based on the proposed learning approach for the domain
of detecting blasting caps in X-ray images of airport
luggage. We intend to conduct experimental studies
designed to measure the improvement in accuracy of
our approach versus existing approaches, and to mea-
sure over time the affects of interaction and feedback
on performance. The experimental studies will include
cost-sensitive learning methods, since our data sets in-
variably will be skewed toward the class of lesser impor-
tance, and since we do not have a precise cost analysis
of errors for our domain. To assess the accuracy of the
cost-sensitive learning methods, we will use Receiver
Operating Characteristic (ROC) analysis and area un-
der ROC curves as our performance metric. Statistical
tests, such as Analysis of Variance and Duncan’s test,
will indicate whether the experimental results are sta-
tistically significant. We have preliminary results on the
task of blob detection that illustrate our experimental
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Figure 1: X-ray images of blasting caps in airport luggage. Left: A representative image from a collection of thirty. Right:

A closeup of a region containing a blasting cap.

methodology, but, due to space constraints, we present
these results elsewhere (Maloof 1999).

Preliminaries

To focus and ground discussion, we will use the vision
domain of blasting cap detection in X-ray images since
blasting caps are representative of the class of visual
objects we wish to recognize. They have compositional
structure and recognition requires both local and global
processing. Furthermore, we have chosen to build upon
Nevatia’s perceptual grouping approach (Mohan and
Nevatia 1989) for three-dimensional object recognition
because it is mature and has been applied successfully
to complex recognition problems, such as building de-
tection in overhead images (Huertas and Nevatia 1988;
Lin and Nevatia 1996). More importantly, the hier-
archical nature of Nevatia’s approach lends itself to a
novel architecture for visual learning, which is the topic
of this article. In the next two sections, we provide rel-
evant details of blasting cap detection and of Nevatia’s
perceptual grouping approach.

Blasting Cap Detection

When we X-ray blasting caps as they might occur in
luggage in an airport scenario, they appear similar to
the images in figure 1. One feature useful for recog-
nition is the low-intensity blob near the center of the
object, which is produced by a concentration of heavy
metal explosive near the center of the blasting cap. An-
other is the rectangular region surrounding the blob,
which is produced by the blasting cap’s metal tube.
However, the mere appearance of these two regions of
interest is usually not sufficient for detection, so we
must also ensure that the proper spatial relationship
exists between a given blob and rectangular region (or
“rectangle”). As we will see in the next section, Neva-
tia’s perceptual grouping approach provides an elegant
framework for solving this recognition problem.

Hierarchical Vision Systems

The main tenet of Nevatia’s perceptual grouping ap-
proach is that machines can recognize objects by re-

peatedly grouping low-level constructs (e.g., lines) into
higher-level ones (e.g., rectangles). At the lower levels
of processing, the machine surveys local information,
such as a region’s area or pixel intensities. As recog-
nition proceeds up the hierarchy, higher-level reasoning
processes take into account global information, such as
geometric and spatial relationships. The left diagram
in figure 2 shows an architecture of a hierarchical vision
system for recognizing blasting caps.

Inherent to this recognition process are mechanisms
at each level that select the most promising visual con-
structs for further processing at the higher levels, as
shown in the right diagram of figure 2. Traditionally,
people have manually programmed these heuristics for
construct selection using methods such as constraint
satisfaction networks (Mohan and Nevatia 1989) and
linear classifiers (Lin and Nevatia 1996). We contend
that using on-line machine learning techniques and user
feedback to acquire the criteria for selecting the most
promising constructs at each level will yield more robust
vision systems capable of improving their accuracy!
over time. Experimental results on a rooftop detection
task support this claim (Maloof et al. 1998).

Statement of the Problem

Modern hierarchical machine vision systems are of-
ten brittle because, due to cognitive limitations, hu-
mans cannot adequately survey the evidence required
for these systems to cope in their intended environ-
ments. Furthermore, the fact that these systems, once
deployed, cannot adapt to changes in their environment
contributes to their lack of robustness. Visual learn-
ing approaches (i.e., approaches that combine machine
learning with computer vision) hold the potential for
addressing both of these problems.

!The term accuracy is often used to mean “percent cor-
rect.” However, there are different measurements of accu-
racy, percent correct being one (Swets 1988). Hence, we will
use the term accuracy in the general sense, and, as we will
describe, use area under an ROC curve instead of percent
correct as our measure of accuracy.
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Figure 2: Hierarchical vision systems. Left: A hierarchy for recognizing blasting caps. Right: One level of the hierarchy.

Recently, there has been considerable work on visual
learning approaches; however, much of this research
has concentrated on single-step learning and recogni-
tion schemes in which a learning technique is applied
at one point in a recognition process to, for example,
map features to object classes.

Although using a learning process at the end of a vi-
sion process for the task of mapping features to object
classes may improve accuracy over traditional, hand-
constructed classification methods, we contend that
such an approach is undesirable for one primary reason:
Current work in visual learning does not take advantage
of the fact that the hierarchical approach decomposes
objects into simpler parts, which may make learning
easier and may result in vision systems with higher ac-
curacy.

Consequently, we propose a new visual learning archi-
tecture that tightly integrates vision and learning pro-
cesses, organizing them in a hierarchy, and addresses
our criticism of existing approaches. As for our re-
search hypothesis, we anticipate that the proposed vi-
sual learning architecture, which we discuss in the next
section, will significantly improve accuracy as compared
to existing architectures that use a single learning step
at the top level of a recognition hierarchy.

Proposed Approach

Our proposed approach involves organizing a set of
learning and recognition modules into a hierarchy. The
low-level modules in the hierarchy are responsible for
detecting local features, such as blobs or straight lines,
and for then passing these constructs to the next level
in the hierarchy. As we proceed to the topmost level of
the hierarchy, the object level, the modules take into ac-
count more global types of information, such as spatial
or geometric information.

Since each module of the hierarchy is similar in de-
sign, although each will be configured differently de-
pending on its task, we will ground discussion by con-

centrating on one module in the hierarchy, which we
present in figure 3. In the next section, we present
the design of an experimental system for the domain
of blasting cap detection that is based on our proposed
approach.

The first step is a perceptual grouping process that
takes constructs from modules lower in the hierarchy
and groups them to form new constructs. For exam-
ple, in one level of a building detection system, such a
module would group linear features into parallelograms,
which potentially correspond to rooftops. In our blast-
ing cap domain, a module may group blob regions and
rectangular regions based on spatial constraints.

These newly formed constructs are then passed to a
feature computation component that computes a pre-
determined set of attribute values for the construct.
Depending on where the module resides in the hierar-
chy, these could be low-level attributes, such as statis-
tics computed using the intensities of a region’s pix-
els, or attributes that characterize the shape of the re-
gion, including area or measures of compactness. Con-
versely, higher-level modules would take into account
more global types of information, such as geometric
constraints. In our blasting cap domain, a module that
groups the blob and rectangular regions might use as
an attribute the distance between the centroids of the
two regions.

Next, the construct selection process takes the cur-
rent set of concept descriptions and uses the features
computed in the previous step to classify each con-
struct. Those constructs that are labeled as positive
(and thereby selected) are then passed to the next level
of processing in the hierarchy. However, we assume that
at some point in the recognition process, the user, or
the environment, will provide feedback on the objects
that were or were not correctly identified.

When provided, the positive or negative feedback will
start on-line learning processes that will use the set
of misclassified constructs and their features to modify
each level’s current set of concept descriptions. Learn-
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Figure 3: One level of the proposed approach to visual
learning.

ing and adaptation will occur throughout the life of the
vision system.

Ideally, we would like for a user to provide feedback
at the highest level, the object level. Assuming that
the system draws a graphical representation of recog-
nized objects on the image, to provide feedback for false
positives, we would like for the user to simply click on
the graphical representation of the misidentified object.
Similarly, to provide feedback for false negatives, we
would like for the user to select the image region con-
taining the unidentified object.

This approach to feedback leads to difficulties regard-
ing credit assignment because it is difficult at the top
level of the hierarchy to pinpoint the construct(s) at
lower levels that led to the misclassification. The pri-
mary problem is that a low-level construct may be part
of both a positive and negative object description. For
example, a line corresponding to the edge of a building
is a part of the building, but it is also a part of the
region adjacent to the building. Presently, we are as-
suming that the user will identify the specific constructs
at each level that led to the misclassification. However,
we will postpone the specific details of this scheme un-
til we describe our design for an experimental vision
system, which we discuss in the next section.

Evaluation

To evaluate our approach, we have begun to imple-
ment an experimental visual learning system for de-
tecting blasting caps in X-ray images of luggage, which
are representative of a class of objects that we wish
to recognize. Furthermore, during and after its con-
struction, we will conduct experiments in an effort to
support our research hypothesis, which we stated previ-
ously. The following sections provide details about the
image set and the implementation of the experimental
visual learning system.

Description of the Image Data

The image data that we will use for our inquiry consists
of thirty X-ray images of suitcases containing blasting
caps that appear much as they would in an airport sce-
nario: flat with respect to the X-ray source, but rotated
in the image plane. The images vary in the amount of
clutter (e.g., clothes, shoes, batteries, pens) and in their
planar orientation. There is enough variability in the
position of the blasting caps within the bags to pro-
vide a range of difficult recognition problems. In some
instances, the long axis of the blasting cap is perpendic-
ular to the X-ray source. In others, the cap is behind
opaque objects, partially occluded by various metal ob-
jects, and rotated out of the imaging plane. The left
image in figure 1 shows a representative image from
the collection. Each of the 8-bit grayscale images has
dimensions of roughly 565 x 340.

As we have discussed previously, blasting caps are
appropriate objects for this study because they require
a hierarchical approach for recognition. The system
must detect the blob and the rectangular region of the
X-rayed cap, and it must then analyze the spatial rela-
tionship between these two regions, thus requiring, in
some sense, a minimal hierarchy.2

Implementation of an Experimental Visual
Learning System

To validate our proposed approach for visual learning,
we plan to use the approach to construct an experimen-
tal learning system for detecting blasting caps in X-ray
images of luggage. The design for this system appears
in figure 4.

The experimental system will consist of three pri-
mary modules: one for detecting the blob region in the
center of the blasting cap, one for detecting the rect-
angular region, and one for detecting the appropriate
spatial relationships between the blob and the rectan-
gular region. We have already begun work on the blob
detection module and present preliminary results else-
where (Maloof 1999).

Each module in the hierarchy will consist of the com-
ponents pictured in figure 3: perceptual grouping, fea-
ture computation, on-line learning, and construct selec-
tion. The user will provide feedback at the top level of
the hierarchy and, if necessary, at the lower levels as to
the correctness of the selected constructs.

To implement feedback mechanisms, we envision the
system presenting its results of processing as a graphical
representation of the object detected in the image. To
provide feedback for a false negative (i.e., an object
erroneously identified as a blasting cap), the user, or
some other qualified person, would select the graphical
representation of the mistaken object and indicate, by

?Detecting rectangular regions will require processing
that involves linear feature detection and grouping, but, for
this study, we do not plan to use learning at these lower
levels. Consequently, we are treating the detection of the
rectangular region as a single vision process.
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Figure 4: Design of an experimental visual learning system
for blasting cap detection based on the proposed architec-
ture.

means of a menu or a button, that the selected object
was misclassified.

The system would then attempt to label all of the
constructs involved in the formation of the object de-
scription as negative. However, as we have discussed, a
problem arises when a construct is used in both a true
positive and a false negative description. For example,
a linear construct could be part of a valid blasting cap
description, and it could be part of an invalid descrip-
tion that corresponds to a rectangular region adjacent
to the real object. In this situation, we cannot simply
label the linear construct as a negative example because
this action could reduce the system’s ability to correctly
identify blasting caps.

Therefore, as the system attempts to label constructs
as negative, if it discovers conflicts, then it would
present each construct in question to the user. The user
would decide which constructs should retain positive
labels and which should get new negative labels. The
process of presenting this information would start at
the highest level of the hierarchy and descend through
the lower levels. At each node of the hierarchy, the sys-
tem would highlight all of the questionable constructs
that are part of the object’s final description. The user
would review these constructs, identify any misclassi-
fied constructs, and proceed to the next module in the
hierarchy. When the user completes this identification
process, an on-line learning step will ensue that will
use the newly labeled constructs as training examples
to update the concept descriptions for selecting visual

constructs at each level of the hierarchy. If the num-
ber of constructs is large, then the system could cluster
the examples and present the most representative to
the user for labeling. (Methods for further reducing
the amount of required interaction will be a fascinating
area of future work.)

To provide feedback for false positives (i.e., blast-
ing caps that were not identified), the user will use
the mouse to identify the image region surrounding an
unidentified blasting cap. The system will retrieve all
of the visual constructs that fall within this region and
present them to the user. As before, the system will
present the constructs at each level in turn, and the
user will identify the misclassified constructs. After
completing this process, the newly labeled constructs
will serve as training examples to the on-line learning
process which will update the concept descriptions for
selecting the most promising constructs.

The user would use these procedures any time the vi-
sion system makes a mistake. And as we have indicated
previously, this process of feedback and adaptation con-
tinues throughout the life of the vision system.

Bootstrapping the System

A problem with the preceding discussion is that it as-
sumes that the system already possesses a set of reli-
able concept descriptions for selecting visual constructs
at each of the levels. When constructing the vision sys-
tem, we will configure each module in the hierarchy by
starting at the image level and moving up the hierarchy
to the object level. Once we have created the routines
at a given level for vision processing, perceptual group-
ing, feature computation, we will use batch learning to
induce the concept descriptions necessary for selecting
the most promising constructs.

When we have configured the modules at one level
and empirically validated performance, we can begin
work at the next level, using the lower-level modules
as input. After completing the hierarchy, we may need
to further refine the system’s accuracy before deploy-
ment in the intended environment. To accomplish this,
we will employ the methodology described in the pre-
vious section that uses on-line learning and feedback to
incrementally refine the concept descriptions for select-
ing promising visual constructs at each of the levels of
the hierarchy until the system achieves an acceptable
level of performance.

Related Work

Our hierarchies share some interesting similarities and
dissimilarities with other hierarchical or tree-structured
approaches. For example, our hierarchies are struc-
turally similar to decision trees (Quinlan 1990), which
have been used for visual learning tasks (e.g., Draper
1997), but our approach processes information bottom-
up rather than top-down.

Hierarchical mixtures of experts (Jordan and Jacobs
1994) is tree-structured approach for supervised learn-
ing that processes information bottom-up, but each



training example is presented to each node in the hi-
erarchy. In our approach, each node in the hierarchy
learns from its own set of training examples.

Hierarchical reinforcement learning (e.g., Dietterich
To appear) is also similar, but the semantics of the hi-
erarchies are different. A reinforcement learning task
involves learning a sequence of actions. Hierarchical re-
inforcement learning composes this sequence of actions
into subtasks. The temporal order of the actions and
subtasks is important, and time in these graphs moves
from left to right.

With our hierarchies, actions on the same level have
no temporal order and could be executed in parallel.
Further, all of a node’s children must make their de-
cisions (i.e., identify their visual constructs) before it
can make its decision. Time, therefore, moves from
bottom to top. In this regard, they are similar to tree-
structured Bayesian inference networks (e.g., Neapoli-
tan 1990).

However, as with reinforcement hierarchies, the se-
mantics of our networks is different from that of
Bayesian inference networks. Links in the latter type of
network denote causal relationships, whereas in our net-
work, links represent an evidentiary relationship (i.e., a
good blob is evidence that a proper spatial relationship
may exist).

Conclusion

The proposed work is the next logical step in a long-
term investigation of mechanisms for interactive, adap-
tive software systems. Ours is a departure from current
approaches that use a single learning algorithm at one
point in a recognition process. As we have discussed,
we propose to study multiple, possibly heterogeneous
learning algorithms organized in a hierarchical man-
ner. The need for such learning architectures arises
in machine vision, especially for situations in which we
must build systems to recognize 3-D objects that have
compositional structure and that require both low-level,
local processing and high-level, global processing for
recognition. Building detection and blasting cap detec-
tion, our chosen domain, are two examples of this class
of problems. And, as we saw in the previous sections,
we have proposed a novel visual learning approach that
stands to significantly improve the accuracy of hierar-
chical vision systems.

We anticipate that the success of this study will im-
pact three fronts. Scientifically, this project seeks to
tightly integrate vision and learning processes. If suc-
cessful, the proposed research will yield vision systems
with higher recognition rates and, in the longer term,
will provide opportunities to adapt and improve the vi-
sion processes themselves. On a broader level, studying
feedback mechanisms for learning algorithms organized
in a hierarchy has scientific merit that extends beyond
the context of vision problems and is important for a
wide range of applications, such as computer intrusion
detection and intelligent agents (e.g., agents that prior-
itize one’s e-mail queue).
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