
Cache-Conscious Scheduling of Streaming Pipelines

on Parallel Machines with Private Caches

Kunal Agrawal and Jordyn Maglalang

Department of Computer Science and Engineering

Washington University in St. Louis

St. Louis, Missouri, USA

Email: kunal@wustl.edu, jordyn.maglalang@wustl.edu

Jeremy T. Fineman

Department of Computer Science

Georgetown University

Washington, District of Columbia, USA

Email: jfineman@cs.georgetown.edu

Abstract—This paper studies the problem of scheduling a
streaming pipeline on a multicore machine with private caches
to maximize throughput. The theoretical contribution includes
lower and upper bounds in the parallel external-memory
model. We show that a simple greedy scheduling strategy is
asymptotically optimal with a constant-factor memory aug-
mentation. More specifically, we show that if our strategy has
a running time of Q cache misses on a machine with size-M
caches, then every “static” scheduling policy must have time
at least that of Ω(Q) cache misses on a machine with size-
M/6 caches. Our experimental study considers the question of
whether scheduling based on cache effects is more important
than scheduling based on only the number of computation
steps. Using synthetic pipelines with a range of parameters,
we compare our cache-based partitioning against several other
static schedulers that load-balance computation. In most cases,
the cache-based partitioning indeed beats the other schedulers,
but there are some cases that go the other way. We conclude
that considering cache effects is a good idea, but other features
of the streaming pipeline are also important.

I. INTRODUCTION

Streaming is an effective paradigm for parallelizing com-

plex computations on large datasets. A streaming application

can be described by a directed graph where nodes corre-

spond to computation modules, and edges represent directed

FIFO channels between modules. The modules send data

in the form of messages (also called tokens or items) via

these channels. In this paper, we only consider pipeline

topologies where modules are connected in a linear chain

via channels. The streaming paradigm has been applied to

diverse application domains such as media [1], signal pro-

cessing [2], computational science [3] and data mining [4].

Several languages explicitly support streaming semantics,

including Brook [5], StreamC/KernelC [6], and StreamIt [7].

There has been extensive research on how to map and

schedule streaming computations to parallel machines and

how to schedule them. Much of the existing work con-

cerns either maximizing throughput, defined as the average

amount of data processed per unit time, or minimizing

latency, defined as the maximum time to fully process a

single input message. The goal of this paper is to optimize

throughput on a shared-memory machine when taking the

cache effects into account, a feature often ignored in prior

work. Streaming applications exhibit two kinds of cache

misses that can be controlled using intelligent scheduling.

First, modules access their state when they fire, it is ad-

vantageous to fire the same module many times once its

state has been loaded. Second, it is advantageous to execute

consecutive modules in quick succession in order to keep

the data produced by module by the first module on its

output channel in cache until the second module consumes

it. Since these heuristics are contradictory, we must balance

concerns intelligently to design a good scheduling algorithm.

We consider the problem of optimizing the throughput of a

streaming pipeline on a shared-memory machine consisting

of P cores, where each core has a single private cache.

This work consists of both theory (Sections III and IV) and

practice (Section V).

Cache efficiency is an important determinant in the

performance of algorithms, and there has been extensive

theoretical and practical work in designing cache-efficient

algorithms for both sequential [8], [9] and parallel [10] ma-

chines. On a shared-memory machine, the communication

cost roughly corresponds to a subset of the cache misses,

but additional cache misses occur locally on each processor

and are not reflected by communication cost. We are not

aware of much prior work, particularly with a theoretical

foundation, that considers the impact of cache effects on

throughput in streaming applications. One example is from

Agrawal et al. [11], who focus on designing cache-efficient

scheduling of streaming applications on single-processor

machines. Specifically, they show that for both pipelines

and general acyclic graphs, a simple partitioning strategy

generates a schedule that is asymptotically optimal for a

single-level cache. In this paper, we consider the question

of cache-conscious scheduling on parallel machines.

Our theoretical work adopts the parallel external-memory

model [12], where a parallel I/O consists of simultaneous

cache misses by up to P processors, and time is counted

by the number of parallel I/Os. The model thus ignores the

cost of computation — our hypothesis is that the cost of

memory access often dominates, and hence this model is



fairly accurate. Note that a scheduler may sometimes leave

a processor idle due to other scheduling constraints, so a

single parallel I/O may consist of anything between 1 and

P cache misses occurring in parallel. It is thus not enough

to count just the total number of cache misses — one must

also consider any sequential ordering that arises.

Most existing parallel or distributed schedulers for stream-

ing pipelines are static, meaning that each module is as-

signed to a specific processor and never migrates to another

processor. Static schedules are easier to describe, they can

often be computed a priori and repeated periodically, and

they perform well in practice. Section III provides lower

bounds on the runtime, or number of parallel I/Os, for

static schedulers, as well as a slightly weaker lower bound

for general schedulers. Section IV describes a simple static

scheduler, called seg cache, which is a greedy algorithm

that partitions the pipeline into P contiguous pieces, one for

each processor. The scheduler is a straightforward adaptation

of Agrawal et al.’s [11] single-processor scheduler — a

contribution of the present paper is a new upper bound on

the parallel I/O complexity of seg cache. We also show that

seg cache is asymptotically optimal with respect to static

schedulers and a constant factor memory augmentation. That

is, if seg cache has Q parallel I/Os on a machine with size-

M caches, then every static schedule on a machine with

size-M/6 cache must incur at least Ω(Q) parallel I/Os.

We also conduct an experimental study (Section V) to test

the efficacy of this scheduling strategy on a shared memory

machine using randomly generated synthetic pipelines. We

compare seg cache against schedulers that try to load-

balance the computation time across processors. We find

that for a large variety of configurations, the cache-based

seg cache beats the computation-balancing policies. We

also created a partitioning heuristic that takes both cache

misses and computation into consideration while mapping

streaming pipelines. While we don’t prove that this heuristic

is theoretically optimal, our experiments indicate that it often

outperforms both cache-based segmentation and runtime

load-balancing policies.

II. MODEL AND DEFINITIONS

This section describes the analytic and streaming models.

We also state various assumptions and definitions about

pipelines used throughout the paper.

PEM model : Our theoretical analysis is with respect to

the parallel external memory (PEM) model [12], which is

an extension of the external memory model [8] and similar

to many other private-cache models in the literature (e.g.,

in [9]). The PEM model is a computational model consisting

of P processors, each with a private cache of size M , and

a global shared memory. The caches and shared memory

are organized into blocks of B consecutive addresses. A

processor can only read or write data in its own cache;

when accessing data not in cache, a cache miss or I/O

occurs, whereby the block must be loaded from shared

memory to the processor’s cache. The model allows a cache

to store any M/B blocks simultaneously (i.e., caches are

fully associative). All communication between processors

occurs through the shared memory in the form of I/Os.

Processors may perform I/Os concurrently, which is called

a parallel I/O. The complexity measure is the number of

parallel I/Os. Interpreted as time, accessing data in cache is

free, but each I/O takes unit time. Thus in a single timestep,

each processor may load up to 1 block or B elements, for

a total of P blocks or PB elements. A “linear” I/O bound

for, e.g., touching n elements in an array is O(n/(PB)).
Variants of the model specify when the same data may

be resident in multiple caches, but these are not important

for the present paper. We require exclusivity with respect

to modules only — the same module may not be resident

in two caches simultaneously. Otherwise, our lower bound

applies to all model variants, and our upper bound does not

have any data simultaneously loaded on any caches.

Streaming model : A streaming pipeline consists of a

sequence of n computational modules, and each module

u has exactly one incoming channel (from the previous

module in the sequence) and one outgoing channel (to the

subsequent module in the sequence). The modules send data

in the form of messages to each other via these channels.

Channels may have buffers (implementing FIFO queues)

to store messages that have not yet been consumed by the

receiving module. We say that module u precedes module

v, denoted by u ≺ v, if u is before v in the sequence.

We assume that the incoming channel into source module

s (the first module) streams an infinite amount of data into

the pipeline and the outgoing channel from sink module t
(the last module) streams it out.

Each module u has an associated state; we denote the size

of this state by s(u). In order to execute, or fire a module

u on a processor, the entire state of that module must be

loaded into that processor’s cache. When the module fires,

it consumes in(u) data items from its incoming channel,

performs some computation, and then produces out(u) data

items on its outgoing channel, where in(u) and out(u) are

static parameters of the module. A module is ready to fire

its input buffer contains at least in(u) messages.

Assumptions and Definitions : Throughout the paper, we

make the several assumptions about the streaming pipeline

— these assumptions are either necessary to admit any rea-

sonable solution or are without loss of generality (made only

to simplify the exposition). We assume that all messages are

unit size and that the state of size each module is at most M .

The former assumption is without loss of generality given

the arbitrary input and output rates. The latter is necessary

to allow a module to be fully resident in cache when fired.

In addition, we assume that the state size of each module

also counts the minimum buffer required on its incoming

and outgoing channels.



s a b c d e f g h i t
o:4 i:1 o:1

s:
i:1 o:1
s:

i:1 o:2
s:

i:4 o:1
s:

i:2 o:1
s:

i:1 o:2
s:

i:2 o:1
s:

i:1 o:2
s:

i:1 o:2
s:

i:1

g(s,a):4

g(a):4 g(b):4 g(c):4 g(d):2 g(e):1 g(f):1 g(g):1 g(h):1

g(a,b):4 g(b,c):4 g(c,d):8 g(d,e):2 g(e,f):1 g(f,g):2 g(g,h):1 g(h,i):2 g(i,t):4

g(h):2

Figure 1: An example pipeline with annotated state size, input and output rates and gains for both modules and edges.

Finally, we define some terms and notation used through-

out the paper. We use the term gain to describe the rate of

amplification of messages along the pipeline. In particular,

The gain of a module is the number of times that module

fires, on average, each time the source module consumes an

input item. Therefore, the gain of the module is gain(w) =∏
u≺w(out(u)/ in(u)) × 1

in(w) . The gain of edge (v, w) is

the number of items produced on that edge, on average, each

time an item is consumed by the source module, and is given

by gain(v, w) = gain(v) × out(v). Figure 1 represents an

example pipeline with module and edge gains computed.

We call a set of consecutive modules a segment, and we

denote the segment comprising modules between u and v
(inclusive) by 〈u, v〉. In each segment s, we call the edge

with minimum gain a gain-minimizing edge (if there is more

than one, choose arbitrarily), denoted by gainMin(s).

III. LOWER BOUNDS

This section gives lower bounds on cache misses when

scheduling a streaming pipeline on multiple processors,

which we leverage later to prove that a partitioned schedule

is optimal. The two bounds are analogous to lower bounds

for other load-balancing problems. Specifically, we first

lower-bound the total number of misses, which implies a

lower bound on parallel I/Os (or time) since ≤ P occur

concurrently. Our second bound addresses the case where

parallelism P is not achievable due to local imbalance, i.e., if

some small part of the pipeline dominates the running time.

Combining the two gives a lower bound on running time

that matches the upper bound achievable by a partitioned

scheduler. Unfortunately, and surprisingly to us, the second

lower bound is restricted to the case of a static scheduler and

does not hold in general. We discuss this limitation at the

end of the section, highlighting what makes proving bounds

on (non-static) parallel streaming schedulers difficult.

A. Lower Bound on Total Misses

We first bound the total number of cache misses — the

proof is inspired by the approach of Agrawal et al. [11], but

with some changes to cope with the multiprocessor setting.

The basic intuition is that any schedule (static or not) must

“pay” for the messages crossing certain edges in the pipeline.

The first lemma bounds the cache-miss cost for a single

processor with respect to a single edge.

Lemma 1: In the pipeline under consideration, let s =
〈u, v〉 be any segment with total state size at least 2M , and

let e = gainMin(s) be its gain minimizing edge. Any sub-

schedule that fires module v at least 2M gain(v)/ gain(e)

times on a particular processor p incurs at least M/B cache

misses on p. Moreover, these M/B cache misses are all due

to either loading state from modules or messages on edges

within the segment 〈u, v〉.
Proof: The proof consists of two cases.

Case 1: Suppose processor p loads the entire segment 〈u, v〉
during the subschedule. At most M of that state can already

be resident in p’s cache at the start of the subschedule, so p
must incur at least M/B cache misses to complete the load.

Case 2: Suppose that some module in 〈u, v〉 is not fired by

p during the subschedule. We define a message m to be a

crossing ancestor if m is consumed by a module running on

processor p during the subschedule, but m is not generated

by a module on processor p during the subschedule. (If m
was generated on processor p but before the subschedule

began, it is still considered a crossing ancestor.) Since p does

not fire the entire segment during the subschedule, all inputs

to v during the subschedule are the progeny of some crossing

ancestor. The number of crossing ancestors is minimized if

they all occur at the gain minimizing edge e, and hence there

must be at least 2M crossing ancestors in order to fire v a

total of 2M gain(v)/ gain(e) times. By definition, crossing

ancestors are read by p, so each crossing ancestor must either

already be resident in p’s cache before the subschedule, or it

must be loaded into p’s cache during the subschedule. Since

at most M crossing ancestors can be resident at the start of

the subschedule, the remaining M crossing ancestors incur

at least M/B cache misses.

The following corollary combines Lemma 1 across all

processors. The nuance here that necessitates the new lower

bound, as opposed to applying Agrawal et al.’s bound [11]

as a black box, is that P processors have PM cache in total

instead of the M cache for the uniprocessor case.

Corollary 2: Consider a streaming pipeline. Let s =
〈u, v〉 be any segment with total size at least 2M , and

let e = gainMin(s) be its gain-minimizing edge. Any

subschedule that fires v at least 6PM gain(v)/ gain(e)
times in total across P processors must incur Ω(PM/B)
cache misses. In other words, Ω((1/B) gain(e)/ gain(v))
is a lower bound on the amortized cost of firing v.

Proof: From Lemma 1, if a particular processor p fires

v a total of fp ⌈2M gain(v)/ gain(e)⌉ times, then it incurs

at least ⌊fp⌋M/B cache misses. It remains to prove that∑
p ⌊fp⌋ ≥ P , and hence the total number of cache miss is∑
p ⌊fp⌋M/B ≥ PM/B.

Since e is the gain-minimizing edge and in(v) ≤ M , we

have gain(e) ≤ gain(v)·in(v) and thus gain(v)/ gain(e) ≥
1/ in(v) ≥ 1/M . It follows that 2M gain(v)/ gain(e) ≥ 2,



and hence ⌈2M gain(v)/ gain(e)⌉ ≤ 3M gain(v)/ gain(e).
Since there are at least 6PM gain(v)/ gain(e) firings in

total, we have
∑

p fp ≥ 2P and hence
∑

p ⌊fp⌋ ≥ P .

The following theorem combines the preceding corollary

across the entire pipeline. Note that the theorem identifies

which edges must be paid for with respect to an arbi-

trary segmentation of the pipeline (defined as “bandwidth”

in [11]). Nevertheless, the bound holds for any schedule,

even a non-partitioned and non-static schedule.

Theorem 3: Consider a pipeline graph in which S =
{〈ui, vi〉} is any collection of disjoint segments such that

each segment has total size at least 2M . Then for sufficiently

large T , any parallel schedule of the pipeline that fires the

sink node t at least T · gain(t) times must incur at least

Ω((T/B)
∑

s∈S gain(gainMin(s))) cache misses in total.

Proof: Observe that if t fires T gain(t)
times, then vi fires T gain(vi) times. Thus if

T ≥ 6PM/ gain(gainMin(s)) for s ∈ S, then we

can apply Corollary 2 to s to get a cache-miss bound of

Ω((T/B) gain(gainMin(s))). In addition, each application

of Lemma 1 and Corollary 2 only counts misses for

messages/state within each segment. Therefore, there is no

double counting of cache misses.

B. Lower Bound on Time

Theorem 3 implies that the number of parallel I/Os is at

least Ω((T/(PB))
∑

s∈S gain(gainMin(s)), since at most

P misses occur in any parallel I/O. This provides a lower

bound on the running time of any schedule. We now argue

that for static schedules, the gain-minimizing edge with the

largest gain also provides a lower bound.

Theorem 4: Consider a pipeline graph in which S =
{〈ui, vi〉} is any collection of disjoint segments such that

each segment has total size at least 2M , and let t be the

sink node. After t is fired at least T · gain(t) times for

sufficiently large T , the running time is,

• Ω((T/(PB))
∑

s∈S gain(gainMin(s))) parallel I/Os

for any schedule, and

• Ω((T/B)maxs∈S gain(gainMin(s))) parallel I/Os for

any static schedule.

Proof: The first statement follows from Theorem 3.

For the second statement, consider segment s′ = 〈u, v〉
which has the largest gain-minimizing edge. Lemma 1

shows that for this segment, if the module v stays

on one processor p, then p must incur an amortized

Ω((1/B) gain(gainMin(s′))/ gain(v)) cache misses each

time v is fired, each of which must be part of a different

parallel I/O.

Somewhat surprisingly, the second lower bound deriving

from the maximum does not hold for general schedulers,

only for static ones. We demonstrate by example: Suppose

that the pipeline consists of 2kM/B modules, each of size

B, with all gains equal to 1. Let P = kM2/B be the

number of processors. For conciseness only, the following

description assumes each processor has one extra block, i.e.,

M+B cache size. Consider the following schedule: For each

module u, assign a M/B processors, denoted Pu, to module

u. Place cyclic buffers of size M2 on each edge. Warm-up

the schedule to get M2/2 messages in each buffer, which

is invariant between rounds in the remaining schedule. The

schedule proceeds in rounds, in parallel on each module,

consisting of a load step followed by an execute step.

Load step for u: foreach processor from Pu in parallel, load

a distinct M/(2B) full blocks from u’s input buffer and

also preload the corresponding M/(2B) empty blocks from

u’s output buffer. These loads occur in parallel, so the total

number of parallel I/Os is M/B.

Execute step for u: foreach processor from Pu but now

sequentially (since u can not be fired on multiple processors

at once), load u’s state and fire it M/2 times. In the execute

step, loading u incurs one cache miss on each processor for

M/B parallel I/Os total, but the input and output buffers are

already in cache, so firing u incurs no other I/Os.

Putting it together, a single round takes 2M/B parallel

I/Os but fires each module M2/(2B) times, for a total of

O(1/M) per firing. Thus if the sink fires T times, then the

total time is O(T/M).
This upper bound gives an example where the maximum-

based lower bound (second condition in Theorem 4) does not

hold. That bound would say that the total time is Ω(T/B)
which is much larger than O(T/M). This discrepancy arises

from the fact that the example schedule moves modules

across processors. The first condition of Theorem 4 still

holds, since it only states that the lower bound on time is

Ω(Tk/(PB)) = Ω(T/M2). Note that, setting k = Θ(B),
this example only achieves a runtime of O(Tk/(

√
PB)

parallel I/Os, not O(Tk/(PB)). There is a tradeoff here;

the example is able to beat the Ω(T/B) lower bound by

increasing the total number of misses by a factor of M ,

which in turn increases running time arising from the total-

work bound. Therefore, we have shown that a non-static

schedule can do better than a static schedule, however, at

the cost of increasing the total number of cache misses.

IV. UPPER BOUND ON SCHEDULING PIPELINES ON

MULTIPLE PROCESSORS

This section describes our cache-based partitioning algo-

rithm, called seg cache, for scheduling pipelines on multiple

processors. For correctness, this algorithm assumes that the

maximum state size of any module is at most M/6.

A. The seg cache Algorithm

The algorithm produces a partitioning by first dividing

the pipeline into temporary segments S = {s1, s2, . . . , sk},

where each segment si = 〈ui, vi〉 for i < k has total

state between M/3 and M/2 — the last segment sk may

be smaller. This temporary segmentation can be selected

greedily: Initially create one segment s1 as the current



s a b c d e f g h i t
o:4 i:1 o:1

s:
i:1 o:1
s:

i:1 o:2
s:

i:4 o:1
s:

i:2 o:1
s:

i:1 o:2
s:

i:2 o:1
s:

i:1 o:2
s:

i:1 o:2
s:

i:1

g(s,a):4

g(a):4 g(b):4 g(c):4 g(d):2 g(e):1 g(f):1 g(g):1 g(h):1

g(a,b):4 g(b,c):4 g(c,d):8 g(d,e):2 g(e,f):1 g(f,g):2 g(g,h):1 g(h,i):2 g(i,t):4

g(h):2

(a) A temporary segmentation found by greedily building segments up to size M

2
with the minimum gain edges highlighted.

s a b c d e f g h i t
o:4 i:1 o:1

s:
i:1 o:1
s:

i:1 o:2
s:

i:4 o:1
s:

i:2 o:1
s:

i:1 o:2
s:

i:2 o:1
s:

i:1 o:2
s:

i:1 o:2
s:

i:1

(b) The final segmentation using the cross edges found from the temporary segmentation.

Figure 2: The final segmentation using seg cache derived by cutting the minimum gain edge of each temporary segment. Note that each
segment has size at most M .

segment. Iterate over the modules in order. Add the current

module to the current segment. If the total state of the current

segment si exceeds M/3, create a new segment si+1 and

set that to be the current segment. Under the assumption

that modules have state at most M/6, this process produces

segments with total state at most M/3 + M/6 = M/2.

Figure 2a shows this temporary segmentation for the pipeline

in Figure 1.

Then select the minimum gain edge gainMin(si) within

each segment s1, . . . , sk−1, with the exception of the last

segment sk. We call these edges the cross edges, as they

are the edges crossing between our final segments. That is,

our final segmentation R = {〈xi, yi〉} is the one induced by

cutting the selected cross edges. Since each final segment

spans at most two temporary segments, each of size at most

M/2, each segment in R has total state at most M . Figure 2b

shows this final segmentation — note that we cut the gain

minimizing edge in each of the temporary segments. If there

are two edges with the same gain, we can choose arbitrarily.

We next load balance the set of segments R across proces-

sors as follows. We define the load of a segment r = 〈xi, yi〉
as load(r) = gain(xi) in(xi) + gain(yi) out(yi), i.e., the

sum of the gains of the incoming edge and the outgoing

edge. Our load-balancing also employs a simple greedy strat-

egy. Specifically, calculate the total load L =
∑

r∈R load(r).
The average load across P processors would thus be L/P .

In pipeline order, greedily place segments from R on the

current processor until the total load on the processors

exceeds L/P , and then move to the next processor. The in-

order aspect of this greedy load balancing guarantees that

each processor is assigned a contiguous set of segments.

Therefore, for the example shown in Figure 2b, if we had 2

processors, the first segment on the first processor and the

last three segments on the second processor.

It remains to define buffers on cross edges and the

actual schedule. To simplify the description and analysis,

we describe a version that schedules in synchronized rounds

with a large period and correspondingly large buffers. To

calculate the buffers on cross edges and the period, we

choose the value X = M
∏

modules i in(i) · out(i). In this

way, for every edge e (and in particular for cross edges),

we have that X gain(e) is an integer larger than M . We

add buffers of size X gain(c) to every cross edge c. Our

actual implementation (which is also synchronous) does not

employ buffers this large and the buffer sizes can be further

reduced by scheduling asynchronously.

The schedule itself is periodic and divided into rounds,

with synchronization between rounds. In each round, each

processor loads each of its segments exactly once in pipeline

order; once a segment is loaded, the contained modules are

fired many times. Specifically, for 〈xi, yi〉, if the input buffer

is full — that is, there are X gain(xi) in(xi) messages

available on the incoming edge — the segment is ready

and is run.1 To run the segment 〈xi, yi〉, execute the latest

module within the segment with enough inputs available to

fire. Repeat until yi has fired X gain(yi) times. By careful

construction of X , all modules j ∈ 〈xi, yi〉 have fired

X gain(j) times, and hence there are no messages on any

internal edges, and the subsequent segment becomes ready.

B. Bounding seg cache’s Performance

We now prove an upper bound on the number of cache

misses incurred on each processor with respect to its load,

which is defined as follows. Let Rp be the set of segments

assigned to p by seg cache. Then the load of processor p

is defined as procLoad(p) =
∑

r∈Rp

load(r).
Lemma 5: In each round of seg cache, the total number

of cache misses incurred by p is O((X/B) procLoad(p)).
Proof: When executing a segment r = 〈x, y〉, its

entire state is loaded just once, since it fits in cache. (By

assumption, the state includes a small buffers on internal

edges to accommodate varying input/output rates.) Thus

when running r, the only cache misses are from loading the

state initially, and reading/writing messages from/to the in-

coming/outgoing cross edges. The state load costs O(M/B).
The cost on cross edges is O(X gain(x) in(x)/B)
and O(X gain(y) out(y)/B), respectively, which sum to

1Otherwise, wait until the next round. This waiting occurs only in the
earliest rounds until a steady state is reached — the ith processor first
becomes ready in the ith round.



O((X/B) load(r)). Since X gain(e) ≥ M for all edges e,

O((X/B) load(r)) dominates. Summing over all segments

r assigned to p completes the proof.

We obtain the following corollary on time by taking the

max of Lemma 5 across all processors.

Corollary 6: The duration of each round is

O((X/B)maxproc. p procLoad(p)) parallel I/Os.

We now upper-bound the running time of seg cache.

Lemma 7: For sufficiently large T , the time required for

seg cache to fire the sink node t a total of T gain(t) times

is O((T/B)maxproc. p procLoad(p)) parallel I/Os.

Proof: If a segment fires X times its gain times each

time it becomes ready, then a simple inductive argument

shows that all the segments on processor i first become ready

in round i. Moreover, once ready, they continue to become

ready again in each subsequent round. Thus, after Z rounds,

the last processor’s segments run during at least Z − P of

them, and hence t fires at least (Z − P )X gain(t) times.

From Corollary 6, the total time required for Z rounds is

O(Z ·(X/B)maxproc. p procLoad(p)). As long as T ≥ PX ,

choosing Z = ⌈2T/X⌉ completes the proof.

The following theorem states that seg cache is asymptot-

ically optimal, when given a constant factor memory aug-

mentation. Note that in the theorem statement, procLoad(p)
is a metric of the pipeline — we are not just saying that

seg cache is optimal for this particular static schedule, but

rather that no other static schedule is much better.

Theorem 8: Let procLoad(p) denote the processor loads

arising from an execution of seg cache on the pipeline.

Then for sufficiently large T , every static schedule on a

machine with cache size of M/6 requires a runtime of

Ω((T/B)maxproc. p procLoad(p)) parallel I/Os to fire the

sink node t a total of T gain(t) times.

Proof: Consider the temporary segmentation S chosen

by seg cache, and let C be the set of gain-minimizing

cross edges selected. Each of the segments (except the last

which contributes no cross edge) has size at least 2(M/6),
and thus applying Theorem 4 for a machine with M/6
allows us to conclude that Ω((T/(PB))

∑
c∈C gain(c) +

(T/B)maxc∈C gain(c)) is a lower bound on the runtime

of any static scheduler.

We next show (1/P )
∑

c∈C gain(c)+maxc∈C gain(c)) ≥
(1/2)maxproc. p procLoad(p), which completes the proof.

Cross edges contributes to the load of two segments, so the

total load is L = 2
∑

c∈C gain(c). The seg cache algorithm

adds at most one segment to a processor after it reaches L/P
load. Each segment borders two cross edges, so the load of

any segment is at most 2maxc∈C gain(c). Thus the max-

imum load on any processor is maxproc. p procLoad(p) ≤
(2/P )

∑
c∈C gain(c) + 2maxc∈C gain(c).

V. EXPERIMENTS

We now experimentally compare the running time of our

strategy against several other static policies when executing

randomly generated pipelines drawn from distributions with

varying characteristics. The experiments indicate that under

many conditions, cache-based segmentation is able to im-

prove the overall running time, while under other conditions,

computation time based partitioning performs better. We

also investigate a heuristic that combines computation and

cache misses as a basis of partitioning, and find that it often

provides the best of both worlds.

A. Scheduling Policies

We evaluated several static schedulers. Each schedule

is characterized by 3 features: (1) The segmentation. We

describe all of our schedules in terms of segments — a

set of consecutive modules restricted to the same processor.

Note that a segment may contain anything between one

module and all the modules. How segments are chosen

varies by scheduling policy. (2) The processor assignment.

Each schedule defines how the segments are (statically)

assigned to processors. Multiple segments may be assigned

to the same processor. (3) Cross-edge buffer allocation. Each

scheduling policy also defines the size of buffers to place on

cross edges — the edges that go between segments.

All the other details for all policies are similar. For

any internal edge e from module u to module v of the

same segment the buffer of size 2lcm(out(u), in(v)) —

that is the least common multiple of the number of items

produced and consumed on the edge — is allocated.2 For

all policies except seg cache, the cross edge buffers are

also assigned in the same manner. In all the computation-

based policies (seg runtime, bin full and bin empty), before

load-balancing, we normalize the modules computation cost

based on the gain of the module. The scheduling policies

compared in this section are defined as follows:

1) seg cache: Segmentation based on cache (our policy)

as described in Section IV. Each cross edge e has a

buffer of (M/2) gain(e).
2) random assignment: Segments consists of single mod-

ules and are assigned to processors at random.

3) seg random: Random segmentation. A single segment

is created per processor by randomly picking p − 1
edges to be cross edges.

4) seg runtime: Segmentation based on computation cost.

In this policy a single segment is created per processor

minimizing the maximum number of compute steps

on a single segment by using a greedy load-balancing

policy analogous to that of seg cache.

5) bin full: Fullest first binpacking on computation. As-

sign modules to a segment until their cumulative

computation is just smaller than 1/P fraction of the

total computation, creating P large segments, one for

each processor. The remaining modules are in their

2This internal buffer could be sized out(i) + in(i + 1), but the larger
quantity allows for easier scheduling and does not affect the performance.



own segments and assigned greedily to the processor

with the smallest overall compute cost. This policy

often results in a segmentation nearly identical to

seg runtime.

6) bin emptiest: Emptiest first binpacking on computa-

tion. Each segment consists of a single module. We

greedily assign segments to the processors with the

fewest total compute steps.

B. Pipeline Execution

We built an execution engine that takes in a pipeline and

the static-schedule description and executes the pipeline ac-

cording to that schedule. The execution engine runs exactly

one thread on each processor. The master thread begins

execution and is responsible for parsing the schedule and

spawning all the remaining worker threads and pinning them

on their designated processors. These worker threads are

responsible for executing the segments assigned to respective

processors. The master thread executes the source node,

generating all the subsequent messages to be processed, and

the sink node, consuming all the messages after processing.

In a loop, each worker thread finds a segment that is ready

— the buffer on the input cross edge is at least half-full and

the buffer and the output cross edge is at least half-empty.

This segment is then loaded into memory. At this point, this

segment is executed until either the buffer on the input cross

edge is empty or the buffer on the output cross edge is full. If

there are multiple ready segments, the worker thread always

executes the last (in pipeline order) ready segment. Once a

ready segment is picked for execution, it is executed until

either the buffer on its incoming cross edge is empty or the

buffer on its outgoing cross edge is full. When a segment

is executed, its internal modules are fired one at a time.

Any schedule of firing its internal modules is valid — in

our execution engine, the last ready module (in order of the

pipeline) is always fired.

The internal-edge buffers between modules within a seg-

ment are implemented as simple FIFO queues. No synchro-

nization is required on internal edges because all modules

within a segment are consecutive and are scheduled on the

same processor. Neighboring segments can, however, be

scheduled on different processors, and we thus use thread-

safe single-producer single-consumer lock free ring buffers

for communication through cross edges between segments

C. Pipeline Generation

Our experimental evaluation consists of running each

schedule on randomly generated pipelines. We fixed the total

number of modules to 140 in order to allow for sufficient

differences in the schedules generated. For each pipeline,

we randomly generate three sets of parameters: (1) gain of

each edge, (2) state size of each module, and (3) computation

requirement of each module. The gain of each edge is picked

randomly between [1,M/16], where M is the size of the

cache. The upper limit is picked so that the maximum gain

is pretty large, but still allows all non-cross edge buffers to fit

in memory. The state size of each module is picked randomly

between [1KB, 32KB], again in order to allow the each

module to individually fit in cache. Finally, the module

computation times are selected from [0.5µs, 50µs]. We used

two kinds of distributions for generating our parameters —

namely uniform distribution and zipf’s distribution, [13].

Zipf’s is a heavy tailed distribution with a probability density

is given by P (x) = x−p

ζ(p) . Here ζ is the Riemann zeta

function and p is a positive parameter which controls how

heavy the tail is. For our experiments we use p = 1.5

D. Experimental Settings

All of our experiments were run on Intel Eight Core Xeon

E5-4620 2.2Ghz processors with 8-way set associative L2

caches of M = 256KB and block size B = 64 bytes. Each

message is the size of a word (4 bytes) and the source node

generates 16384M (16384 × 1024 = 16777216) messages

in total during each execution. This large number ensures

that the overhead of loading and clearing the pipeline is low

compared to the total execution time — therefore the total

execution time is a reasonable approximation of the steady-

state throughput.

Each chart consists of a set of trials using the same

parameters to randomly generate the pipelines. In all charts,

the y-axis is running time — lower is better. A vertically

aligned set of points plot the running times of each scheduler

on the same pipeline. The x-axis is the running time of

seg cache. By construction, the running time of seg cache

fits a line, which is shown. If most of the points for a

particular strategy fall above the line, then that strategy is

generally worse than cache-based segmentation; if the points

generally fall below the line, then it is better than cache-

based segmentation.

E. Disabled Computation

We first conduct a simple experiment to see if cache per-

formance has any effect on runtime. We set the computation

time for all modules to 0 and compare seg random and

rand assign scheduling policies against seg cache (the other

policies depend on computation time).

Figure 3a shows the results for pipelines that have been

generated using a zipf distribution for the gains and a

uniform distribution for state size. We see that seg random

generally requires at least twice as much time to complete as

seg cache. While seg random is able to take advantage of

the temporal locality arising from segmentation in general,

a random selection does not properly reduce the cost on

cross edges, resulting in some bottlenecked processor. Since

rand assign lacks this temporal locality, it performs even

worse. In Figure 3b we see that when a uniform distribution

is used for gain selection seg random’s performance is much

closer to seg cache’s. This is due to the fact that seg cache



(a) Zipf gain, uniform state, uniform computation

0

100

200

300

400

500

600

700

800

900

R
u

n
ti

m
e

(s
)

120 140 160 180 200 220 240 260 280 300

Seg_ Cache Runtime (s)

seg_ cache seg_ rand rand_ assign

(b) Uniform gain, uniform state, uniform computation

0

500

1000

1500

2000

2500

R
u

n
ti

m
e

650 700 750 800 850

Seg_ Cache Runtime (s)

seg_ cache seg_ rand rand_ assign

Figure 3: Normalized results for seg rand and rand assign against seg cache with computation simulation disabled. We see that seg cache
works better with zipf gain than with uniform gain.

concentrates on cutting low gain edges; with uniform dis-

tribution, there is little difference between a “good edge”

(low gain edge) and a random edge. Therefore, the primary

advantage of seg cache is reduced compared to seg random.

Due to the lack of temporal locality, random assign still

performs much worse. In subsequent experiments, we will

omit the random assign policy since it almost always much

worse than the others.

This experiment provides evidence that cache perfor-

mance of scheduling policy can play a role in determining

the running time. In addition, a uniform distribution on the

gains decreases the effectiveness of a cache-based segmenta-

tion due to the increased number of expensive edges which

makes it difficult to pick “cheap” cross edges. Zipf’s like

heavy-tailed distributions commonly occur in practice in

many circumstances and some studies [14]–[16] claim that

the sizes of Unix jobs follow a heavy-tailed distribution.

Therefore, it seemed reasonable to try these distributions in

our experiments.

F. Randomly Generated Computation Times

The remainder of the experiments will consider compu-

tation times. Figure 4 shows the results when state sizes

are selected uniformly at random, but the distribution of the

gain and computation varies. As in the case where there is

no computation, we again see, in Figures 4a and 4b, that

uniform gains are not particularly good for seg cache and

computation-based segmentation seg runt performs as well

or better. The reason is similar as in the case of disabled

computation — when the gains are uniformly distributed,

seg cache has very little ability to pick better cross edges

(smaller gain cross edges) than other policies.

We see another interesting effect here — seg runt is better

with respect to seg cache when computation is distributed

uniformly (Figure 4a), while it is comparable to seg cache

when computation is generated using the zipf’s distribution

(Figure 4b). This is due to the difference in distributions:

Our uniform distribution has a higher mean than the zipf

distribution; therefore, the overall runtime is larger with the

uniform distribution than it is with the zipf’s distribution.

Therefore, computation cost is more likely to dominate the

(a) Zipf’s Gain, Uniform State, Correlated Computation

0

200

400

600

800

1000

1200

R
u

n
ti

m
e

(s
)

140 160 180 200 220 240 260 280 300

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

Figure 5: seg runtime, seg random, bin fullest and bin emptiest
against seg cache for correlated state size and computation time.

performance with uniform distribution on computation and

hence, a policy that load-balances computation performs

better. On the other hand, under the zipf’s distribution, the

computation of most modules is small; therefore, the overall

computation is small and the cache effects can become more

prominent and seg cache can start to have some advantage.

In comparison, (just as with disable computation) when

the gains are zipf’s distributed, in Figures 4c and 4d, we

see that seg cache generally outperforms the other policies.

In particular, even when the computation is uniformly dis-

tributed (Figure 4c) the ability to pick good cross edges

allows seg cache to perform better than other policies. Again

we see in Figure 4d that when computation time is selected

with a zipf distribution, cache performance plays an even

higher role and seg cache performs the best.

We ran other combinations of distributions (omitted due

to space constraints) and these general trends seem to hold.

The state-size distribution generally does not seem to have

an appreciable effect on the relative performance of policies.

G. Correlated Computation Time

Thus far our experiments have selected all gains, state

sizes and computation times independently. It is, however,

often the case in practice that state size and computation time

are correlated. Figure 5 shows the results when we pick the

state s using the uniform distribution, and then the compu-

tation time of the module is its (s/maxState)×maxComp



(a) Uniform Gain, Uniform State, Uniform Computation

0

500

1000

1500

2000

2500

R
u

n
ti

m
e

(s
)

900 1000 1100 1200 1300 1400

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

(b) Uniform Gain, Uniform State, Zipf’s Computation

0

500

1000

1500

2000

2500

3000

3500

R
u

n
ti

m
e

(s
)

750 800 850 900 950 1000 1050 1100 1150 1200

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

(c) Zipf’s Gain, Uniform State, Uniform Computation

0

200

400

600

800

1000

1200

R
u

n
ti

m
e

(s
)

150 200 250 300 350

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

(d) Zipf’s Gain, Uniform State, Zipf’s Computation

0

200

400

600

800

1000

1200

R
u

n
ti

m
e

(s
)

120 140 160 180 200 220 240

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

Figure 4: Normalized results for seg runtime, seg random, bin fullest and bin emptiest against seg cache with computation time enabled.
We see that seg cache performs the best when both the computation time and the gains have a zipf’s distribution. This is due to the fact
that (1) zipf’s distribution on computation time reduces the total computation time of the pipeline, making it more likely that the runtime
is dominated by cache misses and (2) zipf’s distribution on gains allows seg cache more leeway to pick better cross edges.

where maxState = 32KB and maxComp = 50µs. Again

we see that seg cache outperforms all scheduling policies

in the majority of cases. We see that the results are quite

similar to Figure 4c, which is not surprising since again

state size and computation are uniformly distributed. In fact,

the distribution on computation times is not identical; the

range of computation times for the un-correlated experiment

shown (Figure 4c) is [0.5µs, 50µs] while for the correlated

experiment it is [1.56µs, 50µs]. Therefore, the overall com-

putation time of these correlated pipelines generally larger

and therefore, we would expect seg cache to perform worse.

However, since seg cache balances the state sizes in its

segmentation, due to the correlation, in this case, it appears

to also manage to balance the computation times to a certain

extent, leading it to perform better than other strategies.

H. Segmentation Based on Computation Time and Cache

These experiments indicate that segmentation is good,

since either cache-based segmentation (seg cache) or

computation-based segmentation (seg runt) generally domi-

nates the other policies. Therefore, we experimented with a

new algorithm, seg both: a segmentation strategy that con-

siders both computation and cache misses. For this policy,

we first estimate the time for a cache miss (we found it to

be about 3 nanoseconds). We then calculate the normalized

load for all possible segments 〈x, y〉 that fit in cache by

including both the time spent incurring cache misses and

the time spent on modules’ computation. We then greedily

assign contiguous segments to processors so as to minimize

the maximum load per core via a binary search algorithm.

Since this algorithm considers cache misses, the buffers on

cross edges are assigned in the same manner as seg cache.

Figure 6 shows the results for this policy for both the

case of uniform gain, uniform computation and for zipf gain,

zipf’s computation. If we compare Figure 6a to Figure 4a,

we see that in the case where computation-based segmenta-

tion is better than cache-based segmentation, this combined

segmentation policy beats both seg cache and seg runt. On

the other hand, comparing Figure 6b to Figure 4d indicates

that when cache-based segmentation is better, this combined

segmentation does almost as well as seg cache. Therefore,

this policy seems to provide the best of both worlds.

I. Fixed State and Computation

In order to better understand these scheduling poli-

cies, we conducted experiments where the module state

sizes and computation times have been fixed and only

the gains vary. Figure 7 shows three experiments, us-

ing ‘small’,‘medium’ or ‘large’ values, where state ∈
{ M
1024 ,

M
16 ,

M
2 } and computation ∈ {1, 10, 50}µs. In all



(a) Uniform Gain, Uniform State, Uniform Computation

0

500

1000

1500

2000

2500

R
u

n
ti

m
e

(s
)

800 900 1000 1100 1200 1300 1400

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty seg_ both

(b) Zipf’s Gain, Uniform State, Zipf’s Computation

0

200

400

600

800

1000

1200

R
u

n
ti

m
e

(s
)

120 140 160 180 200 220 240

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty seg_ both

Figure 6: Segmentation based on both computation time and cache. We see that this form of segmentation does a better job of load-
balancing computations when computation-based strategies dominate, but also gets most of the advantage of cache-based segmentation
when seg cache dominates.

(a) Uniform Gain, Small State and Computation

0

100

200

300

400

500

600

700

800

900

R
u
n
ti

m
e

(s
)

140 145 150 155 160 165 170 175

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

(b) Uniform Gain, Med. State and Computation

0

100

200

300

400

500

600

700

800

900

1000

R
u
n
ti

m
e

(s
)

120 140 160 180 200 220 240

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

(c) Uniform Gain, Large State and Computation

0

500

1000

1500

2000

2500

3000

3500

4000

R
u
n
ti

m
e

(s
)

400 500 600 700 800 900 1000

Seg_ Cache Runtime (s)

seg_ cache seg_ runt seg_ rand bin_ full bin_ empty

Figure 7: Normalized results seg runtime, seg random, bin fullest and bin emptiest against seg cache when state size and computation
times have been fixed and gains are selected with a zipf distribution.

experiments, seg cache performs as well as or better than the

other policies, since balancing the state sizes automatically

balances the computation as well.

In Figure 7a both bin fullest and seg runtime are able

to perform nearly as well as seg cache. Note that the total

state of the entire pipeline is small. Since both these policies

create approximately 1 segment per processor and these

segments fit in cache. Therefore, these policies get most of

the advantage of seg cache since they never have to pay to

reload the state and only pay for 2 cross edges per processor.

bin empty is significantly worse since it has too many cross

edges. As we increase the state sizes, the modules assigned

to each processor no longer fit entirely in cache and the cost

of loading segments starts mattering.

Another interesting trend is that bin empty starts per-

forming better as the computation and state size increase.

The reason for this is subtle. Since seg runt and bin full

essentially perform segmentation based on computation cost,

they put large contiguous segments on each processor as

the state size and computation increases. At the largest size,

each processor’s cache can only fit 1 or 2 modules at a time.

Therefore, both these policies load a single module, execute

it, and then load the next module, and so on, paying a large

cache cost for each firing. On the other hand, bin empty

distributes contiguous modules across processors with each

segment consisting of a single module — therefore, for large

state sizes, it is essentially doing what seg cache does, but

without the advantage of large buffers on cross edges. This

policy potentially allows it to execute each module many

times before loading the next module.

VI. RELATED WORKS

Most existing work on scheduling streaming computations

computation costs of the modules only and tries to balance to

computation across processors in order to maximize through-

put. Bokhari solved the throughput optimization problem for

pipeline mapping by finding a minimum bottleneck path in

a layered graph that contains all information about applica-

tion modules [17]. Hansen et al. later improved Bokhari’s

solution using dynamic programming [18]. Subsequently,

many efficient algorithms have been proposed, both for

homogenous processors [19]–[21] and heterogenous pro-

cessors [22]. Researchers have also considered distributed

memory communication models of various kinds to under-

stand the effect of communication on throughput of pipeline

computations [23], [24]. Researcher have also considered the

problem of maximizing throughput and minimizing latency

as a bi-criteria scheduling problem [25], [26]. In addi-

tion, replication of state-less modules in order to improve

throughput has also been studied [27]–[30]. None of this

research explicitly addresses the problem of minimizing the

number of cache misses.

Heuristic cache-aware scheduling of streaming programs

on both single processors and multiprocessors has been



studied by several research groups [31]–[33]. Since all

of these algorithms are based on heuristics, they do not

guarantee optimality with respect to the number of cache

misses. However, their empirical results support our claim

that optimizing the number of cache misses can lead to

significant improvement in performance. The only prior

theoretical work that considers the number of cache misses

for streaming applications considers only single proces-

sor schedules in both the cache-aware [11] and cache-

oblivious [34] setting.

VII. CONCLUSION AND FUTURE WORKS

This paper has studied cache-conscious scheduling of

streaming pipelines on machines with private caches. In

most of the experimental benchmarks, scheduling based

solely on the modeled cache effects is indeed significantly

more effective than the more common load-balancing of

computation costs. In the case that computation cost domi-

nates the workload, a mixed strategy that takes into account

both cache misses and computation cost outperforms one

designed to balance the computation. We conclude that the

cost of cache misses should not be ignored when designing

scheduling strategies for streaming pipelines.

From a theoretical perspective, this paper has developed

matching upper and lower bounds in the parallel external

memory model. One natural question is how the results

extend to a model including computation cost, or more

generally on multiple levels of private caches. We were also

surprised to discover that the lower bound does not extend

to non-static schedules. A non-static schedule violates the

conventional practice of keeping a module stationary and

sending messages across processors, instead keeping the

messages somewhat stationary and sending modules across

processors. It would be interesting study non-static sched-

ulers more fully, and to see how they perform in practice.

Finally, this paper has only considered private caches. It

would also be interesting to explore streaming pipelines on

shared caches and mixed cache hierarchies.

REFERENCES

[1] B. Khailany, W. Dally, S. Rixner, U. Kapasi, P. Mattson,
J. Namkoong, J. Owens, B. Towles, and A. Chang, “Imagine:
Media processing with streams,” IEEE Micro, pp. 35–46,
March/April 2001.

[2] J. W. Romein, P. C. Broekema, E. van Meijeren, K. van der
Schaaf, and W. H. Zwart, “Astronomical real-time stream-
ing signal processing on a Blue Gene/L supercomputer,” in
Proceedings of the Eighteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, 2006, pp. 59–
66.

[3] Y. Liu, N. Vijayakumar, and B. Plale, “Stream processing
in data-driven computational science,” in Proceedings of the
7th IEEE/ACM International Conference on Grid Computing,
2006, pp. 160–167.

[4] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining
data streams: a review,” SIGMOD Rec., vol. 34, no. 2, pp.
18–26, June 2005.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for GPUs: Stream
computing on graphics hardware,” ACM Trans. on Graphics,
vol. 23, no. 3, pp. 777–786, Aug. 2004.

[6] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H.
Ahn, P. Mattson, and J. D. Owens, “Programmable stream
processors,” Computer, vol. 36, no. 8, pp. 54–62, Aug. 2003.

[7] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt:
A language for streaming applications,” in Proceedings of
the 11th International Conference on Compiler Construction,
2002, pp. 179–196.

[8] A. Aggarwal and J. S. Vitter, “The input/output complexity of
sorting and related problems,” Communications of the ACM,
vol. 31, no. 9, pp. 1116–1127, September 1988.

[9] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kusz-
maul, “Concurrent cache-oblivious B-trees,” in Proceedings
of the Seventeenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, Jul. 2005, pp. 228–237.

[10] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ra-
machandran, S. Chen, and M. Kozuch, “Provably good mul-
ticore cache performance for divide-and-conquer algorithms,”
in Proceedings of the Nineteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2008, pp. 501–510.

[11] K. Agrawal, J. T. Fineman, J. Krage, C. E. Leiserson, and
S. Toledo, “Cache-conscious scheduling of streaming appli-
cations,” in Proceedings of the 24th ACM Symposium on
Parallelism in algorithms and architectures, 2012, pp. 236–
245.

[12] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava, “Fun-
damental parallel algorithms for private-cache chip multipro-
cessors,” in Proceedings of the Twentieth Annual Symposium
on Parallelism in Algorithms and Architectures, 2008, pp.
197–206.

[13] G. K. Zipf, Selected studies of the principle of relative fre-
quency in language. Cambridge, Mass. : Harvard University
Press, 1932.

[14] W. Leland and T. J. Ott, “Load-balancing heuristics and
process behavior,” in Proceedings of the 1986 ACM SIG-
METRICS Joint International Conference on Computer Per-
formance Modelling, Measurement and Evaluation. New
York, NY, USA: ACM Press, 1986, pp. 54–69.

[15] M. Harchol-Balter and A. B. Downey, “Exploiting process
lifetime distributions for dynamic load balancing,” ACM
Transactions on Computer Systems, vol. 15, no. 3, pp. 253–
285, 1997.

[16] M. Harchol-Balter, “The effect of heavy-tailed job size.
distributions on computer system design,” in Proceedings
of ASA-IMS Conference on Applications of Heavy Tailed
Distributions in Economics, 1999.

[17] S. H. Bokhari, “Partitioning problems in parallel, pipeline,
and distributed computing,” IEEE Trans. on Computers,
vol. 37, no. 1, pp. 48–57, Jan. 1988.

[18] P. Hansen and K.-W. Lih, “Improved algorithms for partition-
ing problems in parallel, pipelined, and distributed comput-
ing,” IEEE Trans. on Computers, vol. 41, no. 6, pp. 769 –771,
Jun. 1992.

[19] H.-A. Choi and B. Narahari, “Algorithms for mapping and
partitioning chain structured parallel computations,” in Pro-



ceedings of the International Conference on Parallel Process-
ing, 1991, pp. 625–628.

[20] B. Olstad and F. Manne, “Efficient partitioning of sequences,”
IEEE Transactions on Computers, vol. 44, no. 11, pp. 1322–
1326, 1995.

[21] A. Pınar and C. Aykanat, “Fast optimal load balancing
algorithms for 1d partitioning,” Journal of Parallel and Dis-
tributed Computing, vol. 64, no. 8, 2004.

[22] A. Benoit and Y. Robert, “Mapping pipeline skeletons onto
heterogeneous platforms,” Journal of Parallel and Distributed
Computing, vol. 68, no. 6, pp. 790–808, 2008.

[23] K. Agrawal, A. Benoit, F. Dufossé, and Y. Robert, “Mapping
filtering streaming applications with communication costs,”
in Proceedings of the Twenty-First Annual Symposium on
Parallelism in Algorithms and Architectures, 2009, pp. 19–
28.

[24] K. Agrawal, A. Benoit, F. Dufoss, and Y. Robert, “Map-
ping filtering streaming applications,” Algorithmica, pp. 1–51,
September 2010.

[25] A. Benoit and Y. Robert, “Complexity results for through-
put and latency optimization of replicated and data-parallel
workflows,” in Proceedings of the 2007 IEEE International
Conference on Cluster Computing, Sept 2007, pp. 497–506.

[26] A. Benoit, M. Hakem, and Y. Robert, “Optimizing the latency
of streaming applications under throughput and reliability
constraints,” in International Conference on Parallel Process-
ing, Sept 2009, pp. 325–332.

[27] J. Subhlok and G. Vondran, “Optimal mapping of sequences
of data parallel tasks,” in Proceedings of 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-

ming, 1995, pp. 134–143.

[28] M. Kudlur and S. Mahlke, “Orchestrating the execution of
stream programs on multicore platforms,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008, pp. 114–124.

[29] D. Cordes, A. Heinig, P. Marwedel, and A. Mallik, “Auto-
matic extraction of pipeline parallelism for embedded soft-
ware using linear programming,” in Proceedings of IEEE
17th Interenational Conference on Parallel and Distributed
Systems, 2011, pp. 699–706.

[30] P. Li, K. Agrawal, J. Buhler, and R. D. Chamberlain, “Adding
data parallelism to streaming pipelines for throughput opti-
mization,” in Proceedings of the 20th International Confer-
ence on High Performance Computing, 2013, pp. 20–29.

[31] S. Kohli, “Cache aware scheduling for synchronous dataflow
programs,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M04/3, 2004.

[32] A. Moonen, M. Bekooij, R. Van Den Berg, and J. Van Meer-
bergen, “Cache aware mapping of streaming applications
on a multiprocessor system-on-chip,” in Proceedings of the
Conference on Design, Automation and Test in Europe, 2008,
pp. 300–305.

[33] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe,
“Cache aware optimization of stream programs,” ACM SIG-
PLAN Notices, vol. 40, no. 7, pp. 115–126, 2005.

[34] K. Agrawal and J. Fineman, “Brief announcement: Cache-
oblivious scheduling of streaming pipelines,” in Proceedings
of the ACM Symposium on Parallelism in Algorithms and

Architectures, 2014, pp. 79–81.


