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Introduction

I If we can’t fit a distribution to our data, then we use
nonparametric density estimation.

I Start with a histogram.

I But there are problems with using histrograms for density
estimation.

I A better method is kernel density estimation.

I Let’s consider an example in which we predict whether
someone has diabetes based on their glucode concentration.

I We can also use kernel density estimation with naive Bayes or
other probabilistic learners.



Introduction

I Plot of plasma glucose concentration (GLU) for a population
of women who were at least 21 years old, of Pima Indian
heritage and living near Phoenix, Arizona, with no evidence of
diabetes:
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Introduction

I Assume we want to determine if a person’s GLU is abnormal.

I The population was tested for diabetes according to World
Health Organization criteria.

I The data were collected by the US National Institute of
Diabetes and Digestive and Kidney Diseases.

I First, are these data distributed normally?

I No, according to a χ2 test of goodness of fit.



Histograms

I A histogram is a first (and rough) approximation to an
unknown probability density function.

I We have a sample of n observations, X1, . . . ,Xi , . . . ,Xn.

I An important parameter is the bin width, h.

I Effectively, it determines the width of each bar.

I We can have thick bars or thin bars, obviously.

I h determines how much we smooth the data.

I Another parameter is the origin, x0.

I x0 determines where we start binning data.

I This obviously effects the number of points in each bin.
I We can plot a histogram as

I the number of items in each bin or
I the proportion of the total for each bin



Histograms

I We define a bins or intervals as

[x0 + mh, x0 + (m + 1)h] for m ∈ Z

(i.e., the positive and negative integers).

I But for our purposes, it’s best to plot the relative frequency

f̂ (x) =
1

nh
(number of Xi in same bin as x)

I Notice that this is the density estimate for x .



Problems with Histograms

I One program with using histograms as an estimate of the
PDF is there can be discontinuities.

I For example, if we have a bin with no counts, then its
probability is zero.

I This is also a problem “at the tails” of the distribution, the
left and right side of the histogram.

I First off, with real PDFs, there are no impossible events (i.e.,
events with probability zero).

I There are only events with extremely small probabilities.

I The histogram is discrete, rather than continuous, so
depending on the smoothing factor, there could be large
jumps in the density with very small changes in x .

I And depending on the bin width, the density may not change
at all with reasonably large changes to x .



Kernel Density Estimator: Motivation

I Research has shown that a kernel density estimator for
continuous attributes improve the performance of naive Bayes
over Gaussian distributions [John and Langley, 1995].

I KDE is more expensive in time and space than a Gaussian
estimator, and the result is somewhat intuitive: If the data do
not follow the distributional assumptions of your model, then
performance can suffer.

I With KDE, we start with a histogram, but when we estimate
the density of a value, we smooth the histogram using a
kernel function.

I Again, start with the histogram.

I A generalization of the histogram method is to use a function
to smooth the histogram.

I We get rid of discontinuities.

I If we do it right, we get a continuous estimate of the PDF.



Kernel Density Estimator
[McLachlan, 1992, Silverman, 1998]

I Given the sample Xi and the observation x

f̂ (x) =
1

nh

n∑
i=1

K

(
x − Xi

h

)
,

where h is the window width, smoothing parameter, or
bandwidth.

I K is a kernel function, such that∫ ∞
−∞

K (x) dx = 1

I One popular choice for K is the Gaussian kernel

K (t) =
1√
2π

e−(1/2)t
2
.

I One of the most important decisions is the bandwidth (h).

I We can just pick a number based on what looks good.



Kernel Density Estimator

Source: https://en.wikipedia.org/wiki/Kernel density estimation



Algorithm for KDE

I Representation: The sample Xi for i = 1, . . . , n.

I Learning: Add a new sample to the collection.

I Performance:

f̂ (x) =
1

nh

n∑
i=1

K

(
x − Xi

h

)
,

where h is the window width, smoothing parameter, or
bandwidth, and K is a kernel function, such as the Gaussian
kernel

K (t) =
1√
2π

e−(1/2)t
2
.



Kernel Density Estimator

public double getProbability( Number x ) {

int n = this.X.size();

double Pr = 0.0;

for ( int i = 0; i < n; i++ ) {

Pr += X.get(i) * Gaussian.pdf((x - X.get(i)) / this.h );

} // for

return Pr / ( n * this.h );

} // KDE::getProbability



Automatic Bandwidth Selection

I Ideally, we’d like to set h based on the data.

I This is called automatic bandwidth selection.

I Silverman’s [1998] rule-of-thumb method estimates h as

ĥ0 =

(
4σ̂5

3n

)1/5

≈ 1.06σ̂n−1/5 ,

where σ̂ is the sample standard deviation and n is the number
of samples.

I Silverman’s rule of thumb assumes that the kernel is Gaussian
and that the underlying distribution is normal.

I This latter assumption may not be true, but we get a simple
expression that evaluates in constant time, and it seems to
perform well.

I Evaluating in constant time doesn’t include the time it takes
to compute σ̂, but we can compute σ̂ as we read the samples.



Automatic Bandwidth Selection

I Sheather and Jones’ [1991] solve-the-equation plug-in method
is a bit more complicated.

I It’s O(n2), and we have to solve numerically a set of
equations, which could fail.

I It is regarded as theoretically and empirically, the best method
we have.



Simple KDE Example

I Determine if a person’s GLU is abnormal.
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Simple KDE Example
I Green line: Fixed value, h = 1
I Magenta line: Sheather and Jones’ method, h = 1.5
I Blue line: Silverman’s method, h = 7.95
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Simple KDE Example

I Assume h = 7.95

I f̂ (100) = 0.018

I f̂ (250) = 3.3× 10−14

I P(0 ≤ x ≤ 100) =
∫ 100
0 f̂ (x) dx

I P(0 ≤ x ≤ 100) =
∑100

0 f̂ (x) dx

I P(0 ≤ x ≤ 100) ≈ 0.393



Naive Bayes with KDEs
I Assume we have GLU measurements for women with and

without diabetes.
I Plot of women with diabetes:
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Naive Bayes with KDEs

I Plot of women without:
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Naive Bayes with KDEs

I The task is to determine, given a woman’s GLU measurement,
if it is more likely that she has diabetes (or vice versa).

I For this, we can use Bayes’ rule.

I Like before, we build a kernel density estimator for both sets
of data.



Naive Bayes with KDEs

I Without diabetes:
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I Silverman’s rule of thumb gives ĥ0 = 7.95



Naive Bayes with KDEs

I With diabetes:
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I Silverman’s rule of thumb gives ĥ1 = 11.77



Naive Bayes with KDEs

I All together:

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  50  100  150  200  250

E
st

. 
D

en
si

ty

GLU



Naive Bayes with KDEs

I Now that we’ve built these kernel density estimators, they give
us P(GLU|Diabetes = true) and P(GLU|Diabetes = false).



Naive Bayes with KDEs

I We now need to calculate the base rate or the prior
probability of each class.

I There are 355 samples of women without diabetes, and 177
samples of women with diabetes.

I Therefore,

P(Diabetes = true) =
177

177 + 355
= .332

I And,

P(Diabetes = false) =
355

177 + 355
= .668

I Or,

P(Diabetes = false) = 1−P(Diabetes = true) = 1−.332 = .668



Naive Bayes with KDEs

I Bayes rule:

P(D|GLU) =
P(D)P(GLU|D)

P(D)P(GLU|D) + P(¬D)P(GLU|¬D)



Naive Bayes with KDEs

I Plot of the posterior distribution:
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Naive Bayes with KDEs

I P(D|GLU = 50)?

P(D|GLU = 50) =
(.332)(2.73E − 5)

(.332)(2.73E − 5) + (.668)(3.39E − 4)
= .0385

I P(D|GLU = 175)?

P(D|GLU = 175) =
(.332)(.009)

(.332)(.009) + (.668)(7.65E − 4)
= .854
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