
Contention Resolution on Multiple Channels
with Collision Detection

Jeremy T. Fineman
Georgetown University
Washington, DC, USA

jf474@georgetown.edu

Calvin Newport
Georgetown University
Washington, DC, USA

cn248@georgetown.edu

Tonghe Wang
Georgetown University
Washington, DC, USA

tw473@georgetown.edu

ABSTRACT
In this paper, we consider the classical contention resolution
problem in which an unknown subset of n possible nodes are
activated and connected to a shared channel. The problem
is solved in the first round that an active node transmits
alone (thus breaking symmetry). Contention resolution has
been an active research topic for over four decades. Ac-
cordingly, tight upper and lower bounds are known for most
major model assumptions. There remains, however, an im-
portant case that is unresolved: contention resolution with
multiple channels and collision detection. (Tight bounds
are known for contention resolution with multiple channels,
and contention resolution with collision detection, but not
for the combination of both assumptions.) Recent work [14]
proved the first non-trivial lower bound for randomized so-
lutions to this problem in this setting. The optimality of
this lower bound was left an open question. In this paper,
we answer this open question by describing and analyzing
new contention resolution algorithms that match, or come
within a log log log n factor of matching, this bound for all
relevant parameters. By doing so, we help advance our un-
derstanding of an important longstanding problem. Of equal
importance, our solutions introduce a novel new technique
in which we leverage a distributed structure we call coalesc-
ing cohorts to simulate a well-known parallel search strat-
egy from the structured PRAM CREW model [16] in our
unstructured distributed model. We conjecture that this
approach is relevant to many problems in the increasingly
important setting of distributed computation using multiple
shared channels.

Keywords
contention resolution; collision detection; symmetry break-
ing

1. INTRODUCTION
The contention resolution problem assumes an unknown

subset of n possible nodes that are activated and connected

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC’16, July 25–28, 2016, Chicago, IL, USA
c© 2016 ACM. ISBN 0-89791-88-6/97/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2933057.2933110

to a shared multiple-access channel (MAC). The problem
is solved in the first round that one of these active nodes
transmits alone on the shared channel. Contention resolu-
tion (which is also sometimes called leader election or wake-
up, depending on the model assumptions and context) is one
of the longest studied problems in the theory of distributed
algorithms. It was first identified in the 1970 paper on the
ALOHA radio network and variations have been extensively
explored by theoretical computer scientists and mathemati-
cians ever since; e.g., [15, 12, 10, 13, 9, 5, 2, 8, 11, 4, 14].
In this paper, we advance an important open case regarding
this problem, and in doing so also introduce a novel algorith-
mic technique potentially applicable to many other problems
in this setting.

An Open Problem. Contention resolution has been stud-
ied under many different model variations. Two of the most
important assumptions concern collision detection and num-
ber of available channels. Tight bounds are known for con-
tention resolution on a single channel with and without colli-
sion detection [5, 11, 6, 14], and for contention resolution on
multiple channels without collision detection [3, 14]. (See
Section 2 for details). Until recently, however, little was
known about the remaining case of multiple channels with
collision detection. In 2014 [14], progress was made with a

new lower bound that established Ω
(

logn
log C+log logn

)
rounds

are needed to solve contention resolution with collision de-
tection and C ≥ 1 channels (with high probability in n).
This bound holds even if we consider the easier restricted
case where only two nodes out of the n possible will be
activated. In [14], the question of this bound’s optimality
was left as an open problem—though it was suspected to
be not tight because it followed from the limits of a specific
proof technique and had no connection to a particular upper
bound intuition.

Our Solution. In this paper, we resolve this open prob-
lem. In more detail, we show (perhaps surprisingly) that
the lower bound from [14] is tight or within a log log log n
factor of tight for all relevant values of n and C. To do
so, we describe and analyze two new contention resolution
algorithms for MACs with collision detection and C > 1
channels. The first algorithm (presented in Section 4) solves

the problem in an optimal O
(

logn
log C + log logn

)
rounds in

the restricted case where only two nodes are activated—
exactly matching the lower bound from [14], which applies
to this restricted case. The second algorithm (presented in

175

Section 5) solves the problem in a near optimal O
(

logn
log C +

(log logn)(log log logn)
)

rounds for the general case where

any number of nodes are activated—coming within a log log log n
factor of the existing bound for large C (i.e., when the log logn
term dominates) and otherwise matching the bound.

Our Techniques. Our two-node algorithm works in two
phases. The first phase renames the two active nodes with
unique ids from the range {1, 2, ..., C} instead of {1, 2, ..., n}
(for the case where C > n, we use only the first n channels).
Notice, with a single channel, renaming (with high probabil-
ity in n) would require Ω(logn) rounds, as it takes this many
rounds to even just break symmetry between two nodes with
respect to their transmit/receive behavior. In our setting,
however, we can leverage the presence of C channels and
collision detection to speed up this process to require only
O(logn/log C) rounds (with high probability).

Once the two nodes have renamed themselves in a smaller
id space, we consider the binary tree with the leaves labeled
with this smaller set of C possible ids. Let i and j be the
unique ids of the renamed nodes. Let Pi and Pj be the
two paths in our tree from the root to the leaves labelled
i and j, respectively. In our second phase, we associate a
channel with each node in this tree. We use these channels
to perform a binary search over the tree’s O(log C) levels
to identify the level where Pi and Pj first diverge. Once
we identify this key divergence, the node associated with
the path that splits to the left (by some fixed labeling of
the child orientations) is the winner and can go transmit
alone on the primary channel1 to solve the problem. This
second stage requires O(log log C) = O(log logn) rounds and
is deterministic.

Our general algorithm, which works for any number of
nodes, builds on a similar structure, but requires more com-
plex analysis and the introduction of novel algorithmic strate-
gies to overcome the issues introduced by larger sets of active
nodes. In more detail, this general algorithm deploys three
steps. The first step reduces the number of active nodes to
a count in O(logn) in O(log logn) rounds using an aggres-
sive knock out strategy. This preliminary reduction serves
to simplify analysis in the remaining steps.

The second step renames the remaining nodes with unique
IDs from the space [C/2]. As with the two node algorithm,
this renaming leverages the presence of multiple channels.
Each active node chooses a channel from 1 to C/2 with uni-
form randomness, then transmits using its collision detector
to determine if it is alone. If any node is alone on its channel,
it can adopt the channel label as its unique ID and notify
the nodes that have not yet adopted a new ID to become
inactive. To handle the case where C is small compared to
logn, we interleave these renaming attempts with contin-
ued attempts to reduce the active nodes using a knock out
strategy. Analysis of the reduction rounds in this phase is
complicated by the fact that we need to achieve reductions
to active node counts (potentially) much smaller than log n
with high probability in n. The analysis of the renaming at-
tempts deploys a custom balls-in-bins argument that treats
the nodes as balls and the channels they choose as bins.

1The definition of contention resolution with multiple chan-
nels fixes one channel to play the role of the primary channel.
The problem is solved when an active node broadcasts alone
on the primary channel.

When the renaming completes, we proceed to the third
step which elects a leader and features the primary algorith-
mic contributions of this paper. For this step, we once again
consider a binary tree with one leaf for each possible id in
our reduced space, and focus on the paths from the root to
the occupied leaves corresponding to the ids of active nodes.
As in the two node algorithm, in O(log log n) rounds we can
complete a binary search that finds the level closest to the
root in which all paths occupy unique tree nodes. Also as in
the two node algorithm, we can use the identification of this
level to reduce the number of active nodes by a factor of at
least 2. After our first step, we have at most O(logn) nodes,
so we would need O(log logn) such searches. The resulting
time complexity for this strategy, however, is too large. To
optimize this process to our desired (log log n)(log log logn)
rounds, we need to speed up the time required by these
searches.

To accomplish this speed up, we introduce a new tech-
nique called coalescing cohorts. The idea is that when
we first enter this step, the active nodes are not coordi-
nated. As we proceed with our basic strategy of conducting
searches to reduce active nodes, however, we coalesce coordi-
nated groups of nodes that we call cohorts. A key guarantee
of these cohorts is that after each search, they each have
the same size p and their members have unique IDs from a
known set of size p. (We cannot immediately solve leader
election from this property, however, because the total num-
ber of cohorts in the system is unknown.) This structure
allows us to simulate a CREW PRAM parallel search algo-
rithm [16] that has p processes work in parallel to perform a
(p+ 1)-ary search. After each search, this cohort size p dou-
bles, and therefore the search time decreases rapidly enough
that the sum of the rounds spent to conduct O(log log n)

search/reductions is in O
(

(log log n)(log log logn)
)

.

Impact. These results generate both specific and general
impacts. The specific impact is that they close a long-
standing open question regarding a classical distributed al-
gorithm problem. The general impact comes from the new
techniques we developed to prove our results. In particu-
lar, our coalescing cohorts strategy provides a method to
quickly build large collections of coordinated nodes in dis-
tributed multiple channel models. In this paper, we use the
structure in these groups to simulate efficient strategies from
the parallel algorithms literature. We conjecture that this
strategy can be combined with a variety of well-known par-
allel algorithms to speed up computation in our distributed
model. Even without parallel algorithm simulation, how-
ever, we note that the structure provided by these cohorts
still provides a powerful algorithmic tool that can poten-
tially be leveraged in developing efficient solutions for many
problems.

2. RELATED WORK
The study of contention resolution developed out of the

network random access method introduced in the ALOHA
paper in 1970 [1]. Early work on this problem focused on
the stability of contention resolution algorithms for differ-
ent packet arrival rates; e.g., [15, 12, 10] (see [7] for a good
survey). By the mid-1980’s, however, the literature split,
with an increasingly number of mathematicians and com-
puter scientists studying a one-shot version of the problem

176

where a single set of packets arrives at the beginning of the
execution, and the problem is solved once the first packet is
successfully delivered e.g., [13, 9, 5]. This is the version of
the problem we study in this paper.

As mentioned, contention resolution has been considered
under many model assumptions. The two assumptions rele-
vant to this paper are collision detection capability and the
number of available channels. Many of the original papers
on contention resolution (e.g., [13, 9, 5]) assume collision
detection, which they define (as do we) such that all nodes
learn of a collision during any round with two or more trans-
mitters.2 A straightforward algorithm solves contention res-
olution in O(logn) rounds in this setting with probability
1: active nodes use collisions to guide a descent through
a binary search tree over the n possible ids to identify the
smallest id of an active node. This solution is optimal for
solving this problem with high probability in n [14]. Without
collision detection, by contrast, contention resolution can
be solved with high probability in O(log2 n) rounds. Jur-
dzinkski et al. [11] proved this near optimal for uniform3

algorithms and Colton et al. [6] eliminated the remaining
gap. Recently, Newport [14] proved this bound optimal for
all algorithms.

Providing nodes additional channels also speeds up con-
tention resolution. Daum et al. [3] show how to solve con-

tention resolution with high probability in O
(

log2 n/C +

logn
)

rounds with C ≥ 1 channels—achieving a linear speed

up in C until reaching the lower limit of Ω(logn). In [3], this
bound was proved near tight for uniform algorithms. New-
port [14] subsequently proved it tight for all algorithms. This
same paper proved that solving contention resolution with
high probability with collision detection and multiple chan-

nels requires Ω
(

logn
log C + log logn

)
rounds for all algorithms,

even if we consider the restricted case where only two nodes
are activated. At the time, the best known upper bound
for these assumptions required O(logn) rounds (i.e., the op-
timal algorithm for collision detection on a single channel).
Finally, we note the parallel binary search strategy we lever-
age in our new upper bound for general network size came
from Snir’s classic 1985 paper on parallel searching [16].

3. THE CONTENTION RESOLUTION PROB-
LEM

We parameterize our model with integers C > 0 and n ≥ 2.
We assume a set V consisting of n nodes each executing a
randomized algorithm, and a collection of C multiple-access
channels (called channels for short in the following), labelled
1, 2, ..., C. Our algorithms do not require nodes to have
unique ids (though the lower bounds in [14] hold even if
they do).

At the beginning of an execution, some arbitrary subset

2In more recent years, some papers also assume receiver col-
lision detection, in which the transmitters involved in the
collision do not directly learn about the collision (as would
be the case with half-duplex transmitters).
3This is one of several terms used to describe a restriction
common in many contention resolution lower bounds: the
transmission probabilities used by the algorithm are fixed at
each node in advance. This restriction forbids, for example,
nodes to base their transmission probability in one round on
coin flips from an earlier round.

A ⊂ V of the n possible nodes are designated as active.
(When specified, we sometimes consider a restricted case in
which |A| must equal 2.) The active nodes are the only
nodes that participate in the execution. Time then pro-
ceeds in synchronous rounds. In each round, each node in A
must make two decisions: (1) it must choose a single channel
from 1 to C on which to participate; and (2) it must decide
whether to transmit a message or receive. Each individual
channel behaves like a standard MAC with (strong) collision
detection. In more detail, fix some node u ∈ A that chooses
to participate on channel i in round r. If no node transmits
on i in this round, u detects silence. If exactly one node
transmits on i in this round, u receives this message. If two
or more nodes transmit on i, u receives a collision notifica-
tion. Notice, as in [14], we assume the classical definition of
collision detection (common in much of the original work on
this problem), where both transmitters and receivers learn
about message collisions on their channel in a given round.

The contention resolution problem is solved in the first
round in which a single node transmits on channel 1. We
assume all nodes start during the same round. It is easy
to transform a solution that works in this model to a solu-
tion that works in the harder model where nodes can start
during different rounds, at the cost of a factor of 2 in time
complexity. In nonsimultaneous wake-up case, we can have
each node listen for two rounds on channel 1. If both rounds
are silent, it starts running a modified version of the proto-
col where node broadcasts in the odd rounds (on channel 1)
and runs the protocol in the even. If the node instead hears
a collision or message in the first two rounds, it just stop
participating in the algorithm.

In this paper, we consider results that hold with high prob-
ability in n (the maximum number of nodes that might be
activated), which we define to mean probability at least 1−
1/nc for some fixed constant c ≥ 1. We define the notation
[i, j], for integers i ≤ j, to denote the range {i, i + 1, ..., j},
and define [i], for integer i > 0, to denote [1, i].

4. CONTENTION RESOLUTION FOR TWO
NODES

We begin by considering the restricted case where exactly
two nodes are activated. Under this assumption, we describe
and analyze an algorithm that solves contention resolution

in O
(

logn
log C + log log n

)
rounds, with high probability. This

algorithm matches the lower bound from [14], which holds
for this two node assumption. This algorithm is also useful
as it isolates and highlights some of the general ideas lever-
aged by the more involved general algorithm that follows.

In the following we assume that C is a power of 2 (the
strategies are easily modified to handle other values). We
also assume C ≤ n. Notice, no optimality is lost by this
latter assumption.4

The TwoActive Algorithm. The algorithm executes in
two steps. The first step implements an ID reduction strat-
egy that renames the two active nodes with unique ids from
the range [C]. The two nodes each choose a channel from
the C available channels and then transmit and use their

4The lower bound for C > n is Ω(log logn), and our algo-
rithm executes in O(log logn) rounds when run on n chan-
nels.

177

TwoActive (for node i ∈ A)
(Step #1: ID Reduction)

do
Choose IDi from [1, C] with uniform

randomness
Transmit on channel IDi

until i is alone on channel IDi

(Step #2: Symmetry Breaking)
L←SplitCheck(0, lg C, IDi)
if the node at level L in TC on Pi is left child

of parent at level L− 1
then transmit on channel 1

SplitCheck(l, r, id)
(return the level where Pi and Pj split)
if l ≥ r, then,

return l
else
m = b(l + r)/2c
Transmit on channel did/2lg C−me
if collision is detected then

return SplitCheck(m+ 1, r, id)
else

return SplitCheck(l,m, id)

Figure 1: The TwoActive Algorithm

collision detectors to see if they are alone. (This step lever-
ages the strong collision detection assumption that allows
transmitters to detect collisions.) The nodes repeat this ran-
dom channel selection strategy until they detect they are on
unique channels: at which point, each node then adopts the
label of its selected channel as its new unique id. This step
requires O(logn/log C) rounds (with high probability).

The second step makes use of these new IDs to efficiently
break symmetry among the two nodes. To do so, the nodes
consider a canonical full binary tree TC , with C leaves la-
belled with the values in [C]. Note that TC has a height of
h = lg C. Let i and j be the two active nodes, and let IDi
and IDj be their ids selected in the previous step. Node i
considers the unique simple path in TC from the root to the
leaf labelled IDi, and j does the same with respect to IDj .
We call these paths Pi and Pj , respectively. Notice that
these paths begin together at the root and split at some
point by the time they reach their respective leaves. This
second step conducts a binary search over the h levels of the
tree to find the smallest level at which the two paths diverge.
This search requires an assignment of a unique channel to
each node at the tree level being checked at a given step
of the algorithm; that is, the multiple channel assumption
is necessary for this step as well. Once we have found this
level—which we call ` in this exposition—breaking symme-
try is simple: the single node that is a left child of its par-
ent at ` − 1 (on its path from the root) wins and trans-
mits on channel 1 to solve the problem. This step requires
O(log h) = O(log log C) = O(log log n) rounds.

Analysis. We are now ready to state our main correctness
theorem:

Theorem 1. In a network with 2 active nodes (out of
n possible nodes) and C channels, TwoActive solves con-

tention resolution in O
(

logn
log C + log logn

)
rounds, with high

probability.

The correctness of our theorem is a direct consequence of
the following two lemmas.

Lemma 2. With high probability: nodes i and j conclude

Step #1 with IDi 6= IDj, during the same round r ∈ O
(

logn
log C

)
.

Proof. Fix t = lg n/ lg C. The probability that nodes i
and j select the same channel for t consecutive rounds in the
ID reduction phase is bounded as:

t∏
r=1

Pr{IDi = IDj for round r} =
∏t
r=1(1/C)

= (2− lg C)t = 2− lgn = 1
n
,

which is sufficiently small for our lemma statement. (No-
tice, we can easily adjust this result for probability 1/nc, for
constant c > 1, by simply increasing t by a factor of c.)

Lemma 3. Assuming that nodes i and j begin Step #2
during the same round with IDi 6= IDj, then this step will go
on to solve contention resolution in an additional O(log log n)
rounds.

Proof. Consider a binary array B ∈ {0, 1}lg C+1, defined
such that for each m ∈ [0, lg C], B[m] = 1 iff Pi and Pj
pass through the same node in level m of TC . Notice that
B[0] = 1, B[lg C] = 0, and the array, when read from small
to large indices starts with 1’s then changes over to 0’s.
The SplitCheck subroutine implements a standard binary
search logic on B to identify ` = min{m : B[m] = 0}. The
correctness of this search depends on the correctness of the
logic SplitCheck uses to test whether a given position is
1 or 0. This correctness follows from how the algorithm
assigns i and j to channels when testing a given level m. The
formula used—did/2lg C−me—assigns i and j to the same
channel iff their paths share a node at that level of TC (that
is, if B[m] = 1). The nodes then use collision detection to
determine whether or not they share the same channel for a
given check.

Once we have established that the nodes effectively set
L = ` with their call to SplitCheck, the correctness of the
whole routine follows. By definition, i and j share a parent
at level ` − 1 in TC and therefore only one these two nodes
is the common parent’s left child—the node that will go on
to transmit alone on channel 1 and solve the problem.

Finally, we note that the time required to complete this
search is in O(log h) = O(log log C) = O(log logn), where
the final step follows from our assumption that C ≤ n.

5. CONTENTION RESOLUTION FOR ANY
NUMBER OF NODES

We now present our main algorithm which solves con-
tention resolution for any number of active nodes. The al-
gorithm consists of three steps that are executed one after
another in a synchronized manner. The first step leverages
a straightforward knock out strategy to reduce the number
of active nodes to a count in O(logn). (This preliminary re-
duction will simplify the steps that follow.) The second step
reassigns active nodes unique ids from the space [C/2] (fur-
ther reducing the number of active nodes if needed to enable
this task). The third step leverages the guarantees of the two
that precede it to solve the contention resolution problem.

178

Reduce (for active node v)
n̂← n, r ← 1
do

repeat twice:
v broadcasts on channel 1 with probability 1/n̂
if v broadcasts without collision
v become leader and terminates

else if v receives and does not hear silence
v becomes inactive and terminates

r ← r + 1

n̂←
√
n̂

while r ≤ dlg lgne

Figure 2: The Reduce Algorithm

Our main theorem follows directly from Theorems 5, 6, and
17:

Theorem 4. In a network with up to n ≥ 1 possible ac-
tive nodes and C ≥ 1 channels, our algorithm solves con-

tention resolution in O
(

logn
log C+(log log n)(log log logn)

)
rounds,

with high probability.

5.1 Step #1: Reduce to O(logn) Active Nodes
The first step of our leader election algorithm is to reduce

the number of active nodes to O(logn). This reduction will
prove helpful to both of the steps that follow. We note that
with collision detection, reducing a set of no more than n
nodes to less than O(logn) nodes does not require multi-
ple channels. Accordingly, the algorithm we deploy for this
purpose only uses channel 1. Our algorithm Reduce uses
a standard knock out strategy and reduces the active node
count to O(logn) in O(log log n) rounds. We formalize this
result with the following theorem which can be shown using
standard techniques from the single channel setting:

Theorem 5. There exists a constant α ≥ 1, such that for
any constant β ≥ 1, when Algorithm Reduce terminates
the number of active nodes is between 1 and αβ logn, with
probability at least 1− n−β.

5.2 Step #2: Reduce the Unique ID Space from
[n] to [C/2]

Our goal in this second step is to continue to reduce the
set of active nodes as needed until we succeed in reassigning
nodes unique IDs from [C/2]. We accomplish this task with
an algorithm we call IDReduction, which guarantees to
complete the needed reduction/renaming in O(logn/ log C)
rounds, with high probability. We describe and analyze the
algorithm below.

The IDReduction Algorithm. This algorithm alternates
between renaming and reduction phases. The renaming phase
is implemented by a pair of rounds. During the first round
of the pair, all nodes that are still active at the beginning of
the renaming phase choose a channel from the range [C/2]
with uniform randomness and transmit. If a node detects it
is alone on some channel i, it adopts i as its unique id. In
the next round of the pair all nodes go to channel 1. Any
node that adopted a unique id in the preceding round trans-
mits. If there are any transmissions, the algorithm is over,

and only those nodes who transmitted remain active (with
their recently adopted ids as their new unique id).

The reduction phase requires only a single round. During
a reduction phase round, all nodes that are still active trans-
mit with probability 1/k on channel 1, where k =

√
C/144.

Nodes that do not transmit receive on channel 1. If there
is at least one transmission, then any active node that did
not transmit becomes inactive. Otherwise, the set of active
nodes does not change in this round.

Analysis. In the following, we use the notation Ar to rep-
resent the set of active nodes in the beginning of the rth

round of IDReduction. Note that . . . ⊆ Ar+1 ⊆ Ar ⊆
. . . ⊆ A1 = A. In the following, we assume C is a sufficiently
large such that k =

√
C/144 ≥ 3. (Spread throughout this

analysis are several other places where we similarly assume
C is larger than some fixed constant.) We note that we are
always safe to fix a constant lower bound for C, as when
C = O(1), the lower bound simplifies to Ω(log n), which we
can match with the well-known O(logn) contention reso-
lution algorithm that is optimal for the single channel case.
Finally, to simplify notation, the theorem, lemma, and corol-
lary statements that follow, when we claim a result holds
with high probability, we mean that it holds with probability
at least 1 − n−β , where β ≥ 1 is a constant that increases
along with the constants hidden within the asymptotic time
complexity.

We begin our analysis by stating the main theorem. Its
correctness follows directly from Corollary 8 and Lemma 10
which we describe and prove below.

Theorem 6. Assume |A| = O(logn). With high proba-
bility: IDReduction terminates in O(logn/ log C) rounds
with no more than C/2 active nodes, each with a unique ID
from [C/2].

Our analysis proceeds in two pieces. In more detail, first
we show that the reduction rounds reduce the number of ac-
tive nodes below C/6 within O(logn/ log C) rounds. Second,
we show that once we have less than C/6 participants, the re-
naming rounds will succeed within an additionalO(logn/log C)
rounds. The below lemma addresses the first piece. The
main idea is to note that when the number of active nodes is
large compared to a target of ≈ k log k (where k comes from
the knock probability 1/k used in the reduction rounds in
IDReduction) the reduction rounds achieve big reductions
with high probability after only a small number of rounds.
As the active node count approaches the target, the number
of rounds required for high probability increases. We show
that this count falls fast enough that the total number of
rounds spent reducing does not sum to something too large.

Lemma 7. Assume |A| = O(logn). There exists a round
r̂ = O(logn/log k), such that with high probability: |Ar̂| ≤
24k log k.

Proof. Let c1 = 24 be the constant from the lemma
statement; i.e., our goal can be stated as achieving |Ar̂| ≤
c1k log k. By assumption, |A| ≤ c′ logn for some constant
c′ ≥ 0. Therefore, it clearly follows that |A| ≤ γ logn for
γ = max{24, c′}. We also assume k < n. If this was not true,
then the assumption that |A| = O(logn) would imply that
|A| ≤ c′ log k which is smaller than 24k log k for any constant

179

c′ once C is a sufficiently large constant, which would make
the lemma trivially true. We also assume C is a sufficiently
large constant that k ≥ 3. An immediate corollary from
this assumption is that |A| ≤ γk logn. Because the set of
active nodes can never increase as the execution continues,
this upper bound always holds.

To begin our proof argument, we note that in each round r
for which we have not yet sufficiently reduced the number of
active nodes, we know: c1k log k < |Ar| ≤ γk logn. For each
such round r, therefore, we can express |Ar| as the quantity
γk(logn/q(r)), for some value q(r) that is from the range
1 to T = (γ logn)/(c1 log k). (We know T > 1 because
γ ≥ c1 and n > k.) Furthermore, we know the sequence
q(1), q(2), q(3), ..., is strictly non-decreasing, as the active
node count can never grow.

Fix some reduction round r such that we are not yet done.
Let Xr be the number of nodes that choose to transmit dur-
ing this round. We know: E(Xr) = |Ar|/k = γ(logn/q(r)).

Because the transmission decisions are independent, we
can express Xr as the sum of independent indicator vari-
ables describing the nodes’ transmission decisions, and can
therefore apply a Chernoff bound to achieve concentration.
We use the following special form:

Pr[|Xr − E(Xr)| ≥ E(Xr)/2] < 2e−E(Xr)/12.

Notice, if |Xr−E(Xr)| < E(Xr)/2, then because k ≥ 3 and
E(Xr) ≥ 2, it holds that we have reduced the set of active
nodes by at least a factor of 2; i.e., |Ar|/|Ar+1| ≥ 2. (The
former assumption ensures (3/2)E(Xr) is not too large, and
the latter ensures that (1/2)E(Xr) ≥ 1.)

We want to bound the probability that |Ar|/|Ar+x| < 2,
for some x ≥ 1. That is, we want to bound the probability
that after x rounds we still have not yet reduced the active
node count at the start of the interval by at least a factor of
2. To bound this probability, we instead consider the harder
model where if a round is not good, then no node becomes
inactive. In this harder model, the probability that we have
x reduction rounds in a row that are not good is less than:

(
2 exp

{
−E(Xr)

12

})x
<
(

exp
{
−E(Xr)

24

})x
= exp

{
−xγ log e lnn

24q(r)

}
,

where the first inequality loosely holds so long as we assume
that E(Xr) ≥ 24 (for all values of q(r) from 1 to T the ex-
pectation is greater than this value). Next notice for that

for x ≥ q(r)c224
γ log e

, defined for any constant c2 ≥ 1, this proba-

bility is less than n−c2 . Put another way, starting from any
given round r, with high probability, after Θ(q(r)) reduction
rounds we have reduced the active node count by a factor
of at least 2. (And as we increase the constant c2 hidden
in the Θ(q(r)) term, the exponent on the failure probability
increases as well.)

We next partition reduction rounds into intervals, where
the first interval starts in the first reduction round, and the
start of interval i + 1, for i ≥ 1, corresponds to the first
round after which the number of active nodes is at least a
factor of 2 smaller than at the start of interval i. Let ri be
the reduction round at the start of interval i. Let î be the
latest interval before we fall below our target threshold of
c1k log k.

Consider the sequence of q(r) values associated with the
size of the active node sets during these intervals’ start
rounds: q(r1), q(r2), ..., q(rî). We note two things about this
sequence. First, by our definition of an interval, for each i,
q(ri) ≤ q(ri+1)/2. That is, the values at least double be-
tween intervals, corresponding to the node set size reducing
by at least a factor of 2. We also note that by definition:
q(rî) = O(T) = O(logn/ log k).

Leveraging our above probabilistic analysis, we note that
for each interval i, with high probability, it takes onlyO(q(ri))
rounds to get to interval i+1. Therefore, by a union bound,
this is true of all intervals, also with high probability. Under
this assumption, we can upper bound the number of rounds
required to get through all O(T) intervals with the summa-
tion c + 2c + 4c + ... + T , for some constant c ≥ 1. This
time complexity simplifies to O(T) = O(logn/ log k)—as
needed.

Our goal is to get the number of active nodes below C/6.

Notice, however, that for our definition k =
√
C/144, the

≤ 24k log k nodes guaranteed by Lemma 7 reduces to no
more than:

24k log k = 24(
√
C/144) log (

√
C/144) < 24(

√
C/144) log (

√
C)

≤ (1/6)
√
C log (

√
C) < C/6.

The following corollary is a direct implication of Lemma 7

and the above inequality and the fact O
(

logn
log k

)
= O

(
logn
log C

)
:

Corollary 8. Assume |A| = O(logn). There exists a

round r̂ = O
(

logn
log C

)
, such that with high probability: |Ar̂| <

C/6.

We are left now to show that if the number of active nodes
reduces below C/6, renaming becomes likely to succeed. Be-
fore making our main argument to this effect, we first isolate
a useful balls-in-bins claim that the argument will leverage.

Lemma 9. Assume you throw b balls into m bins such
that b = m/β, where 3 ≤ β < m. The probability that no
ball ends up alone in a bin is less than 1

2b/2
.

Proof. To achieve our bound we will bound the proba-
bility that (m−m/(2β)) of m bins are empty. Notice, this
event must hold if no ball ends up alone, as if more than
m/(2β) bins are full, then by a straightforward counting ar-
gument, at least one ball must end up alone.

Continuing with our calculation, consider a fixed set of
(m − m/(2β)) empty bins. For each ball, the probability
that the ball misses these empty bins and falls into one of the
m/(2β) free bins it is allowed to occupy, is 1/(2β). The prob-

ability that all balls land in a free bin is therefore 1/(2β)m/β .
This probability concerns only a single set of empty bins.
We now consider all such sets. In more detail, there are(

m
m−m/(2β)

)
different ways to select our (m−m/(2β)) empty

bins. Taking a union bound over these different selections,
we derive that the probability that there is at least one selec-
tion of (m−m/(2β)) empty bins that remains empty after
throwing m/β balls, is upper bounded as follows:

(
m

m− m
2β

)
(2β)

m
β

=

(
m
m
2β

)
(2β)

m
β
≤ (2βe)

m
2β

(2β)
m
β

=

(
e

2β

) m
2β

<
1

2
m
2β
,

180

where the last step holds because we assume β ≥ 3 > e ⇒
e/(2β) < (1/2). To achieve the bound stated in the lemma
our final step is to substitute the definition b = m/β.

We now leverage Lemma 9 to argue that renaming will
succeed once the number of active nodes is small enough for
the above balls-in-bins argument to give us a sufficiently high
probability of success. The probability we seek is something
at least (1 − (1/C)). If we succeed with this probability,
then the probability we fail O(logn/ log C) times in a row
becomes small in n,

Lemma 10. Fix a round r such that |Ar| ≤ C/6. With
high probability, renaming succeeds and the algorithm termi-
nates within O(logn/ log C) rounds.

Proof. In renaming rounds, active nodes each select a
channel with uniform randomness. If any node is alone on
its chosen channel the algorithm terminates. We will prove
here that once we fall below C/6 nodes, this will occur with
high probability after the stated number of attempts. To do
so, fix some renaming round t. Let n′ = |At| be the number
of nodes still active during this round. Assume 1 < n′ ≤ C/6
(the lower bound is safe to assume as if n′ = 1 it is trivial

to show we will terminate in this round). Let Ĉ = C/2. We
consider two cases concerning the size of n′, and will show
for each that the probability we do not terminate in t is

less than 1/2log Ĉ/2. We will then show this probability is
sufficiently low to terminate within the time claimed by the
lemma statement with high probability.

The first case for the size of n′ is when n′ ≤
√
Ĉ. Fix any

node i ∈ At. Let x be the channel it selects in this round.
The probability that some other j ∈ At also chooses x is 1/Ĉ.
By a union bound, the probability that at least one node in

At chooses x is less than: n′/Ĉ ≤ 1/
√
Ĉ = 1/2lg (

√
Ĉ) =

1/2lg Ĉ/2, as needed.

The second case is when n′ >
√
Ĉ. Here we can apply

Lemma 9 to the problem of throwing n′ balls in Ĉ bins (which
requires our assumption that 1 < n′ ≤ C/6 which implies

n′ ≤ Ĉ/3). This lemma tells us that the probability that no
ball is alone is less than 1

2n
′/2 . Given our assumption that

n′ >
√
Ĉ, it follows that 1/2n

′/2 < 1/2
√
Ĉ/2 < 1/2log Ĉ/2.

This final step requires the assumption that log Ĉ ≤
√
Ĉ,

which is always true for Ĉ ≥ 16. Given that we assumed
C ≥ 32 at the beginning of this section, it follows that Ĉ ≥
16.

We have just shown that in every round (once the number
of active nodes is sufficiently small), we fail to terminate with

probability less than 1/2log Ĉ/2. The probability that we fail

to terminate for T = (c logn)/ log Ĉ renaming rounds in a
row (for a fixed constant c ≥ 1), therefore, is less than:(1

2

) log Ĉ
2

T

=

(1

2

) log Ĉ
2

c logn

log Ĉ

=

(
1

2

) c logn
2

=

(
1

2

) c
2

.

Because T = O(logn/ log C), it follows that the probability
we fail to terminate in T = O(logn/ log C) rounds is poly-
nomially small in n (with an exponent that increases with
the constant c in T).

5.3 Step #3: Elect a Leader
The result of the first and second step of our algorithm

is that we now have x ≤ C/2 active nodes with unique IDs
in [C/2], and in addition x = O(logn) with high probabil-
ity. These nodes participate in the third and final step of
our algorithm, which we call LeafElection. This algo-
rithm deterministically elects a leader using a tree of chan-
nels (i.e., a tree with ≤ C nodes for which we have assigned
a unique channel for each tree node). This algorithm runs
in O(log h log log x) rounds, where x is the starting number
of active nodes and h = lg C is the height of the tree of chan-
nels. As before, we shall assume without loss of generality
that C is a power of 2.

Algorithm Description. Before describing the algorithm
mechanics (see Figure 3 for pseudocode), we first discuss the
tree of channels (equiv., channel tree) the algorithm uses.
As in Section 4 (the two node algorithm), we map channels
to a complete binary tree T with C/2 leaves, with channels
identified in the same canonical fashion as before. In certain
rounds, it will also be convenient to choose a single channel
to represent each level (or row) in the tree; to do so, we
choose the leftmost tree node at that level to act as the
level’s representative channel.

The core behavior of our algorithm is to coalesce active
nodes into larger and larger groups we call cohorts such that
every node in the same cohort has a distinct ID from a known
ID space the same size as the cohort. Eventually, only one
cohort remains, and the distinct IDs can be used to identify
the leader for the whole network. The main point of the
cohorts is to accelerate the binary searches used to identify
key levels in the channel tree.

More precisely, the main algorithm LeafElection con-
sists of a sequence of iterations or phases. Initially, all active
nodes belong to their own cohorts of size 1. We associate
with each cohort a distinct tree node cNode, which is the
least common ancestor of all active nodes in the cohort. Ini-
tially, therefore, the cohorts are associated with the leaves
of the channel tree. The algorithm maintains the invariant
that at the start of the ith phase all active cohorts have ex-
actly 2i−1 active nodes, and each active node in a particular
cohort has a distinct cID (or cohort ID) from [2i−1]. We
call the node with cID = 1 in the cohort the cohort master.

Each phase begins by testing whether more than one co-
hort exists by having the cohort masters broadcast on the
root channel. If there is more than one cohort, then the
phase must guarantee that (1) at least one cohort exists at
the end of the phase, and (2) all cohorts become twice as
large. We achieve this goal by pairing together some co-
horts and having others become inactive. In particular, we
employ SplitSearch to identify the level ` closest to the
root such that all cohorts have a different level-` ancestor.
Since we choose the smallest such level, there exists at least
one pair (and possibly many pairs) of cohorts that have the
common level-(`− 1) ancestor. To identify these pairs, each
cohort master broadcasts on the channel for its level-(`− 1)
ancestor (and all other members of the cohort listen). If
there is a collision, then this cohort can be paired; other-
wise, it becomes inactive. To pair the cohorts, we observe
that one cohort is in the ancestor’s left subtree, whereas the
other must be in the right subtree, so we increase the cIDs
of nodes in the right subtree by the cohort size. Finally, the
cohort tree node cNode can be updated to this ancestor.

181

LeafElection (for active node v)
cSize ← 1 // size of all active cohorts
cNode ← v’s leaf // the subtree for v’s cohort
cID ← 1 // v’s distinct id within its cohort
repeat

if cID = 1
v broadcasts on root’s channel

else v listens on root’s channel
if there was no collision

the lone broadcaster is the leader
else let `max = cNodes’s level
`← SplitSearch(0, `max, cSize, cNode, cID)
if cID = 1
v broadcasts on a`−1(v)’s channel

else v listens on a`−1(v)’s channel
if collision at a`−1(v)

if v in right subtree of a`−1(v)
cID ← cID + cSize

cSize ← 2cSize
cNode ← a`−1(v)

else v becomes inactive
until leader declared
SplitSearch(`min, `max, cSize, cNode, cID) for active v
// return level closest to root where all subtrees

have ≤ 1 cohort
if `max = `min + 1 return `max

else let probedist = d(`max − `min)/cSizee
let k be smallest value such that
`min + k · probedist ≥ `max

for i < k, define `i as `i = `min + i · probedist
define `k = `max

if cID < k
CheckLevel(`cID)
CheckLevel(`cID+1)

else do nothing for 4 rounds
if cID = 1 and the first check returned “no collision”

announce 0 on channel cNode and set i← 0
else if cID < k and only the first check returned
“collision”

announce cID on channel cNode and set i← cID
else listen to cNode and set i to the announced value
return SplitSearch(`i, `i+1, cSize, cNode, cID)

CheckLevel(`) for active node v
broadcast on a`(v)
if a collision occurred on a`(v)

broadcast on the channel for row `
else listen on the channel for row `
if the channel for row ` was silent

return “no collision”
else return “collision”

Figure 3: The Algorithm LeafElection. The nota-
tion a`(v) refers to v’s level-` (i.e., depth-`) ancestor
in the tree of channels.

The SplitSearch routine is similar to SplitCheck in
Section 4, with the exception of two key differences. First,
the paths down to active cohorts may diverge at different
points, but we wish to identify the smallest level ` globally
where all have diverged. We thus employ a slightly more
complicated test, called CheckLevel to test whether any
nodes share an ancestor at level `. The test consists of two
rounds. During the first round, one node per cohort broad-
casts on its level-` ancestor. Some nodes may observe a
collision, whereas others may not. To arrive at the same
conclusion, any collisions are announced on the row channel
for level-`.

The second key difference in SplitSearch is that we ex-
ploit the large size of cohorts to accelerate the search. In
particular, let p be the size of cohorts. Then the search is a
(p+ 1)-ary search, instead of a binary search, adapted from
Snir’s [16] CREW parallel search. The search takes as in-
put a range of levels (`min, `max] to search. This range is
then subdivided into p + 1 subranges of roughly the same
size, given by (`0 = `min, `1], (`1, `2], (`2, `3], . . . , (`k−1, `k =
`max]. (Usually k = p + 1, except within one recursion of
the base case where k can be smaller.) The observation is
that each subrange can be tested independently—if there
is a collision at level `i but no collision at level `i+1, then
(`i, `i+1] is the subrange to search. Thus, we can test the
subranges in parallel by assigning one node per cohort to
each range according to cIDs. Once the correct subrange
has been identified by one node per cohort, that node an-
nounces the range to its comrades on the cohort tree node
cNode. Note that this step requires listeners to read and
interpret the message, not just listen for collisions. In this
way, all nodes know which subrange to recurse in, and the
size of the range has been reduced by roughly a p+ 1 factor.

Analysis. To prove correctness, we will argue that the fol-
lowing structural properties are invariant across phases. As-
suming the properties hold for each iteration, we first prove
that subroutines operate correctly (Lemmas 12 and 13). We
then inductively argue that Property 11 indeed holds with
Lemma 14.

Property 11. Let i be the phase number of LeafElec-
tion:

• All active nodes belong to a cohort.

• Each cohort has exactly cSize = 2i−1 active nodes as
members.

• Each member of a particular cohort has a distinct
identifier cID ∈ [2i−1].

• The cohort node is the treenode that is the least com-
mon ancestor of all members (which correspond to leaves).
All cohort nodes occur at distinct nodes in the same
level of the tree. Moreover, all members of a cohort
correctly identify their cohort node with cNode.

Lemma 12. Suppose that Property 11 holds and that ex-
actly one node in each active cohort performs CheckLevel(`).
Then the return value is “no collision” if and only if all co-
horts have distinct level-` ancestors.

Proof. By assumption, all cohort nodes occur at the
same level. If ` is a descendent level (i.e., ` is at least the
level of cohort nodes), then CheckLevel correctly returns
“no collision”—by Property 11, each participating node is a

182

descendent of a distinct cohort node, so they broadcast on
different channels.

Suppose instead that ` is smaller than the cohort nodes’
level. If two cohorts share an ancestor at level `, then by
Property 11 all members of those cohorts also share that an-
cestor. Thus, the first broadcast observes a collision, which
is advertised to all other cohorts in the second broadcast. If
no cohorts share an ancestor at that level, then no collision
is observed by anyone.

Lemma 13. Suppose that Property 11 holds when Split-
Search is called from LeafElection. Then SplitSearch
correctly returns the smallest level ` (nearest to root) such
that all cohorts have distinct level-` ancestors.

Proof. The proof is by induction over the recursive calls.
The hypothesis is that on each call 1) all concurrent calls are
synchronized and use the same values of `min and `max, 2)
`min < `, and 3) ` ≤ `max. Assuming the hypothesis, the
search only terminates if the correct value is identified. It is
easy to verify that the search eventually terminates because
the range gets strictly smaller on each recursive call.

For the base case, (1) follows from the fact that all cohort
nodes have the same level, and hence all active nodes agree
on `max. (3) is true trivially since all cohort nodes are dis-
tinct nodes at level `max. Since the search only executes if
there was a collision at the root, we know 0 < ` and hence
(2) holds.

For the inductive step, it is easy to verify that `min = `0 <
`1 < · · · `k = `max. Moreover, due to distinct cIDs (Prop-
erty 11), CheckLevel(`i) is performed by exactly one node
in each cohort at a time. Thus, by Lemma 12 these calls per-
form the correct answers, with the corresponding nodes in
each cohort observing the same answers. Moreover, Check-
Level(`i) returns “collision” for all `i < ` and “no collision”
for `i ≥ `, so only one subrange can be identified for the
recursive search and hence only one node per cohort makes
an announcement. (This is essentially the same argument
as Section 4 as well as the parallel search [16].) Finally, we
must verify that the range is announced without collision
and that all nodes in the cohort listen, which follows from
the assumption that each cohort has a different cNode.

Lemma 14. Property 11 holds at the start of the ith phase
of LeafElection.

Proof. The proof is by induction. By assumption that
each active node is a separate leaf of the tree, the property
holds trivially initially with all cohorts consisting of a single
active node.

Suppose the property holds at the start of the ith phase.
Then we must show that it holds at the start of the next
iteration. Since SplitSearch returns the correct answer
(Lemma 13), we know that (1) all cohorts have distinct
level-` ancestors, (2) at least one level-(` − 1) treenode has
multiple descendent cohorts, and (3) all such level-(` − 1)
treenodes have exactly two descendent cohorts, one in the
left and one in the right subtree. Since exactly one node per
cohort broadcasts on its level-(` − 1) ancestor, the cohorts
observe a collision if and only and only if they share a level-
(`− 1) ancestor with another cohort. Thus, cohorts remain
active if and only if they can be paired with another cohort,
thereby doubling the size of the cohort. Since the cIDs for
a cohort are by inductive assumption distinct values from
[cSize], adding cSize to the IDs of one of the paired cohorts

preserves distinctness. Moreover, the new cNode is indeed
the least common ancestor of both cohorts, and hence of all
nodes therein.

We are now ready to bound the performance of Leaf-
Election. We first bound the number of phases as a direct
corollary of Property 11. Then we bound the cost of the
searches.

Corollary 15. If LeafElection begins with x active
nodes assigned to distinct leaves of the channel tree, then it
correctly identifies a leader in O(log x) phases.

Proof. By Lemma 14, Property 11 holds, and hence at
the start of the ith phase all cohorts have size 2i−1. Thus,
there cannot be more than lg x+ 1 phases.

Lemma 16. During the ith phase, SplitSearch completes
in O((1/i) log h) rounds, where h = lg C is the height of the
channel tree.

Proof. With each recursive call, the size of the level sub-
range to search becomes d(`max − `min)/cSizee, i.e., reducing
by at least a Θ(cSize) = Θ(2i) + 1 factor. Thus, the num-
ber of recursive calls is O(log2i+1 h) = O(log h/ log 2i) =
O((1/i) log h). Noting that each call is a constant number
(specifically 5) of rounds completes the proof.

Finally, we have our main theorem for this step of leader
election:

Theorem 17. If LeafElection begins with x active nodes
assigned to distinct leaves of the channel tree, then it cor-
rectly identifies a leader in O(log h log log x) phases, where
h = lg C is the height of the channel tree.

Proof. Correctness follows from the Lemma 14. To prove
the performance, we observe that the work of each of the lg x
phases is dominated by the SplitSearch. Applying Corol-
lary 15 and Lemma 16, we conclude that the total number of

rounds is
∑O(log x)
i=1 O((1/i) log h) = O

(
log h

∑O(log x)
i=1 (1/i)

)
=

O(log h log log x).

Recall that if the previous steps are successful, then x =
O(logn), and hence this bound reduces to:

O(log log C · log log logn) = O(log logn · log log logn).

6. CONCLUSION
In this paper, we study the classical contention resolution

problem, in which an unknown subset of n possible nodes are
activated and connected on shared channels with the goal of
breaking symmetry. We considered, in particular, the case
where nodes have access to multiple channels and collision
detectors. We described and analyzed new algorithms that
match the relevant lower bound for the restricted case of
two active nodes, and for the general case come within a
factor of log log n. These results help advance one of the few
remaining major open cases for the longstanding study of
contention resolution.

The obvious next step is to tackle this final small gap be-
tween lower and upper bounds. We predict that the lower
bound is in fact tight. Proving this (somewhat tentative)
assertion, however, will require more advanced algorithmic

183

techniques. Another open problem is to tackle contention
resolution in this setting with respect to expected time of
termination. Not much is known about expected time solu-
tions in this case. One reason for this omission is that even
without collision detection, the best expected time solutions
are really fast, reaching O(1) expected complexity with as
few as logn channels. This leaves only a small band of pa-
rameters for which the addition of collision detection might
possibly improve performance.

7. ACKNOWLEGEMENTS
The research in this paper has been supported by NSF

grants CCF 1320279 and CCF 1314633.

8. REFERENCES
[1] N. Abramson. The ALOHA System: Another

Alternative for Computer Communications. In
Proceedings of the Fall Joint Computer Conference,
1970.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the
Time Complexity of Broadcast in Radio Networks: an
Exponential Gap Between Determinism and
Randomization. In Proceedings of the International
Symposium on Principles of Distributed Computing,
1987.

[3] S. Daum, S. Gilbert, F. Kuhn, and C. Newport.
Leader Election in Shared Spectrum Networks. In
Proceedings of the International Symposium on
Principles of Distributed Computing, 2012.

[4] S. Daum, F. Kuhn, and C. Newport. Efficient
Symmetry Breaking in Multi-Channel Radio
Networks. In Proceedings of the International
Symposium on Distributed Computing, 2012.

[5] W. D.E. Log-logarithmic selection resolution protocols
in a multiple access channel. SIAM Journal on
Computing, 15(2):468–477, 1986.

[6] M. Farach-Colton, R. J. Fernandes, and M. A.
Mosteiro. Lower Bounds for Clear Transmissions in
Radio Networks. In Proceedings of the Latin American
Symposium on Theoretical Informatics, 2006.

[7] R. Gallager. A Perspective on Multiaccess Channels.
IEEE Transactions on Information Theory,
31(2):124–142, 1985.

[8] L. Gasieniec, A. Pelc, and D. Peleg. The Wakeup
Problem in Synchronous Broadcast Systems. SIAM
Journal on Discrete Mathematics, 14(2):207–222,
2001.

[9] A. Greenberg and S. Winograd. A Lower Bound on
the Time Needed in the Worst Case to Resolve
Conflicts Deterministically in Multiple Access
Channels. Journal of the ACM, 32(3):589–596, 1985.

[10] B. Hajek and T. van Loon. Decentralized Dynamic
Control of a Multiaccess Broadcast Channel. IEEE
Transactions on Automatic Control, 27(3):559–569,
1982.

[11] T. Jurdziński and G. Stachowiak. Probabilistic
Algorithms for the Wakeup Problem in Single-Hop
Radio Networks. In Algorithms and Computation,
pages 535–549. Springer, 2002.

[12] M. Kaplan. A Sufficient Condition for Non-Ergodicity
of a Markov Chain. IEEE Transactions on
Information Theory, IT-25:470–471, July 1979.

[13] J. Komlos and A. Greenberg. An Asymptotically
Nonadaptive Algorithm for Conflict Resolution in
Multiple-Access Channels. IEEE Transactions on
Information Theory, 31(2):302–306, 1985.

[14] C. Newport. Radio Network Lower Bounds Made
Easy. In Proceedings of the International Symposium
on Distributed Computing, 2014.

[15] L. G. Roberts. ALOHA Packet System with and
Without Slots and Capture. ACM SIGCOMM
Computer Communication Review, 5(2):28–42, 1975.

[16] M. Snir. On Parallel Searching. SIAM Journal on
Computing, 14(3):688–708, 1985.

184

