
Scheduling Non-Unit Jobs to Minimize Calibrations

Jeremy T. Fineman
Georgetown University

jfineman@cs.georgetown.edu

Brendan Sheridan
Georgetown University

bss45@georgetown.edu

ABSTRACT

The recently proposed Integrated Stockpile Evaluation (ISE) prob-
lem extends a classic offline scheduling problem where n jobs, each
with arrival times and deadlines, must be scheduled nonpreemp-
tively on m machines. The additional constraint in the ISE problem
is that a machine may only be used if it has been calibrated recently.
The goal is to minimize the number of calibrations necessary to
complete all the jobs before their deadlines.

This paper presents a good polynomial-time approximation algo-
rithm for the ISE problem general case where each job may have a
different processing time. (Prior work was restricted to unit pro-
cessing times.) The ISE problem generalizes a classic interval-
scheduling problem where the goal is to minimize the number of
machines. We show constructively that the other direction is also
true, i.e., that the interval-scheduling bounds are also achievable.
Specifically, suppose we have a black-box interval scheduling al-
gorithm that finds an s-speed αm-machine solution to the inter-
val scheduling problem. Then our ISE algorithm finds an O(α)-
approximation for number of calibrations using O(αm) machines
with s-speed augmentation.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Sequencing and scheduling

Keywords

Integrated Stockpile Evaluation; approximation algorithms; cali-
bration; resource allocation; scheduling

1. INTRODUCTION
The Integrated Stockpile Evaluation (ISE) problem is an offline

multi-machine scheduling problem, recently introduced by Bender
et al. [5]. What distinguishes the ISE problem is that a machine
is unusable unless it undergoes a calibration, and jobs may only
be scheduled on a machine if that machine has been calibrated re-
cently. Specifically, if a calibration is performed on a machine at

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA’15, June 13–15, 2015, Portland, OR, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3588-1/15/06 ...$15.00.

DOI: http://dx.doi.org/10.1145/2755573.2755605.

time t, then the machine remains usable or calibrated for the inter-
val [t, t +T), for fixed T . Each machine may be calibrated multiple
times, but the machine must remain idle between its calibrated in-
tervals. Calibrations are instantaneous, so it is feasible to calibrate
the machine at times 0, T , 2T , and so on. Although calibrations
have no temporal cost, they are considered the expensive feature of
a solution.

More precisely, the ISE problem (denoted P|r j,d j|#calibrations
in standard scheduling notation [10]) is defined as follows [5]. The
input consists of a set J of n jobs, an integer number m of identi-
cal machines, and an integer T ≥ 2 specifying a calibration length.
Each job j has a processing time p j ≤ T , a release time r j, and a
deadline d j ≥ r j + p j. A schedule is feasible if it schedules jobs

nonpreemptively1 on machines such that 1) every job completes
before its deadline, and 2) every job is scheduled without preemp-
tion completely within a single calibrated interval. The goal is to
find a feasible schedule that minimizes the number of calibrations
performed.

The ISE problem formalizes scheduling issues that arise as part
of a nuclear-weapons-testing program with the same name at San-
dia National Laboratories [6]. The high-level goal is to perform
tests on a set of nuclear weapons to verify their integrity, with
the constraint that the testing devices be frequently re-calibrated
to guarantee accurate results. See [5, 6] for more details.

Bender et al. [5] give the first algorithms for the ISE problem.
They study the restricted case that for all jobs j, p j = 1. Even
in this special case of unit processing times, the problem is non-
trivial. Bender et al. [5] give two greedy scheduling algorithms.
Their first algorithm guarantees an optimal schedule (i.e., minimiz-
ing the number of calibrations) whenever a 1-machine schedule is
feasible. Their second algorithm gives a 2-approximation for the
multi-machine case.

This paper addresses the ISE problem for non-unit processing
times, which Bender et al. [5] leave as an open problem. It is not
hard to see that testing whether a feasible schedule exists is NP-
hard by a reduction from Partition. (Use m = 2 machines, and
assign all jobs the same release time r j = 0 and deadline d j =
T .) Thus ignoring the goal of minimizing calibrations, obtaining a
polynomial-time algorithm that finds any feasible schedule neces-
sitates resource augmentation [12], where the algorithm is given
more or faster machines than the optimal solution against which it
is compared. While the notion of resource augmentation was intro-
duced as a technique for producing online algorithms, it has also
become commonplace in recent offline scheduling literature.

More precisely, we define resource augmentation as follows. Let
OPT(I) denote the best possible value of the objective function

1Nonpreemptive means that when job j is scheduled on a machine,
it must be scheduled for p j consecutive timesteps.

(i.e., number of calibrations) over feasible m-machine schedules of
instance I. Adopting terminology introduced by Phillips et al. [13],
we say that an algorithm is a w-machine s-speed ρ-approximation
algorithm if it always achieves a feasible schedule with value at
most ρOPT(I) given wm machines each operating s times faster.

To understand how good a solution we can expect for the ISE
problem, observe that the ISE problem extends the classic machine-
minimization (MM) problem: given a set of jobs with release times,
deadlines, and processing times, find the minimum number of ma-
chines necessary to schedule all jobs by their deadlines. Specifi-
cally, given an instance to MM, construct an ISE instance by set-
ting T = max j

{

d j

}

−min j

{

r j

}

. A w-machine s-speed solution
to the ISE problem (with any approximation quality) would yield
an s-speed w-approximation to the MM problem. Thus if the best
s-speed approximation algorithm to the MM problem uses α times
the optimum number of machines, then the ISE problem requires
α-machine augmentation when limited to s-speed augmentation.
Similarly, because the number of machines and the number of cali-
brations are identical in this construction, the best s-speed α-machine
approximation we can expect for the ISE problem has an approxi-
mation ratio ρ≥ α.

Contributions

Our main result is an algorithm that uses any MM algorithm as a
black box, with only a constant factor overhead in terms of ma-
chine augmentation. Specifically, suppose we have an s-speed α-
approximation algorithm for the MM problem. Then our algorithm
results in an O(α)-machine s-speed O(α)-approximation to the ISE
problem. As explained above, this is the best we can expect to
within constant factors.

To understand this result concretely, let us consider the current
best approximation algorithms for the MM problem. Chuzhoy et
al. [8] give an O(OPT)-approximation for the MM problem, mean-
ing that the solution uses O(OPT2) machines. If OPT = O(1), then
their algorithm is a 1-speed O(1)-approximation algorithm. More
generally, combining their solution with Raghavan and Thomp-
son’s previous best O(logn/ log logn)-approximation [14] yields

an O(
√

logn/ log logn)-approximation for the MM problem for ar-
bitrary OPT. Both of these results use no speed augmentation and
apply to the general case.

In more recent work, Bansal et al.[2] study the case that OPT =
1, giving an O(1)-speed 1-approximation (i.e., a one-machine solu-
tion) for this special case. Unfortunately, it is not clear how to gen-
eralize this result past 1 machine. Im et al. [11] give an algorithm
guaranteeing either a (1+ ε)-speed 2-approximation or a (2+ ε)-
speed 1-approximation for the MM problem for any OPT. But un-
like the preceding results, their algorithm runs in quasi-polynomial
time, i.e., O(nO(logc n)) for some c > 0, not polynomial time.

Combining our algorithm with the above MM algorithms, we get
the following concrete results:

• A polynomial-time O(
√

logn/ log logn)-machine 1-speed al-

gorithm giving an O(
√

logn/ log logn) approximation for the
ISE problem. That is, given an ISE instance that is feasi-
ble using m machines and C calibrations, our algorithm pro-
duces a solution using O(C

√

logn/ log logn) calibrations on

O(m
√

logn/ log logn) machines.

• Whenever the input instance is feasible on O(1) machines,
then we have a polynomial-time O(1)-machine 1-speed O(1)-
approximation for the ISE problem. More generally, if the
instance is feasible on m machines, then we get a 1-speed
O(m)-machine O(m)-approximation, which is better than the

first bound if m = o(
√

logn/ log logn).

• A quasi-polynomial-time O(1)-machine O(1)-speed O(1)-
approximation for the ISE problem.

2. ALGORITHM OVERVIEW
This section gives our top-level algorithm for the ISE problem.

The high-level algorithm is simple: partition the input jobs J into
two subsets Jlong and Jshort, each containing the jobs with “long”
and “short” windows respectively. Schedule those jobs indepen-
dently, on disjoint machines, using the specialized algorithms de-
scribed in Sections 3 and 4. The partitioning itself is trivial, and this
process at most doubles the number of calibrations and machines
beyond either of the algorithms.

More precisely, we define long and short jobs as follows. Note
that the definition of long and short is based on the job’s window
(release time and deadline), not its processing time.

DEFINITION 1. We say that job j is long or a long-window job
if d j− r j ≥ 2T . We say that a job j is short or a short-window job
if d j− r j < 2T .

Our algorithm for long-window jobs uses an integer-program re-
laxation followed by a greedy rounding procedure (Section 3). As-
suming all jobs have long windows, our algorithm yields an O(1)-
machine 1-speed O(1)-approximation to the ISE problem. The al-
gorithm can also be modified to trade more speed for fewer ma-
chines, giving a 1-machine O(1)-speed O(1)-approximation. These
bounds are better than those stated in the introduction with regard to
the approximation ratio on number of calibrations and the amount
of machine-augmentation employed. The higher overheads arise
in scheduling short-window jobs (Section 4), where we apply an
MM algorithm as a black box. The short-window algorithm also
increases the number of machines and the approximation ratio by
a constant factor. Unfortunately, for small-window jobs (as for the
MM problem in general), it is not clear how to trade speed for ma-
chines.

Combining all of these results, we get our main theorem, whose
proof follows directly from Theorems 12 and 20.

THEOREM 1. Suppose there is an s-speed O(α)-approximation
algorithm A for the MM problem. Then using A as a black box, our
algorithm is an O(α)-machine s-speed O(α)-approximation for the
ISE problem. Moreover, the running time of our algorithm is a
polynomial in the length of the input (i.e., polynomial in n and the
precision of other numbers), multiplied by the running time of A .

3. SCHEDULING LONG-WINDOW JOBS
This section focuses on the special case of ISE where all jobs

have long windows. For this special case, our main algorithm yields
a 1-speed O(1)-machine O(1)-approximation, and we also show
that this solution can be transformed into an O(1)-speed 1-machine
O(1)-approximation. Intuitively, long jobs are easier to cope with
than short jobs because they have more options on where to be
scheduled, but capturing this intuition is not trivial.

We begin this section with one key insight: introducing an ex-
tra restriction to the long-window ISE problem makes it easier to
solve, without significantly compromising the quality of solution.
Specifically, we focus on what we call the trimmed ISE (TISE)
problem. The TISE problem is exactly the same as the ISE prob-
lem, except that there is one additional restriction on the schedule:
a job may be scheduled only inside a calibration that falls com-
pletely within the job’s window. Said differently, consider a cali-
bration starting at time t, spanning the time interval [t, t +T). Job
j, with window [r j,d j), may only be scheduled in this calibration if

r j ≤ t ≤ d j−T . We call this extra restriction the TISE restriction
or TISE constraint. Note that the TISE constraint is specific to
long jobs because jobs with windows shorter than T are infeasible
in the TISE problem.

The main advantage of the TISE problem is that whenever a job
is scheduled within a particular calibration, it would be feasible to
schedule the job anywhere within that calibration, which gives us
flexibility in the schedule. Moreover, because of this flexibility,
given an assignment of jobs to calibrations we can infer a schedule.
We thus need only focus on 1) finding a schedule of calibrations,
and 2) finding an assignment of jobs to those calibrations.

The bulk of this section gives an algorithm for the TISE prob-
lem, which includes several steps. First, we construct a linear-
programming (LP) relaxation of the TISE problem. The LP allows
for both fractional calibrations and fractional job assignments. We
then perform a greedy rounding step that yields an integer cali-
bration schedule such that a fractional assignment of jobs to cali-
brations remains feasible. This rounding step increases the num-
ber of calibrations and machines by a constant factor. Note that
fractional job assignments correspond to a preemptive schedule,
whereas integer job assignments correspond to a nonpreemptive
schedule. Finally, we convert the preemptive schedule to a nonpre-
emptive schedule, using a constant factor extra machines and cali-
brations, through a variant of earliest deadline first (EDF) schedul-
ing. Earliest deadline first does not generally work for nonpreemp-
tive scheduling with arbitrary release times, deadlines, and process-
ing times, but the TISE restriction helps us here.

A TISE solution is good enough

Because the TISE problem is more restricted, any valid TISE sched-
ule is also a valid ISE schedule. The question is what happens to the
quality of the solution. We argue in the following lemma that the
TISE solution is as good, to within constant factors. Specifically,
the optimal TISE solution uses at most three times the number of
machines and calibrations as the optimal ISE solution. It thus suf-
fices to solve a TISE problem on m′ = 3m machines.

The proof of the following lemma leverages the definition of
long-window jobs. In particular, in order for the presented con-
struction to apply, the threshold for being long must be at least 2T .
This proof is the reason for the choice of constant in Definition 1.
(Making the threshold larger is okay, but that would weaken the
bounds for short-window jobs.)

LEMMA 2. Consider any long-window ISE instance. Suppose
that there exists a feasible ISE schedule using m machines and C
calibrations. Then there exists a feasible TISE schedule using at
most m′ = 3m machines and 3C calibrations.

PROOF. The proof is by construction, which is illustrated by
Figure 1. Consider any machine i in the ISE schedule. We shall use
three machines, denoted i′, i+, and i−, in the TISE schedule. For
a calibration starting at time t on machine i in the ISE schedule,
we create three calibrations in the TISE schedule: a calibration on
machine i′ at time t, a calibration on machine i+ at time t +T , and
a calibration on machine i− at time t−T . Because the calibrations
on machine i+ and i− are T -step translations of the calibrations on
i, the calibrations themselves are feasible.

We next transform the schedule of jobs. Consider each job j in
the ISE schedule. Let x j be the job’s start time in the ISE sched-
ule. Let i be the machine on which the job is scheduled. Let t j be
the start time of the calibration containing the job, i.e., such that
x j ∈ [t j, t j +T). If r j ≤ t j ≤ d j−T , i.e., the job is already feasibly
scheduled with regards to the TISE restriction, then schedule the
job at time x j on machine i′. If r j > t j, then delay the job, schedul-

Figure 1: Example of the transformation from a feasible ISE
schedule on one machine to a feasible TISE schedule on 3
machines with 3× the calibrations, as described in proof of
Lemma 2. (A) indicates the job windows for the relevant long-
window jobs, with the endpoints of line j corresponding to r j

and d j. (B) shows the original feasible schedule on machine
i, and (C) shows the constructed TISE schedule given by the
proof, where the buckets are calibrations and the shaded rect-
angles are jobs—the width of rectangle j is its processing time
p j . Jobs 1 and 5 are moved to the advanced calibrations on
i− because their deadlines fall within the original calibration.
Similarly, job 7 is moved to the delayed calibrations on i+ be-
cause its release time falls within the original calibration.

ing it at time x j +T on machine i+. If d j < t j +T , then advance
the job, scheduling it at time x j−T on machine i−.

We must show that delaying or advancing a job enforces the
TISE restriction. Consider a delayed job j, i.e., one with r j > t j in
the ISE schedule. Because the job is long, we have d j ≥ r j +2T >
t j + 2T . Thus the calibration [t j + T, t j + 2T) is contained fully
within j’s window. Moreover, the job must complete by time t j +T
in the ISE schedule, so it must also complete by time t j +2T in the
TISE schedule. A similar argument applies to advanced jobs.

Finally, because the ISE schedule is a nonpreemptive schedule
such that no two jobs run at the same time on the same machine,
and each of the machines i′, i+, and i− only receives a subset of
jobs from the ISE schedule on i (all translated by 0, +T , or −T
timesteps), the TISE schedule is also a valid nonpreemptive sched-
ule.

Polynomially many calibration points suffice

When constructing scheduling LPs, it is common practice to use
variables indexed by each timestep and then argue after the fact that
the LP can be transformed to one where the number of variables is
polynomial in n. This approach, however, may require that time be
discrete, whereas our TISE problem statement does not require that
release times, processing times, or deadlines be integers. We thus
determine what the important times are up front before constructing
the LP. The following lemma states that there are only n2 times that
matter.

LEMMA 3. There exists an optimal solution to the TISE prob-
lem such that the following holds for every calibration on every
machine i. If a calibration is made at time t on machine i, then

Algorithm 1: Rounding calibrations produced by the LP

carryover = 0 ; // carried calibration fraction
C = /0 ; // new calibration schedule
i = 0 ; // machine number
foreach t ∈ T in increasing order do

carryover = carryover+Ct

while carryover ≥ 1/2 do
add a calibration at time t on machine i to C

carryover = carryover−1/2
i = i+1 mod 3m′

either t is equal to the release time of a job, or the calibration im-
mediately follows the preceding calibration on that machine (i.e.,
there is a calibration at time t−T on machine i).

PROOF. Consider an optimal schedule for the TISE problem.
We can iteratively transform it to one that obeys the lemma as fol-
lows. Consider the calibrations on each machine in increasing or-
der of time. If the kth calibration does not obey the lemma, then
decrease its start time (and the corresponding start time of any jobs
therein) until the calibration’s start time hits a release time or the
end of the (k− 1)th calibration, whichever comes first. Because
the calibration is not moved past any release times, all jobs in the
calibration can be advanced without sacrificing feasibility.

Because an optimal solution does not use any empty calibrations,
the lemma implies that there are at most n2 possible calibrations
on each machine. Specifically, there may be a calibration at any
release time. There may also be calibrations packed immediately
after this one, but there can only be n such calibrations.

We define T =
{

r j + kT | j ∈ J,k ∈ {0,1,2, . . . ,n}
}

as the set of
potential calibration points.

A linear-program for the TISE problem

The goal of our linear program (LP) is to determine a schedule of
calibrations on machines and an assignment of jobs to those cali-
bration points. (Recall that for the TISE problem, a full schedule
can be inferred by an assignment of jobs to calibrations because the
jobs can, by definition, be scheduled in any order.) An integer so-
lution to the LP corresponds to a feasible TISE schedule. We will
start from a fractional solution and round it.

Before stating the LP, let us mention two simplifying ideas. It
should be clear that both of the simplifications can only improve the
value of the optimal solution because feasible TISE schedules can
be trivially transformed into LP solutions.2 First, our LP ignores
the mapping of calibrations to machines, instead only requiring that
at most m′ calibrations overlap at any time. Second, our LP groups
calibrations by time, ignoring how jobs are partitioned across same-
time calibrations.

Leveraging these simplifications, our LP has two types of vari-
ables. The variable Ct denotes the number of calibrations made at
time t. The variable Xjt indicates whether (or how much of) job j is
assigned to the calibrations at time t. In both cases, following from
Lemma 3, we use the restriction that t ∈ T be one of the potential
calibration points.

2In fact, one can argue that for the fractional solution, the value of
the optimal solution is unchanged. For an integer solution, how-
ever, it may not be feasible to produce a TISE schedule from the
integer solution.

Figure 2: Example calibration rounding following Algorithm 1.
Buckets indicate scheduled calibrations and their height repre-
sents the amount of calibration. Calibration points are reached
after the second and fourth fractional calibrations, resulting in
a full calibration and two full calibrations respectively.

We are left with the following LP relaxation of the TISE prob-
lem:

minimize
∑

t∈T

Ct

subject to
∑

t ′∈T , t−T<t ′≤t

Ct ′ ≤ m′ ∀t ∈ T (1)

Xjt ≤Ct ∀ j ∈ Jlong, t ∈ T (2)
∑

j

Xjt p j ≤CtT ∀t ∈ T (3)

∑

t∈T

Xjt = 1 ∀ j ∈ Jlong (4)

Xjt = 0 ∀ j ∈ J, t ∈ T
s.t. t < r j or t +T > d j

(5)

Xjt ,Ct ≥ 0 ∀ j ∈ Jlong, t ∈ T (6)

The first constraint guarantees that there are not more than m′ cal-
ibrations at any timestep. The second constraint says that each job
can only be assigned to each calibration once (or more accurately,
the fraction of a job assigned to a calibration point cannot exceed
the fraction of calibrations performed at that point). The third con-
straint enforces that the total work assigned to a calibration point
(i.e., the fraction of jobs times their processing time) be at most
the total processing power of the calibration point (i.e., the number
of calibrations times T). The fourth constraint requires that ev-
ery job be scheduled completely. The fifth constraint enforces the
TISE restriction, that jobs only be assigned to calibrations that are
contained in their windows. Finally, the last constraint is a nonneg-
ativity constraint on job assignments and calibrations.

The TISE algorithm

As noted previously, our TISE algorithm has three steps. First, we
solve the LP relaxation for m′ = 3m machines. The LP solution
could have both fractional calibrations Ct and fractional job assign-
ments Xjt . Second, we apply a simple greedy-rounding algorithm,
given by Algorithm 1, to produce an integer calibration schedule
on 3m′ machines. The rounding algorithm scans calibrations Ct in
order of time, keeping a running total. Whenever the total reaches
the next multiple of 1/2, the algorithm creates 1 new calibration at

Algorithm 2: Assign jobs Jlong given calibration schedule C

mirror the calibration schedule C on twice as many machines
let C ′ be the resulting calibration schedule

foreach calibration in C ′ in nondecreasing order of time do
let t be the start time of the calibration
used = 0 ; // work in calibration

let J′ =
{

j ∈ Jlong| j unscheduled and r j ≤ t ≤ d j−T
}

let j ∈ J′ be a job with earliest deadline
while j ̸= NULL and p j +used ≤ T do

schedule job j at time t +used in the calibration
used = used+ p j

remove j from J′

let j ∈ J′ be a job with earliest deadline

Algorithm 3: Augmented calibration-rounding procedure used
only for the proof of Lemma 5 and Corollary 6

carryover = 0 ; // carried calibration fraction
set y j = 0 for all j ; // carried job fractions
C = /0 ; // new calibration schedule
foreach t ∈ T in increasing order do

while carryover+Ct ≥ 1/2 do
create a calibration at time t in C

frac = 1/2−carryover
Ct

; // take part of Ct

carryover = carryover+ frac ·Ct

foreach job j do
y j = y j + frac ·Xjt

Xjt = Xjt − frac ·Xjt

if r j ≤ t ≤ d j−T then
schedule 2y j fraction of job j in calibration

reset y j = 0

carryover = 0
Ct =Ct − frac ·Ct

carryover = carryover+Ct

foreach job j, y j = y j +Xjt

that time. Figure 2 shows an example of this process. The resulting
calibrations are assigned to machines in round-robin fashion. We
use C to denote the schedule of calibrations produced by the round-
ing step. Our third and final step is to assign jobs to calibrations,
given by Algorithm 2. First we double the calibration schedule
C using twice as many machines (for 6m′ in total). Then we can
scan the calibrations in increasing time order, and assign jobs us-
ing earliest-deadline-first scheduling. More precisely, we choose a
job with earliest deadline from those unscheduled jobs obeying the
TISE constraint, with ties broken arbitrarily. If there is still room in
the calibration, schedule the job. Otherwise, finish this calibration
and move on to the next one.

Note that the rounding step discards any of the job assignments
Xjt , so it should not be obvious that our algorithm schedules all
jobs. We shall show that a fractional assignment of jobs to cal-
ibrations is still feasible after the rounding step. Intuitively, this
assignment shows that a preemptive schedule is possible on those
calibrations. Our final EDF step transforms the preemptive sched-
ule into a nonpreemptive one. This transformation does not work
in general with EDF scheduling, so it should not be obvious that it
works here.

Figure 3: Example of the fractional job assignment generated
by Algorithm 3 on the calibration schedule shown in Figure 2.
Buckets represent calibrations, and shaded rectangles repre-
sent job assignments. (The ordering of jobs within a bucket
does not matter, but the width indicates the amount of the cal-
ibration consumed by the job assignment.) In this example,
the rounding process delays job 2, whose window is indicated
by the line at the top, past its deadline. Consequently, this as-
signment is discarded; the idea of Corollary 6 is to show that
such discarding can only occur if the job is already sufficiently
scheduled.

Correctness and performance analysis

We begin by focusing on Algorithm 1. For correctness, we must
show two things. First, we show that the rounded calibrations are
valid (i.e., calibrations do not overlap on a machine). Second, we
show that the calibration schedule has a feasible, fractional job as-
signment. Finally, we conclude that the rounding step has only a
constant-factor overhead.

LEMMA 4. The rounding process (Algorithm 1) produces a valid
schedule C of calibrations on 3m′ machines, where no two calibra-
tions on the same machine overlap.

PROOF. Due to constraint 1, slightly restated, the LP solution
guarantees that for all t, we have

∑

t ′∈T ,t≤t ′<t+T Ct ≤ m′. That is,
there are at most m (total fractional) calibrations started in any time-
T period. The rounding process delays at most a 1/2 calibration at
a time. It follows that the number of integer calibrations output in
the range [t, t+T) can be at most ⌊2 ·(1/2+

∑

t ′∈T ,t≤t ′<t+T Ct)⌋ ≤

2(1/2+m′) = 2m′+1≤ 3m′

Because we have at most 3m′ integer calibrations started within
a size-T window, the oldest calibration must end before the (3m′+
1)th calibration begins. Thus, round-robin scheduling suffices.

We next prove that the rounded calibration schedule permits a
fractional assignment of all jobs. We do so constructively by using
an augmented algorithm, Algorithm 3, that maps job assignments
while creating rounded calibrations. Because this is an existential
proof, the modified algorithm is only used for the proof. The idea of
Algorithm 3 is similar to Algorithm 1. Namely, continue to accrue
fractional calibrations carryover until reaching a total of exactly
1/2 a calibration, then create a new full calibration. Logically, the
fractional calibrations (and all their jobs) are simply delayed. The

augmentation is that when accruing the fractional calibrations, also
record the fractions y j of jobs being delayed, and write them into
the full calibration whenever they obey the TISE constraint. Fig-
ure 3 gives an example of this process. Because some of the job
can be delayed past a TISE-feasible calibration, we overschedule a
2y j fraction of the job.

LEMMA 5. At any point when executing Algorithm 3, we have
y j ≤ carryover. That is, the unscheduled fraction of job j being
delayed is at most the unscheduled fraction of calibration being
delayed. Moreover, the fraction of jobs fits within the fractional
calibration, i.e.,

∑

j y j p j ≤ carryover ·T .

PROOF. The proof is by induction over iterations. From the
pseudocode, y j only increases by frac ·Xjt after carryover increases
by frac ·Ct . Similarly, at the end of the loop, y j only increases
by Xjt after carryover increases by Ct . From LP constraint (2),
Ct ≥ Xjt , so carryover increases by at least as much y j. Using
a similar argument with LP constraint (3), we also have CtT ≥
∑

j Xjt p j , so the increases to y j p j cannot exceed the increases to
carrover ·T

COROLLARY 6. For every job j, the fractional assignments of
job j to calibrations produced by Algorithm 3 sum to at least 1.
Moreover, the total work assigned to any calibration does not ex-
ceed T .

PROOF. Consider a time t when deciding whether to schedule a
2y j fraction of job j, i.e., determining whether the current calibra-
tion obeys the TISE constraint for the job. If Xjt ′ > 0 for any t ′ ≥ t,
then the current calibration is feasible, because the LP only assigns
jobs to feasible calibrations. Thus, the only time the calibration
can be infeasible for job j is the last time y j is reset. By Lemma 5,
y j ≤ carryover ≤ 1/2 at this point. Thus, at least the first half of
the job is scheduled. The extra factor of 2 when scheduling the job
means that the job is (at least) fully scheduled. The bound on total
work follows from Lemma 5 even if the 2y j fraction of the job is
always scheduled in the calibration.

LEMMA 7. Assuming the TISE instance is feasible on m′ ma-
chines, the calibration schedule C resulting from Algorithm 1 is
a feasible set of calibrations such that all jobs can be (fraction-
ally) assigned to calibrations without violating the TISE constraint.
Moreover, C uses at most 3m′ machines and 2C∗ calibrations, where
C∗ is the minimum possible number of calibrations on m′ machines.

PROOF. The correctness of the calibrations and feasibility of
the fractional assignment follow from Lemma 4 and Corollary 6.
Moreover, C also uses 3m′ machines by construction.

To get the bound on calibrations, observe that any feasible TISE
schedule is feasible for the LP. Thus, the optimal solution to the
LP has value at most C∗. The rounding process doubles the num-
ber of calibrations (creating a full calibration for every 1/2 calibra-
tion produced by the LP), yielding a total of at most 2C∗ calibra-
tions.

We next turn to our earliest-deadline-first (EDF) variant (Algo-
rithm 2) scheduling the jobs within the calibrations. We interpret an
assignment of jobs to calibrations C as a preemptive schedule. We
first show that whenever a preemptive schedule is possible on C , a
preemptive version of EDF is feasible. Perhaps unsurprisingly, this
proof is similar to the preemptive optimality of EDF when consid-
ering the classic problem without calibrations. Then we show that
for a TISE instance, EDF can be transformed into a nonpreemptive
schedule by doubling the number of machines.

For the purposes of the proof only, we define the fractional EDF
algorithm as follows (similar to Algorithm 2). Consider the cali-
brations in nondecreasing order of start time. For the current cali-
bration, let J′ be the set of unscheduled fractional jobs whose win-
dows contain the calibration (i.e., obeying the TISE constraint). Let
j ∈ J′ be the job with the earliest deadline, with ties broken by job
number. Assign as much of job j as possible to the calibration.
When J′ is empty or the calibration is full, continue to the next
calibration.

LEMMA 8. Consider a valid integer calibration schedule C .
Suppose that a fractional TISE assignment of jobs to calibrations
is feasible. Then the fractional EDF strategy produces a feasible
fractional TISE job assignment to calibration schedule C .

PROOF. Suppose for the sake of contradiction that the EDF sched-
ule is not feasible. Let S be a feasible TISE schedule that shares the
longest possible prefix with the EDF schedule. Consider the earli-
est point at which S and EDF differ, and let k be the rank of the cal-
ibration (in sorted order) during which that difference occurs. Then
S schedules some job j during calibration k, whereas EDF sched-
ules a different job j′. Because this is the first point of difference,
S must schedule j′ to some later calibration k′. Swap (as much as
possible) of j with j′. If this swap is feasible, this contradicts the
assumption that there is a longest matching prefix.

We must prove that this swap is feasible. Because j is not the
EDF job, we know d j ≥ d j′ . Moreover, j′ is the EDF job, so it
must have release time before the start of calibration k and hence
also before calibration k′. It follows that calibration k′ is feasible
for job j with respect to the TISE constraint.

LEMMA 9. Suppose that EDF produces a valid fractional TISE
assignment on calibration schedule C . Then there is a feasible
integer schedule using twice as many machines and calibrations,
specifically by duplicating C across another set of machines.

PROOF. Let S be the fractional EDF schedule on C . Consider
each calibration in turn. If the last job assigned to that calibration is
fractional, instead assign the full job to the corresponding mirrored
calibration. Remove any other fractional pieces of the job.

Because at most one new fractional job can be created at the
end of each calibration, this process resolves all fractional assign-
ments.

The following lemma states that Algorithm 2 is at least as good
as the mapping in the preceding lemma. In some sense, this lemma
is not necessary—we could instead use the algorithm of Lemma 9
in place of Algorithm 2. But we think Algorithm 2 is more natural,
so we opt for a small increase to the analytical complexity.

LEMMA 10. After the kth calibration, all jobs completed by the
fractional EDF transformation of Lemma 9 are also completed by
Algorithm 2.

PROOF. The proof is by induction on k. For each job chosen
by fractional EDF, either it has the earliest deadline and hence our
algorithm would also choose it, or the job has already been exe-
cuted.

Finally, we conclude by giving bounds on the full TISE algo-
rithm as well as the ISE algorithm.

LEMMA 11. Assuming the TISE instance is feasible on m′ ma-
chines using at most C∗ calibrations, our TISE algorithm produces
a feasible schedule on 6m′ machine using at most 4C∗ calibrations.

PROOF. From Lemma 7, the LP and calibration-rounding steps
produces a feasible calibration schedule using at most 2C∗ cali-
brations on 3m′ machines. Lemma 10 states that our algorithm is
at least as good as the fractional-EDF-to-integer transformation of
Lemma 9. Combining this fact with Lemma 8, we conclude that
our algorithm produces a feasible (integer) schedule using twice
the number of machines and calibrations, i.e., 6m′ machines and
4C∗ calibrations.

The following theorem states that using our TISE algorithm to
solve an ISE instance gives an O(1) approximation using O(1) ma-
chine augmentation and no speed augmentation.

THEOREM 12. Consider any feasible long-job ISE instance on
m machines. Let C∗ denote the minimum possible number of cal-
ibrations to feasibly solve the problem on m machines. Then run-
ning our TISE algorithm on that instance produces a feasible TISE
schedule using at most 18m machines and 12C∗ calibrations. More-
over, a TISE schedule is also a valid ISE schedule.

PROOF. This follows directly from Combining the factor of 3
from Lemma 2 with Lemma 11.

Trading speed augmentation for machine augmentation

Thus far we have shown how to construct an O(1)-machine 1-speed
O(1)-approximation for the ISE problem (producing a more re-
stricted TISE solution). We conclude this section by showing how
to transform this TISE solution into a 1-machine O(1)-speed O(1)-
approximation. The fact that we are working with long jobs and a
TISE solution is pivotal here. It is not clear how to make this sort
of transformation in general.

Suppose we have a TISE schedule on cm machines, for integer c.
(Following from Theorem 12, we shall set c = 18.) Here is the al-
gorithm. Group the machines arbitrarily into groups of c machines
that will all map to one target speed-2c machine. First, construct
the calibration schedule on the target machine as follows. Start at
time t = 0. Repeat the following steps. If any calibration on the
source machine includes timestep t, calibrate the target machine at
time t, advance to time t = t +T , and repeat. Otherwise, increase
t to the next earliest calibration on any of the source machines.
This calibration schedule guarantees that every calibrated timestep
on any of the source machines is also a calibrated timestep on the
target machine.

Next, consider each calibration interval [t, t + T) on the target
machine in any order. For any calibration ℓ on a source machine
i ∈ {0,1, . . . ,c−1} that fully contains the first half of the target
calibration, i.e., [t, t +T/2), assign ℓ to the size-T/(2c) time inter-
val [t + iT/2c, t +(i+ 1)T/2c). Keep the jobs in the same order
within the interval; just scale the processing times by a factor of
1/2c. Perform a similar process for each source calibration fulling
containing the second half, [t +T/2,T), of the target calibration.

LEMMA 13. Given a TISE schedule on cm speed-1 machines
with C calibrations, the above algorithm produces an ISE schedule
on m speed-2c machines with at most C calibrations.

PROOF. Consider a single group of c source machines. At most
one source machine is mapped to each size-T/(2c) subinterval of a
target calibration. Moreover, because calibrations on each machine
do not overlap, at most one calibration on each machine can be
mapped there.

These mappings are feasible because a) the target interval is fully
contained in the source calibration, and b) we start from a TISE
instance, meaning that the jobs can be run at any time within their
calibration.

To see that every source calibration is mapped somewhere, sup-
pose that a source calibration only overlaps part of the end of [t, t+
T). Then there is another calibration on the target machine at time
[t +T, t + 2T). The source calibration must either overlap half of
[t, t +T) or half of [t +T,T + 2T). A similar argument applies on
the front end of target calibrations. Thus, every source calibration
is mapped.

Finally, to count the number of calibrations, consider the calibra-
tion process. A calibration only occurs on the target machines if 1)
there is a calibration on some source machine at the same time, or
2) there is a calibration on some source machine between the previ-
ous calibration and the current one. Thus, we can charge all target
calibrations against source calibrations.

Combining this speed transformation with Theorem 12, we get
the following theorem, meaning a 1-machine O(1)-speed O(1)-
approximation.

THEOREM 14. Consider any feasible long-job ISE instance on
m machines. Let C∗ denote the minimum possible number of cal-
ibrations to feasibly solve the problem on m machines. Then run-
ning our TISE algorithm followed by the machine-to-speed trans-
formation produces a feasible ISE schedule using at most m ma-
chines, each at 36 speed, with at most 12C∗ calibrations.

4. STRATEGY FOR SHORT-WINDOW JOBS
This section presents an ISE algorithm for the special case that

all jobs have short windows. Our algorithm exploits similarities be-
tween the ISE problem and the classic machine minimization (MM)
problem, applying any MM algorithm as a black box while asymp-
totically preserving its approximation guarantees.

Our main idea stems from the following simplified case. Sup-
pose that all jobs fall within a single size-T time interval, i.e.,
max j

{

d j

}

−min j

{

r j

}

≤ T . Then an optimal ISE solution uses
either 0 or 1 calibration per machine. Thus, minimizing the number
of machines and minimizing the number of calibrations are equiv-
alent, and applying the MM algorithm as a black box yields a good
solution to the ISE instance. With some manipulation, we gener-
alize this relationship and use it to construct solutions for a short-
window ISE input. Note that applying the MM algorithm globally
does not work, because there may be long periods of time where
we can use fewer machines (and hence fewer calibrations).

Throughout this section, to avoid confusion about where con-
stants are being introduced we use γT to denote the maximum win-
dow length of a short job, i.e., γ = 2 according to Definition 1.

The algorithm

The rough idea of our algorithm is as follows. Partition time into
size-2γT intervals. For each interval, consider the subset of jobs
whose windows are contained inside the interval. Apply an MM
algorithm to the interval. Transform the MM schedule to an ISE
schedule by adding appropriate calibrations, but executing all jobs
at the same time as before. The final schedule is the union of the
schedules for each interval.

The simple partitioning strategy does not quite work because
there may be arbitrarily many jobs whose windows span the bound-
aries separating intervals. Fortunately, there is a trivial fix for this
issue: partition time again but at an offset of γT , and schedule any
remaining jobs on a new set of machines as before. This revised
partitioning step is given as pseudocode in Algorithm 4. For clar-
ity, the partitioning pseudocode as presented is linear in the length
of the schedule, but it is straightforward to transform the code to be
polynomial in the number of jobs.

Algorithm 4: Partitioning short jobs into length-2γT intervals

Let Jshort be the set of all short-window jobs
Allocate disjoint sets of machines M1 and M2

t← 0
while t ≤max j

{

d j

}

do
Let J′ ⊆ Jshort be the jobs nested in [t, t +2γT),

i.e., with t ≤ r j < d j ≤ t +2γT .
Schedule J′ on machines M1 using Algorithm 5
t← t +2γT

Remove from Jshort any jobs scheduled above
t← γT
while t ≤max j

{

d j

}

do
Let J′ ⊂ Jshort be the jobs nested in [t, t +2γT) ,

i.e., with t ≤ r j < d j ≤ t +2γT .
Schedule J′ on machines M2 using Algorithm 5
t← t +2γT

Algorithm 5: Scheduling each length-2γT interval

Let t be the start time of the interval
Let J′ be the set of jobs assigned to this interval

Run an MM algorithm on J′ to produce schedule S
Let w be the number of machines used by S

Use 3w machines for S′

for i = 1 to w do
calibrate machine i at t + kT for k ∈ {0,1,2, . . . ,2γ−1}

for each job j ∈ J′ do
Let m j be the machine to which j is assigned in S
Let x j be the start time of j in S
if j is not a crossing job then

assign j to machine m j at time x j in S′

else
if j is a k-th crossing job for even k then

calibrate machine w+m j at time x j in S′

assign j to machines w+m j at time x j in S′

else
calibrate machine 2w+m j at time x j in S′

assign j to machine 2w+m j at time x j in S′

For each of the intervals [t, t+2γT) produced by the partitioning
step, we produce a subschedule for the jobs J′ in that interval as
follows (see Algorithm 5). First construct an MM schedule S for
jobs J′ using w machines. Note that the MM schedule S specifies
a start time x j for each job as well as a machine on which to run
that job, but an ISE schedule S′ must also specify a schedule of
calibrations on each machine. Moreover, S′ must ensure that each
job’s execution fall fully within a single calibration. We transform
the MM schedule S to ISE schedule S′ as follows. First calibrate
each of the w machines 2γ times. Next, map S to S′ by preserving
the times at which the jobs are executed. The remaining question
is how to assign jobs to machines. There are two cases. If a job is
fully contained in a calibration, it is assigned to the same machine
in S′ as in S. The more challenging case arises when a job crosses
calibration boundaries, an issue that we cope with by introducing
more machines.3 We call a job j a k-th crossing job if the start

3If a calibration is allowed to be performed before the previous
calibration ends, then no extra machines are necessary, just ex-

time x j of the job falls in the k-th calibration, i.e., t + kT ≤ x j <
t +(k+ 1)T , but the completion time of the job falls in a different
calibration, i.e., x j + p j > t + (k + 1)T . For each machine used
by S, introduce a new machine to handle crossing jobs for odd k,
and another machine to handle crossing jobs for even k. For each
crossing job, we create a new calibration dedicated specifically to
the job. As we shall prove, all of the jobs in S′ fall fully within a
calibration, and no calibrations on a single machine overlap, so the
schedule S′ is a feasible schedule.

Correctness and performance analysis

To see that the algorithm produces a valid schedule, we first show
that the subschedules produced for each interval are feasible. We
then show that the main algorithm combines these interval sched-
ules without introducing any conflicts.

LEMMA 15. Consider any set of short jobs J′ with windows
nested inside a time interval [t, t + 2γT). Algorithm 5 produces a
valid ISE schedule for these jobs.

PROOF. A feasible MM schedule has two main properties. 1)
Every job is scheduled nonpreemptively within its window, i.e.,
starting no earlier than its release time and finishing no later than its
deadline. 2) Jobs on the same machine cannot have overlapping ex-
ecution periods. An ISE schedule adds two additional restrictions,
namely: 3) Every job’s execution must be contained fully within a
calibration on the machine to which it is assigned, and 4) for each
machine, the calibrations on that machine must be nonoverlapping.

Algorithm 5 starts with a feasible MM schedule, preserving all
execution times, so property (1) holds trivially. Moreover, for each
machine in the MM schedule, the jobs assigned to that machine are
spread across three machines in the ISE schedule, so (2) also holds
trivially.

We next show properties (3) and (4). For the first w machines,
where w is the number of machines used by the MM schedule,
property (4) holds by construction—calibrations are performed ex-
actly every T timesteps. Moreover, noncrossing jobs satisfy prop-
erty (3) on those machines by definition. For each crossing job,
Algorithm 5 creates a new calibration, thereby satisfying property
(3). We need only argue that those calibrations do not overlap each
other, and hence the schedule also observes property (4). Consider
two crossing jobs assigned to the same machine in the ISE sched-
ule. Because they are assigned to the same machine, they must
have the same crossing parity (even or odd). Moreover, they must
start from the same machine in the MM schedule, so those crossing
numbers must differ by at least 2. Thus, the scheduled start times
for the jobs must differ by at least T , meaning that the calibrations
do not overlap.

LEMMA 16. Our short-window algorithm (combining Algorithms
4 and 5) produces a valid schedule for an ISE instance of short-
window jobs.

PROOF. We first argue that all jobs are assigned to some interval
in the partitioning step, and hence all jobs are part of some interval
schedule. We then argue that the interval schedules do not inter-
fere, and hence a final schedule can be formed by taking the union
across intervals. Combining these two facts implies that the overall
schedule is feasible.

Consider a particular job j in the partitioning step. If j is sched-
uled during the first loop of Algorithm 4, we are done. Suppose

tra calibrations. We focus here on the more difficult version of
the ISE problem, where calibrations cannot be invoked less than T
timesteps of each other.

instead that j is not scheduled during the first loop. Then j’s win-
dow crosses a multiple of 2γT , say 2kγT for integer k. Because j is
short, its window has length at most γT , and hence r j ≥ 2kγT − γT
and d j ≤ 2kγT + γT . Thus, j’s window is contained completely in
the interval [(2k−1)γT,(2k+1)γT), and j is assigned to an interval
in the second loop.

We next argue that the interval schedule in Algorithm 5 only cre-
ates calibrations nested inside the interval [t,2γT). The calibrations
for noncrossing jobs fall inside [t,2γT) by construction as long as
γ is an integer. Crossing jobs, on the other hand, must have start
times within the range [t,(2γ−1)T), so those calibrations are also
inside the interval. Thus, taking the union of interval schedules is
feasible as long as the intervals themselves are disjoint (which is
true for the first or second loop of Algorithm 4).

Next we analyze the performance of our short-window algo-
rithm. This analysis has a few components. First, we argue that for
each interval instance, the MM solution serves as a lower bound
for the number of calibrations for the ISE problem. Then we ex-
tend the lower bound across a set of disjoint intervals as produced
by each pass of the partitioning phase. Finally, we conclude by
arguing that our algorithm only loses a constant factor beyond the
MM algorithm applied.

LEMMA 17. Consider any set of short jobs J′ with windows
nested inside a time interval [t, t + 2γT). Let w∗ be the value of
the optimal solution to the MM problem on J′, i.e., the minimum
number of machines. Then the ISE problem requires at least w∗

calibrations and machines.

PROOF. The lemma follows from the fact that all feasible so-
lutions require at least w∗ machines, and each machine must be
calibrated at least once to schedule any jobs.

LEMMA 18. For fixed offset time τ, suppose Ji is a set of short
jobs with windows nested inside time interval [τ+ 2iγT,τ+ 2(i+
1)γT). Let w∗i be the value of the optimal solution to the MM prob-
lem on Ji.

Then any feasible solution to the ISE problem on the r+ 1 dis-
joint intervals ∪r

i=0Ji requires at least maxi w∗i machines. More-
over, an optimal solution to the ISE problem on ∪r

i=0Ji requires at
least

∑r
i=0 w∗i /2 calibrations.

PROOF. From Lemma 17, each subset requires w∗i machines.
Adding more jobs only increases the number of machines. Thus
maxi w∗i is a lower bound.

Consider every other interval J0,J2,J4, . . . or J1,J3,J5, Inter-
vals Ji and Ji+2 are separated by much more than T timesteps. So
no calibration used for Ji can also be used for Ji+2. Thus, following
from Lemma 17, w∗0 +w∗2 +w∗4 + · · · is a lower bound for the mini-
mum possible number of calibrations. Similarly, w∗1+w∗3+w∗5+ · · ·
is also a lower bound. Taking the maximum of the two, we have a
lower bound of

∑r
i=0 w∗i /2 calibrations.

LEMMA 19. Consider any set of short jobs J′ with windows
nested inside a time interval [t, t + 2γT). Let w be the number of
machines found by the black-box MM algorithm. Then our ISE
solution on J′ performs at most 4γw calibrations on 3w machines.

PROOF. Consider a single machine in the MM solution. Our al-
gorithm constructs three machines for the ISE schedule. The first
of these machines gets calibrated every T timesteps, for 2γ calibra-
tions. Each of the crossing jobs is assigned to one of the other two
machines, with one calibration per crossing job. Since there can
be at most 2γ− 1 crossing jobs, there are at most 4γ− 1 calibra-
tions arising from this machine. Multiplying by the number w of
machines completes the proof.

Finally, we conclude that for constant γ, our algorithm asymptot-
ically preserves the approximation guarantees of the MM algorithm
applied.

THEOREM 20. Consider any short-job instance Jshort. Let w∗

denote the minimum possible number of machines among feasible
ISE schedules. Let C∗ be the minimum possible number of calibra-
tions among feasible ISE schedule.

Suppose that we have a black-box α-approximation algorithm
to the MM problem. Then our ISE algorithm produces a feasible
ISE schedule on at most 6αw∗ = O(αw∗) machines using at most
16γαC∗ = O(αC∗) calibrations.

PROOF. Consider a sequence of disjoint intervals as defined in
Lemma 18. From Lemma 18, we have C∗ ≥

∑

i w∗i /2 and w∗ ≥
maxi w∗i , where w∗i is the optimal number of machines for the ith
interval. For the ith interval, the MM algorithm finds a solution us-
ing at most αw∗i machines. Thus applying Lemma 19, Algorithm 5
makes at most (4γ)αw∗i calibrations on 3w∗i machines. Summing
across all i, our ISE algorithm uses at most 4γα

∑

i w∗i ≤ 8γαC∗

calibrations on 3maxi αw∗i ≤ 3αw∗ machines.
We lose a factor of 2 in both bounds because Algorithm 4 runs

on two sets of disjoint intervals using disjoint machines.

5. OTHER RELATED WORK
Beyond its practical applications, ISE is an interesting interval

scheduling variation because it is often optimal to delay the schedul-
ing of a job. This property is unusual in more standard metrics like
machine minimization and throughput maximization. However, it
is certainly not unique.

Interval scheduling for power minimization is a popular [1] and
ostensibly similar problem when the goal can be reduced to mini-
mizing idle periods for a continuous interval schedule. Like ISE,
this makes starting work on a machine expensive, which tends to
discourage scheduling a job as early as possible and reward job
clustering. It should be noted however that since calibrations last
a discrete amount of time, the problems are subtly different. Bap-
tiste et al. [3, 4] give an O(n5)-time dynamic programming based
algorithm for finding an optimal solution on a single processor with
preemption, reducing to O(n4)-time in the unit-job case. Demaine
et al. [9] extend their work to a multi-processor environment, yield-
ing a polynomial-time optimal algorithm for the unit-job case.

Chang et al. [7] propose a model for minimizing active proces-
sor time which is deceptively similar to ISE. Instead of calibrations
length T , they consider timesteps of depth B. That is, up to B jobs
can be scheduled in the same timestep at no additional cost and the
goal is to minimize the active number of time-steps. However, they
consider only preemptive scheduling and don’t offer an approxima-
tion for the B > 2, NP-complete version.

6. CONCLUSIONS
In this paper, we showed how to reduce the ISE problem to the

MM problem, producing approximation guarantees that are almost
as good as those for the MM problem. To within constant factors,
we have also argued that this is the best possible. In the case that all
jobs have long windows, our algorithm is asymptotically optimal.

Because the best general approximation to the MM problem is an
O(

√

logn/ log logn) approximation, we made little effort to mini-
mize the constants in this paper. We think that some of the constants
in the reduction could be reduced. That said, partitioning jobs into
long and short jobs inherently has an overhead of at least 2 in terms
of both machines and calibrations. It would be nice to achieve con-
stants that look like (1+ε), but that would require some new ideas.

Acknowledgments

This research was supported in part by National Science Founda-
tion grants CCF-1218188 and CCF-1314633.

7. REFERENCES
[1] S. Albers. Energy-efficient algorithms. Commun. ACM,

53(5):86–96, May 2010.

[2] N. Bansal, H.-L. Chan, R. Khandekar, K. Pruhs, B. Schieber,
and C. Stein. Non-preemptive min-sum scheduling with
resource augmentation. In Proceedings of the 48th Annual
IEEE Symposium on Foundations of Computer Science,
pages 614–624, Oct 2007.

[3] P. Baptiste. Scheduling unit tasks to minimize the number of
idle periods: A polynomial time algorithm for offline
dynamic power management. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 364–367, Philadelphia, PA, USA, 2006.
Society for Industrial and Applied Mathematics.

[4] P. Baptiste, M. Chrobak, and C. Dürr. Polynomial-time
algorithms for minimum energy scheduling. ACM Trans.
Algorithms, 8(3):26:1–26:29, July 2012.

[5] M. A. Bender, D. P. Bunde, V. J. Leung, S. McCauley, and
C. A. Phillips. Efficient scheduling to minimize calibrations.
In Proceedings of the Twenty-fifth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, pages
280–287, New York, NY, USA, 2013.

[6] C. Burroughs. New integrated stockpile evalution program to
better ensure weapons stockpile safety, security, reliability.
http://www.sandia.gov/LabNews/060331.html,
march 2006.

[7] J. Chang, H. Gabow, and S. Khuller. A model for minimizing
active processor time. In L. Epstein and P. Ferragina, editors,
Algorithms - ESA 2012, volume 7501, pages 289–300.
Springer Berlin Heidelberg, 2012.

[8] J. Chuzhoy, S. Guha, S. Khanna, and J. Naor. Machine
minimization for scheduling jobs with interval constraints. In
Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 81–90, Oct 2004.

[9] E. D. Demaine, M. Ghodsi, M. T. Hajiaghayi, A. S.
Sayedi-Roshkhar, and M. Zadimoghaddam. Scheduling to
minimize gaps and power consumption. In Proceedings of
the 19th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 46–54, New York, NY, USA, 2007.

[10] R. Graham, E. Lawler, J. Lenstra, and A. Kan. Optimization
and approximation in deterministic sequencing and
scheduling: a survey. Ann. Disc. Math., 5:287–326, 1979.

[11] S. Im, S. Li, B. Moseley, and E. Torng. A dynamic
programming framework for non-preemptive scheduling
problems on multiple machines. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pages
1070–1086, 2015.

[12] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. J. ACM, 47(4):617–643, July 2000.

[13] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
time-critical scheduling via resource augmentation (extended
abstract). In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, pages 140–149, New
York, NY, USA, 1997.

[14] P. Raghavan and C. D. Thompson. Randomized rounding: A
technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7(4):365–374, Dec. 1987.

