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Introduction

> If we can't fit a distribution to our data, then we use
nonparametric density estimation.

» Start with a histogram.

» But there are problems with using histrograms for density
estimation.

> A better method is kernel density estimation.

» Let's consider an example in which we predict whether
someone has diabetes based on their glucode concentration.

» We can also use kernel density estimation with naive Bayes or
other probabilistic learners.



Introduction

» Plot of plasma glucose concentration (GLU) for a population
of women who were at least 21 years old, of Pima Indian
heritage and living near Phoenix, Arizona, with no evidence of

diabetes:
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Introduction

> Assume we want to determine if a person’s GLU is abnormal.

» The population was tested for diabetes according to World
Health Organization criteria.

» The data were collected by the US National Institute of
Diabetes and Digestive and Kidney Diseases.

» First, are these data distributed normally?

» No, according to a x? test of goodness of fit.



Histograms

» A histogram is a first (and rough) approximation to an
unknown probability density function.

» We have a sample of n observations, Xi,..., X, ..., X,.
» An important parameter is the bin width, h.

» Effectively, it determines the width of each bar.

> We can have thick bars or thin bars, obviously.

> h determines how much we smooth the data.

> Another parameter is the origin, xp.

> xg determines where we start binning data.

» This obviously effects the number of points in each bin.
» We can plot a histogram as

» the number of items in each bin or
» the proportion of the total for each bin



Histograms

» We define a bins or intervals as
[x0 + mh,xo + (m+ 1)h] for me Z

(i.e., the positive and negative integers).

» But for our purposes, it's best to plot the relative frequency
o 1 . .
f(x) = —h(number of X; in same bin as x)
n

> Notice that this is the density estimate for x.



Problems with Histograms

» One program with using histograms as an estimate of the
PDF is there can be discontinuities.

» For example, if we have a bin with no counts, then its
probability is zero.

» This is also a problem “at the tails” of the distribution, the
left and right side of the histogram.

» First off, with real PDFs, there are no impossible events (i.e.,
events with probability zero).

> There are only events with extremely small probabilities.

» The histogram is discrete, rather than continuous, so
depending on the smoothing factor, there could be large
jumps in the density with very small changes in x.

» And depending on the bin width, the density may not change
at all with reasonably large changes to x.



Kernel Density Estimator: Motivation

>

Research has shown that a kernel density estimator for
continuous attributes improve the performance of naive Bayes
over Gaussian distributions [John and Langley, 1995].

KDE is more expensive in time and space than a Gaussian
estimator, and the result is somewhat intuitive: If the data do
not follow the distributional assumptions of your model, then
performance can suffer.

With KDE, we start with a histogram, but when we estimate
the density of a value, we smooth the histogram using a
kernel function.

Again, start with the histogram.

A generalization of the histogram method is to use a function
to smooth the histogram.

We get rid of discontinuities.
If we do it right, we get a continuous estimate of the PDF.



Kernel Density Estimator
[McLachlan, 1992, Silverman, 1998]

» Given the sample X; and the observation x
N 1 < x — X;
Flx)=— Z} K ( p > :

where h is the window width, smoothing parameter, or
bandwidth.

K is a kernel function, such that

/00 K(x)dx =1
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One popular choice for K is the Gaussian kernel

1 _ 2
K(t) = 7%6 (1/2)t .

One of the most important decisions is the bandwidth (h).

v

v

We can just pick a number based on what looks good.



Kernel Density Estimator
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Source: https://en.wikipedia.org/wiki/Kernel_density_estimation



Algorithm for KDE

> Representation: The sample X; for i=1,...,n.
> Learning: Add a new sample to the collection.

» Performance:

N 1 < x — X;
f(x):nhZK( - >
i=1

where h is the window width, smoothing parameter, or
bandwidth, and K is a kernel function, such as the Gaussian

kernel 1
K(t) = —— e (/228
(t) e



Kernel Density Estimator

public double getProbability( Number x ) {
int n = this.X.size();
double Pr = 0.0;
for (int 1 = 0; i < n; i++ ) {
Pr += X.get(i) * Gaussian.pdf((x - X.get(i)) / this.h );
} // for
return Pr / ( n * this.h );
} // KDE::getProbability



Automatic Bandwidth Selection

> Ideally, we'd like to set h based on the data.
» This is called automatic bandwidth selection.

» Silverman’s [1998] rule-of-thumb method estimates h as

~ 4A5 1/5
ho = (") ~1.066n /5
3n

where & is the sample standard deviation and n is the number
of samples.

» Silverman’s rule of thumb assumes that the kernel is Gaussian
and that the underlying distribution is normal.

» This latter assumption may not be true, but we get a simple
expression that evaluates in constant time, and it seems to
perform well.

» Evaluating in constant time doesn't include the time it takes
to compute &, but we can compute & as we read the samples.



Automatic Bandwidth Selection

» Sheather and Jones' [1991] solve-the-equation plug-in method
is a bit more complicated.

» It's O(n?), and we have to solve numerically a set of
equations, which could fail.

> It is regarded as theoretically and empirically, the best method
we have.



Simple KDE Example

» Determine if a person’s GLU is abnormal.

14

12
10

Counts

S N B~ O
T 1 71

No Diabetes

0 50 100 150 200
GLU

250



Simple KDE Example

» Green line: Fixed value, h=1
» Magenta line: Sheather and Jones' method, h = 1.5
» Blue line: Silverman’s method, h = 7.95

Est. Density

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0

No Diabetes

Observations [ ]
| h=1 ——
ather (h=1.5) ——— 1
tan (h=7.95) —— |

||||||1||n.:k.!g,::.. Wl

GLU



Simple KDE Example

Assume h = 7.95

#(100) = 0.018

f(250) = 3.3 x 1014

P(0 < x <100) = [, F(x) dx
P(0 < x < 100) = 5% f(x) dx
P(0 < x < 100) ~ 0.393
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Naive Bayes with KDEs

» Assume we have GLU measurements for women with and
without diabetes.
» Plot of women with diabetes:
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Naive Bayes with KDEs

» Plot of women without:
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Naive Bayes with KDEs

» The task is to determine, given a woman's GLU measurement,
if it is more likely that she has diabetes (or vice versa).

» For this, we can use Bayes' rule.

» Like before, we build a kernel density estimator for both sets
of data.



Naive Bayes with KDEs

» Without diabetes:
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» Silverman’s rule of thumb gives ho = 7.95



Naive Bayes with KDEs
> With diabetes:
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Naive Bayes with KDEs

» All together:
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Naive Bayes with KDEs

» Now that we've built these kernel density estimators, they give
us P(GLU|Diabetes = true) and P(GLU|Diabetes = false).



Naive Bayes with KDEs

» We now need to calculate the base rate or the prior
probability of each class.

> There are 355 samples of women without diabetes, and 177
samples of women with diabetes.

» Therefore,

177
P(Diabetes = t = ——F—=.332
(Diabetes = true) 177 + 355
> And 355
P(Di = false) = ——> __ —
(Diabetes = false) 177 + 355 668
» Or,

P(Diabetes = false) = 1—P(Diabetes = true) = 1—.332 = .668



Naive Bayes with KDEs

> Bayes rule:

P(D)P(GLU|D)

P(DIGLY) = 55yP(GLUID) + P(~D)P(GLU|-D)



Naive Bayes with KDEs

» Plot of the posterior distribution:
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Naive Bayes with KDEs

» P(D|GLU = 50)?

(:332)(2.73E — 5)

P(D|GLU = 50) — .
(DIGLU = 50) = (3353273 — 5) + (.668)(330E —4) 000
» P(D|GLU = 175)?
P(D|GLU = 175) = (:352)(.009) _ 854

(:332)(.009) + (.668)(7.65E — 4)
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