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ABSTRACT
If a parallel program has determinacy race(s), different
schedules can result in memory accesses that observe differ-
ent values — various race-detection tools have been designed
to find such bugs. A key component of race detectors is an
algorithm for series-parallel (SP) maintenance, which
identifies whether two accesses are logically parallel.

This paper describes an asymptotically optimal algorithm,
called WSP-Order, for performing SP maintenance in pro-
grams with fork-join (or nested) parallelism. Given a fork-
join program with T1 work and T∞ span, WSP-Order exe-
cutes it while also maintaining SP relationships in O(T1/P+
T∞) time on P processors, which is asymptotically optimal.
At the heart of WSP-Order is a work-stealing scheduler de-
signed specifically for SP maintenance.

We also implemented C-RACER, a race-detector based on
WSP-Order within the Cilk Plus runtime system, and eval-
uated its performance on five benchmarks. Empirical results
demonstrate that when run sequentially, it performs almost
as well as previous best sequential race detectors. More im-
portantly, when run in parallel, it achieves almost as much
speedup as the original program without race-detection.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling ; D.1.3 [Programming Techniques]: Con-
current Programming—Parallel programming ; D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools; E.1
[Data Structures]: Distributed data structures

Keywords
series-parallel maintenance, determinacy race, race detec-
tion, work stealing, order-maintenance data structures

1. INTRODUCTION
A determinacy race [14] (or a general race [29]), occurs

when two or more logically parallel instructions access the
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same memory location, and at least one of the accesses is
a write. Determinacy races can lead to nondeterministic
program behaviors, and as such they are often bugs.1

Over the years, researchers have proposed several algo-
rithms [26, 14, 31, 32, 5] for performing race detection “on
the fly” as the program executes. These race detectors pro-
vide a fairly strong correctness guarantee — for a given in-
put, they report a race if and only if the program contains a
race on that input. In general, on-the-fly race detectors in-
clude two important components: (1) an SP-maintenance
data structure for maintaining and querying series-parallel
relationships between strands of a parallel program online;
and (2) a memory access history that keeps track of (one
or two) previous readers and writers for each memory lo-
cation. On each memory access, the race detector checks
whether the current access is logically parallel with these
previous accesses to determine whether a race exists.

Since Mellor-Crummey’s seminal work [26], most on-the-
fly race detectors have adopted similar schemes for maintain-
ing the access history. Where they differ significantly is in
how they perform SP maintenance. Not only can SP main-
tenance significantly impact the overall running time of race
detection, but it may dictate that the program (with race
detection) must run sequentially. All prior SP-maintenance
algorithms have performance drawbacks — either they must
execute the program serially [14, 31], they limit the par-
allelism of the execution [5], or they have high worst-case
overhead [26, 32] on memory accesses.

This paper describes WSP-Order, an asymptotically op-
timal SP-maintenance algorithm for fork-join programs that
runs in parallel. Specifically, let T1 be the work, or sequen-
tial running time, of a deterministic computation2, and let
T∞ be its span3, or its running time on an infinite num-
ber of processors. Then WSP-Order executes the compu-
tation while correctly maintaining SP-relationships in ex-
pected time O

(
T1
P

+ T∞
)

on P processors. Since running

the computation without SP maintenance also takes Ω(T1
P

+
T∞) time, this is the best possible bound and guarantees lin-
ear speedup when the computation’s parallelism is Ω(P ).

Adding the standard access-history algorithm to WSP-
Order, we get a correct and efficient parallel race-detection
algorithm. The access history has some inherent overheads
due to concurrent updates on reads; therefore, it is diffi-

1In contrast, a data race occurs when the atomicity of crit-
ical sections is violated [29].
2Henceforth, we shall use the term computation to refer to
a program given a fixed input.
3Span is sometimes called critical-path length or depth.

83



cult to provide good guarantees for race-detection on a weak
contention model. Assuming a constant-time priority-write
primitive [36], a race detector with WSP-Order executes a
program with full race detection (including access history)
in expected O

(
T1
P

+ T∞
)
. To our knowledge, this is the first

asymptotically optimal parallel race-detection algorithm.
SP Maintenance: WSP-Order achieves its running time

through a nontrivial integration of a modified work-stealing
scheduler [6] and a parallel version of SP-Order, an SP-
maintenance algorithm proposed by Bender et al. [5]. At a
high-level, SP-Order uses a pair of order-maintenance (OM)
data structures [9, 4] to perform SP maintenance. When
running sequentially, SP-Order is asymptotically optimal
since OM data structures support constant-time operations.
However, it is not immediately clear how to produce an effi-
cient parallel version of SP-Order due to its reliance on the
shared OM data structures. To compensate, Bender et al. [5]
propose a significantly more complicated algorithm allowing
parallel execution, but it has non-constant overhead.

WSP-Order achieves optimal performance without modi-
fying the SP-order algorithm itself. Instead, we modify the
scheduler and the OM data structures. A key insight is that
SP-Order uses OM data structures in a well structured way
— concurrent accesses to the data structures do not logically
conflict; therefore, in principle, concurrent updates to the
data structure can generally proceed without concurrency
control. Occasionally, however, the OM data structures un-
dergo relabel operations, wherein a large portion of the
data structure is modified. These relabels, which are neces-
sary to achieve the optimal performance bounds, do conflict
with concurrent operations. Coping with relabels in the OM
data structure is the main challenge in parallelizing SP-order
and achieving asymptotically optimal performance.

The high-level ideas behind WSP-Order are to (1) forbid
concurrent accesses during relabels, but otherwise allow all
concurrent OM operations to proceed without any signifi-
cant concurrency control; (2) use parallelism within relabel
operations to ensure that they can finish quickly; (3) modify
the scheduler to prioritize relabels; and (4) ensure that rela-
bels do not occur“too frequently”by relabeling more eagerly.
As we shall see in later sections, these four modifications are
sufficient to achieve provably good performance.

Race Detector: Based on WSP-Order, we implemented
a race detector, C-RACER, in Cilk Plus [20], a multi-
threaded language that supports fork-join parallelism. Em-
pirical results on five benchmarks indicate that C-RACER
outperforms an existing state-of-the-art race detector for
Cilk Plus [21]. They bear out the claim that WSP-Order
is asymptotically optimal — when executing on 16-cores, C-
RACER achieves speedups similar to the computation with-
out C-RACER. A breakdown of overheads shows that, the
C-RACER’s overheads are mostly incurred in access-history
management, and the WSP-Order indeed incurs minimal
overhead, less than 2× the baseline across benchmarks.

Outline: Section 2 provides background about work steal-
ing, race detection, and OM data structures. Sections 3
and 4 describes the design and theoretical analysis of WSP-
Order. Section 5 shows empirical results for C-RACER. Sec-
tions 6 and 7 provide related work and conclusions.

2. BACKGROUND
In this section, we start by describing the parallel con-

trol constructs for generating fork-join parallelism and the

work-stealing scheduler. Next, we describe the abstract data
type for the order-maintenance (OM) data structure and
how SP-Order uses the it to perform SP-maintenance. We
then review how a parallel race detector maintains an access
history and detects races. Finally, we describe the order-
maintenance data structures and their complexity.

Fork-Join Programs: We will use Cilk Plus keywords
to explain the fork-join model; other languages have similar
constructs. Parallelism is created using cilk_spawn. When
a function instance F spawns another function instance G
by preceding the invocation with cilk_spawn, the contin-
uation of F — the statements after the spawning of G —
may execute in parallel with G without waiting for G to
return. Instruction cilk_sync acts as a local barrier; the
control flow cannot move past a cilk_sync in function F
until functions previously spawned by F have returned.

A parallel computation can be represented as a directed
acyclic graph (dag). Each node in the dag is a strand —
a sequence of instructions that contain no parallel primi-
tives and therefore must execute sequentially. Nodes become
ready to execute when all their predecessors have executed.

For fork-join computations, the dag is series parallel [14],
meaning that it can be generated by repeated series and
parallel composition. A race detector must maintain series-
parallel relationships between strands. Formally, a strand
x is logically precedes strand y if and only if there is a
directed path from x to y in the computation dag. If there
is no directed path in either direction, the two strands are
logically parallel.

Work-Stealing Scheduler: During execution, a work-
stealing scheduler [6, 17] dynamically load balances a par-
allel computation across available worker threads. Each
worker maintains a deque, double-ended queue; when a worker
creates new strands, they are placed on this worker’s deque.
When it completes its current strand, it takes work from the
bottom of the deque. If its deque becomes empty, the worker
becomes a thief and randomly chooses a victim worker to
steal from. Given a computation with work T1 and span
T∞, a work-stealing scheduler executes it in expected time
T1
P

+ O (T∞) on P processors [6].

Order Maintenance Abstract Data Type: An order-
maintenance (OM) data structure maintains a total order
of elements subject to the following operations.

• Precedes(x,y): Given pointers to x and y, return true if
x precedes y in the total order and false otherwise.

• Insert(x,y1,y2): given a pointer to existing element x,
splice-in new elements y1 and y2, in that order, immedi-
ately after x in the total order. Thus, x and all its pre-
decessors of x precede y1 and y2, while all successors of x
succeed y1 and y2.

It is possible to solve order maintenance in O(1) time per
operation[9, 4]. The amortized solutions are simpler (and
sufficient for our purposes), but it is possible to achieve the
same bounds in the worst case [9, 4].

The SP-Order Algorithm: SP-Order [5] uses two order-
maintenance data structures to maintain two different total
orderings — called English and Hebrew — of all strands in
the computation. Figure 1 shows pseudocode for SP-Order.4

4The original description of SP-Order is with respect to a
series-parallel parse tree; we adopt an operational descrip-
tion here.
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In the frame of each function F , SP-Order has pointers to
elements in English and Hebrew structures representing its
currently executing strand. On spawns, it creates nodes for
three new strands: the newly spawned function, the contin-
uation strand, and the strand immediately after the corre-
sponding cilk_sync (this last one need only be created for
the first spawn of the sync block). These three new elements
are inserted after the current strand in both orderings. In
the English ordering their order is spawn then continuation
then sync. In the Hebrew ordering, their order is continu-
ation then spawn then sync. These orderings are sufficient
to determine SP relationships; a strand x logically precedes
strand y if and only if x precedes y in both orderings.

On F spawning G :

1 if first-spawn = true
2 first-spawn = false
3 create OM-Element for F.sync.e and F.sync.h
4 OM-Insert(Eng, F.curr .e, F.sync.e)
5 OM-Insert(Heb, F.curr .h, F.sync.h)
6 create OM-Element for G.curr .e, G.curr .h,

F.cont .e, and F.cont .h
7 OM-Insert(Eng, F.curr .e, G.curr .e, F.cont .e)
8 OM-Insert(Heb, F.curr .h, F.cont .h, G.curr .h)
9 F.curr .e = F.cont .e;

10 F.curr .h = F.cont .h

On F passing cilk_sync :

11 first-spawn = true
12 F.curr .e = F.sync.e
13 F.curr .h = F.sync.h

On F calling child H :

14 H.curr .e = F.curr .e
15 H.curr .h = F.curr .h

On a called child H returning to F :

16 F.curr .e = H.curr .e
17 F.curr .h = H.curr .h

Figure 1: The SP-Order algorithm. SP-Order main-
tains two OM data structures, Eng and Heb. For a
function F , elements representing the currently ex-
ecuting strand are in F.curr .e and F.curr .h. F.cont .e
and F.cont .h represent F ’s continuation strand after
the spawning of G. F.sync.e and F.sync.h represent
the strand after the corresponding cilk_sync in F .

We use the SP-Order’s SP-maintenance algorithm with-
out modification; therefore, the correctness guarantee fol-
lows from correctness of SP-Order (presented in [5]). In
addition, while SP-Order was described as sequential algo-
rithm, it works in parallel out of the box if we can insert and
query into the English and Hebrew structures concurrently.
(The question is performance.)

Detecting Races Using SP-Order: The second main
component of a race detector is the access history. WSP-
Order maintains an access history, briefly overviewed here,
similar to that used by Mellor-Crummey’s [26] race detector.
For a parallel race detector, it is sufficient for the access his-
tory to record the last writer w and two readers — the “left-
most” reader lr and the “right-most” reader. When a strand
s writes to `, the race detector now performs three queries
in the SP-maintenance structure, reporting a race if any s is
logically parallel with any of lr, rr, or w. If not, s becomes
the last writer. If s reads `, s is only compared against w to

find a race as before. However, additional queries are nec-
essary to see if s is the new leftmost reader lr or rightmost
reader rr. Since multiple reads can occur in parallel even
in a race-free program, more than one reader could try to
update these locations concurrently. Therefore, the parallel
race detector needs to protect these objects using locks or
atomic primitives like compare-and-swap or priority writes.

Overview of Order-Maintenance Implementations:
Efficient implementations of order maintenance can provide
O(1) time per operation [9, 4] for both inserts and queries
using two main insights. First, these use a two-level data
structure. Each element is stored in a bottom level struc-
ture which contains a group of consecutive elements. The
groups (i.e., pointers to bottom-level structures) are orga-
nized into a single top-level structure. Second, each ele-
ment and each group has an integer label LB and LT , re-
spectively; group labels are unique and element labels within
a group are unique. The OM data structure maintains the
invariant that element x precedes element y in the total or-
der if and only if (1) LT (group(x)) < LT (group(y)), or (2)
group(x) = group(y) and LB(x) < LB(y). Therefore, the
Precedes query only requires two label comparisons.

An Insert(x,y) is implemented by trying to inserting y
immediately after x in x’s bottom-level structure and as-
signing y a unique label between x and x’s successor in the
group. If y can be assigned a label, then the insert com-
pletes in O(1) time. If y cannot be assigned a label e.g., x’s
successor has label LB(x) + 1, then the group is full, trig-
gering a relabel operation. A relabel operation consists of
two steps: (1) The full group is split into potentially many
groups, the elements therein are assigned new labels that
are “spaced apart” allowing for fast future inserts. (2) The
(pointers to) the newly created groups are inserted into the
top-level structure. During this step, the top level struc-
ture is potentially rebalanced and the group labels may be
changed to accommodate these new groups. There are a
few details and many different labeling schemes exist, but
the important features are (1) the amortized cost of a split
is O(1) per insert, and (2) each group contains Ω(lgn) ele-
ments, so the total number of splits and top-level insertions
is O(n/lgn). The cost of inserting new groups into top-level
structure is O(lgn) on average; combining these features,
the amortized cost per insert is O(1).

3. EFFICIENT PARALLEL SP-ORDER
This section discusses how to get an efficient, parallel

implementation of SP-order by modifying both the work-
stealing runtime system and the OM data structures. Here
we present the theoretically optimal design; in our imple-
mentation (see Section 5), we slightly modified both the
runtime system and the OM data structure for both ease
of programming and practical performance.

3.1 Overview
Multiple challenges are involved in obtaining a theoreti-

cally efficient parallel SP-Order. First, SP-maintenance may
perform a lot of OM operations since every spawn or sync
translates into OM inserts and each memory access trans-
lates to multiple OM queries (see Section 2). In the worst
case, the number of inserts and the number of queries can
both be Θ(T1), where T1 is the work of the computation.
Since all P processors can be continually pounding on the
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Insert(x,y) // executed by worker w

1 y inserted = false
2 repeat
3 g = Group(x)
4 if Is full(g)
5 if try acquire(global lock)
6 // push relabel onto DS deque and
7 start relabel() // switch to DS deque
8 else
9 join relabel() // switch to DS deque

10 elseif try acquire(w. local lock)
11 Insert into group(g,x ,y)
12 y inserted = true
13 if Is heavy(g)
14 Add To Heavy Groups(g)
15 release lock(w. local lock)
16 else // local lock not acquired, relabel in progress
17 join relabel() // switch to DS deque
18 until y inserted = true

Relabel() // invariant: global lock is held

1 parallel for each worker w
2 acquire(w .local lock) // spin until successful
3 Build array H of all heavy groups
4 parallel for each index i of H
5 parallel split(H [i ])
6 Parallel Rebalance Toplevel()
7 parallel for each worker w
8 release(w .local lock)
9 Release Lock(global lock)

Figure 2: Pseudocode for the insert and the relabel
procedures of the OM data structure.

data structures, it is natural to expect an overhead of at least
Ω(lgP ) to coordinate the accesses. Indeed, most concurrent
data structures have such overheads (or worse). Neverthe-
less, our approach avoids this overhead.

A key idea of our approach is to bypass the expensive co-
ordination for most OM operations (inserts and queries).
Doing so seems impossible for a general concurrent data
structure — after all, some coordination is required to guar-
antee correctness — but extra structural properties of both
SP-Order and the order-maintenance data structures help
us. Three key observations that lead to our good design:

1. In SP-Order, all OM insertions are with respect to the
strand currently being executed by that worker. Thus,
there are no logical conflicts between any concurrent
insertions.

2. Barring splits due to relabels, inserting into a bottom-
level structure requires only local changes. Conse-
quently, as long as no splits are in progress, concur-
rent inserts may safely operate on disjoint locations in
bottom-level structures.

3. Queries are just comparing labels and groups. As long
as no labels or groups are changing, queries and inserts
can occur concurrently.

Given these insights, the main idea is simple: resort to a slow
concurrency-control mechanisms only during a relabeling.

Even with the reduced concurrency control, a second chal-
lenge remains: relabels can be large operations and poten-
tially block inserts and queries. Executing all relabel op-
erations sequentially would make it impossible to provide
good speedup. Therefore, (1) we design an OM data struc-
ture that implements parallel relabels; and (2) we modify

a work-stealing scheduler to prioritize relabels and properly
move processors between working on the computation and
the ongoing relabel operation as needed. The combination
of the two strategies helps speed-up the relabel process.

Finally, the last challenge is that, with a traditional OM
data structure, there may be as many as Θ(n/lgn) relabel
events over the lifetime of an n-element order-maintenance
structure. Since a parallel relabel operation incurs Θ(lgn)
span and each relabel occurs one after another, all relabels
together would incur O(n) span, which can be as bad as
O(T1). To allay this problem, we must somehow reduce
the number and frequency of distinct relabel events. Recall
that, during a relabel, a full group (as implemented by a
bottom-level structure) is split into multiple groups. Our
solution is to introduce a more aggressive process — once a
relabel is triggered, instead of just splitting the full group,
we also split all groups that are“heavy,” or full enough. This
aggressive splitting also introduces more parallelism into the
relabel process, since multiple groups can be split in parallel.

In summary, the four main components of our solution are
(1) reducing concurrency control except on relabels, (2) par-
allelizing the relabels, (3) modifying the work-stealing sched-
uler to prioritize relabels, and (4) reducing the frequency of
distinct relabel operations by splitting more aggressively.

The remainder of this section explains each of these in
detail. We first explain the mechanism for reducing con-
currency control and the scheduler modifications. Then we
describe the implementation of the OM data structure used
by WSP-Order. Finally, we present how to perform fewer
relabels and how to do relabels in parallel.

3.2 Reducing Concurrency Control
To reduce concurrency control, WSP-Order uses a two-

level locking scheme. Each processor/worker has a local lock
that it must acquire before performing any data-structure
operation (insert or query). There is also a single global
lock to protect relabel. When a relabel is in progress, the
relabel process acquires the global lock as well as all the local
locks. Therefore, a relabel cannot be concurrent with any
insert or query; however, inserts and queries from different
workers can proceed concurrently with each other.

Figure 2 shows the pseudocode for the underlying insert
operation used by OM-Insert. When a worker w is trying
to insert element y after element x, it first checks to see if the
group that x belongs to is already full (line 4). If so, w either
triggers a relabel process (line 7) if one is not in progress (the
global lock is free), or it joins the ongoing one (line 9). If the
group is not full, w proceeds to acquire its local lock (line 10)
and perform the insert (line 11). If the local lock is not free,
a relabel is in progress, and w joins the relabel (line 17). If
the local lock is free, the insert always succeeds since the
group was not full before the insert. The insert may cause
the group to become heavy or full, however, in which case
the group is marked as heavy (line 14) and will be split in
the next relabel. (We will describe the condition a group
being heavy and the relabel process in later subsections.)

There are a few subtleties in the code shown. First, check-
ing if the group is full must be in the loop, since even though
w may join an ongoing relabel process, that relabel process
may not include g (for instance, the relabel process started
before g became heavy). In this case, g remains full after
this particular relabel operation finishes, and w will need to
recheck g for fullness and possibly start the another relabel
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operation. Second, the local-lock acquire must also be in
the loop, since w may fail to acquire the lock, join the rela-
bel, and must retry the insert again when the relabel ends.
Finally, since relabel is a parallel operation, the worker
who initiated relabel’s may not be the one who executes
its final instruction. Therefore, it is important to release the
global lock at the end of relabel (as opposed to in insert
after start relabel returns).5

3.3 Scheduler Support to Prioritize Relabels
Since an ongoing relabel prevents other concurrent OM

operations, we want an ongoing relabel to finish quickly;
moreover, workers blocked on an insert or query should help
with the relabel instead of being idle. To prioritize rela-
bels, we modify the work-stealing scheduler as follows. Each
worker has two deques, a core deque and a DS deque.
The DS deque is only used to hold work associated with
the parallel relabel, and the core deque holds all other work
of the program. When workers steal work from some other
worker’s core deque, they place it on their own core deque,
and when they steal work from some worker’s DS deque,
they place it on their own DS deque. Initially all workers
perform work stealing on core deques as usual, switching to
the DS deque when starting a parallel relabel operation.

In general, workers prioritize the DS deque, enabling re-
labels to finishes quickly. In particular, when a worker w
starts a relabel (start relabel in line 7), w suspends the
current strand, switches to the DS deque to work on rela-
bel, and does not return until discovering that the relabel
has finished. Likewise, when a worker w fails to acquire a
global or local lock (i.e., a relabel is in progress), w invokes
join relabel (in lines 9 and 17), which suspends the cur-
rent strand, switches to work-steal on the DS deque until the
relabel finishes. Finally, when the current deque is empty,
w checks the global lock before performing a steal attempt.
If the global lock is held, it starts work stealing on the DS
deques. If the global lock is free, it operates on the core
deque, resuming any suspended strand. If the core deque is
empty, it starts work stealing from core deque.

3.4 The OM Data Structure Implementation
Before we describe the parallel relabel and how we reduce

its frequency, we must first describe in more detail the im-
plementation of the OM data structure used in WSP-Order.

Bottom-level structure: In sequential versions of OM
data structure, the bottom-level structures are typically im-
plemented as linked lists. WSP-Order, however, must iter-
ate over all elements in parallel during relabels. Therefore,
in WSP-Order, these are implemented as unbalanced binary
tree where each internal node has exactly two children. All
the OM elements are stored in the leaves. Each element
has an integer label corresponding to its root-to-leaf path
(as in a trie), i.e., 0 for left child and 1 for right child, with
the root starting from the high-order bit of a b-bit machine
word. Any unused trailing bits are implicitly 0s. Each ele-
ment also stores its depth in the tree (i.e., the logical label
length) and its group identifier.

To insert a new element y after an existing element x, first
assign y the same group as x. Next, create a new internal
node with x and y as the left and right children, respectively,
and splice that node in place of x in the tree. Next, assign

5Our locking implementation allows a lock to be acquired
and released by different workers.

y the label induced by its root-to-leaf path by appending a
1 to x’s label, i.e., LB(y) = LB(x) + 2b−depth(x). Finally,
record y’s depth and implicitly refine the precision of x’s
label by incrementing x’s depth. It is not hard to see that
y’s label correctly matches the root-to-leaf path to y and
that these updates can be performed in constant time. Note
that the label induced by x’s path does not change since 0s
are appended regardless, so concurrent queries on x are not
affected by the update.

The structure is considered full when the depth of any
node reaches b — in this case, we no longer have space to
insert another node immediately after the currently inserted
node while keeping the number of bits in the label at most
b. At this point, a relabel is triggered. During a relabel, all
the full bottom level structures are split — that is, all the
elements from a full bottom-level structure are partitioned
between multiple structures of smaller depth. This leads to
a change in labels of all these elements.

Top-level structure: WSP-Order needs to operate on
the top-level structure in parallel, so a structure like Dietz’s
original tree-based version [10] is most appropriate. Here,
we describe the basic sequential structure for concreteness,
and while some of the details differ slightly from previously
published structures, we are not claiming any new ideas here.

The top-level structure is a balanced binary tree where
each internal node has exactly two children. Like the bottom-
level structures, all elements are stored in the leaves, and
each element is explicitly labeled according to its root-to-
leaf path. The elements (leaves) of the top-level structure
are (pointers to) the bottom-level groups. Since the top-level
structure can be much larger than bottom-level structures,
we must maintain a balanced tree to ensure that labels fit in
a machine word. Therefore, the easy insertion algorithm de-
scribed earlier is not sufficient. On the other hand, all inserts
into the top-level structure occur inside relabel operations,
so they are protected by the global lock.

Since the labels of elements change whenever its root-to-
leaf path changes, rotation-based balancing schemes do not
readily apply. Instead, most implementations of the top-
level structure use some form of weight balance. For each
node, WSP-Order maintains a size corresponding to the
number of leaves in the node’s subtree, and a depth corre-
sponding to the distance from the root to the node. We say
that a node r is out of balance if some specific conditions
on size(r) are not met. When a node becomes out of bal-
ance, the entire subtree rooted at r must be rebuilt. It is not
important to understand the specific condition used — there
are many balance conditions that would work, e.g., scape-
goat trees [3, 18]. Rebuilding the appropriate subtree can
be easily implemented as parallel tree walks, with O(size(r))
work, which is sufficient to achieve O(logn) work per top-
level insert [3, 18].

3.5 Reducing Relabel Frequency
WSP-Order reduces the frequency of relabels by proac-

tively splitting any bottom-level structures that are“not full,
but close enough” whenever a relabel occurs. In particular,
we say that a bottom-level structure is heavy when its depth
reaches b/2, where b is the number of bits in a word. This
small change adds much-needed parallelism to relabels by
allowing multiple splits to occur during a single relabel.

We make two changes to keep track of heavy lists. First,
each bottom-level structure has a bit flag to indicate whether
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the structure is heavy. Second, each worker has a local array
that stores a list of heavy groups to be read when perform-
ing a relabel. When a worker w performs an insertion that
results in a ≥ b/2-bit label, w performs a test-and-test-and-
set on the heavy bit. If w manages to set the bit, then a
pointer to this group is added to w’s local array of heavy
groups; otherwise, w does not retry. This procedure ensures
that a heavy group is stored on only one worker’s local array
and trivially takes O(1) time.

3.6 Parallel Relabels
We now describe how to parallelize the relabel operation.

Recall that a relabel operation splits each the heavy groups
(bottom-level structures) into potentially many groups and
inserts elements representing newly creating groups into the
top-level structure, also rebalancing the top-level structure.

Figure 2 also shows the high-level control flow for the re-
label procedure. It first acquires all local locks in parallel.
These lock acquisitions are blocking, retrying until success-
ful. Second, all heavy lists from P workers’ local arrays are
concatenated in parallel using prefix sums (line 3). Next,
in parallel, we split all heavy groups. Since groups may be
large, each split is further parallelized using two parallel, re-
cursive tree walks. The first walk calculates the size of the
subtree of each internal node. (These calculations are per-
formed in postorder, i.e., when returning from recursive tree
walks.) Given a size-m bottom-level tree, the second walk
splits the tree into Θ(m/b) shallow, fully balanced bottom-
level trees of size Θ(b) and depth Θ(lgb). One method is to
write all elements into an array in order (in parallel) using
size information at internal nodes to determine array offsets,
split the array into subarrays of Θ(b) elements, and then
recursively build shallow balanced trees of these segments.
Pointers to these new groups are stored in an array attached
to the original group’s node, for easy parallel access.

Rebalancing the top-level tree in parallel is more compli-
cated. Since we split the heavy groups into multiple groups,
some leaves in the top level tree (corresponding to groups
that were just split) now represent multiple groups and the
ancestors of these nodes have a different size now. We must
be careful when updating sizes to avoid race conditions on
the internal nodes. The process is as follows:

1. For each split group in parallel (i.e., a parallel loop over
the list of heavy groups), follow the leaf-to-root path
up the tree, marking all ancestor nodes via test-and-set
(no locks needed because the races are benign).

2. Recursively walk down the tree in parallel, only along
the marked paths, updating the sizes of internal nodes
in postorder as before. For the base case, the size of
each modified leaf is the number of new bottom-level
structures into which that group was split.

3. Recursively walk down the tree again in parallel, stop-
ping the recursion at each branch that finds an out-
of-balance node. Note that there may be many out of
balance nodes, but starting from the root finds all the
highest ones.

4. Rebuild all out-of-balance subtrees in parallel. Simi-
lar to bottom-level tree splits, we can first recursively
build an array of leaves, and then use this array to
construct a new balanced subtree.

Finally, all marked nodes are unmarked in parallel, all heavy
arrays emptied in parallel, and then all local locks released
in parallel before releasing the global lock.

4. PERFORMANCE ANALYSIS
This section analyzes the running time of a program aug-

mented with WSP-Order to perform SP-maintenance. Our
analysis divides the execution into phases. A core phase is
a period during which only core work (the original computa-
tion) and inserts and queries to OM data structures occur,
but no relabels. A core phase ends when a relabel operation
begins, at which point a relabel phase begins; it ends when
the relabel finishes and the next core phase begins.

As long as inserts and queries (apart from relabel) take
O(1) time, it is not hard to see that the total time spent in
core phases is TP = O(T1/P +T∞) in expectation for a pro-
gram with T1 work and T∞ span on P processors, following
from a standard work stealing analysis [6]. The challenge
is stitching together the core phases and the relabel phases.
The crux of the argument is to leverage the fact that relabels
are provably infrequent, and hence the number of relabel
phases is O(TP /logn). We then apply a work-stealing anal-
ysis to each relabel phase to conclude that they also take
O(T1/P + T∞) time overall.

4.1 Performance Model
For our theoretical analysis, we make the following mod-

eling assumptions. These assumptions are common in the
related literature but not always called out explicitly.

First, our base model is a transdichotomous RAM [16],
meaning that (1) b-bit machine words support standard arith-
metic and bit operations in constant time, and (2) all point-
ers fit in a single word. Therefore b > lgn, and all top-level
labels fit in a constant number of machine words. Similarly,
b > lgP . Second, we assume that all processors operate at
the same speed, e.g., that workers are not swapped out to
run an operating-system task. Third, for SP maintenance
and work stealing, the basic atomic primitive is a compare-
and-swap (CAS). We assume that each CAS completes (pos-
sibly failing) in constant time regardless of contention. Fi-
nally, we assume that lock (which can be implemented using
CAS9) are somewhat fair. That is, if worker w1 is spinning
on a lock, and worker w2 releases the lock, then we assume
that w1 acquires the lock before w2 can reacquire it. In
WSP-Order, there is never more than one worker spinning
on a lock, so this assumption is reasonable. All these as-
sumptions are for performance only, not correctness.

4.2 Core Phases
We argue that OM operations during core phases are fast

and bound the total time in core phases.

Lemma 4.1. Each data-structure operation performed dur-
ing a core phase completes in O(1) time and does not conflict
with any other operations.

Proof. By definition, during the core phase the global
lock is not held, and no relabels occur. Thus, an insert
operation consists of 1) acquiring the processor’s local lock,
2) performing an insert into a bottom-level structure, 3)
potentially performing a test-and-set on a group and adding
a heavy group to the processor local array of heavy groups,
and 4) releasing the local lock. Since there is no competition
on local locks when the global lock is not held and test-and-
sets are constant-time, each step takes O(1) time. All inserts
add new elements after the element representing currently
executing strand in the OM structures. Since each strand is
executed by a different processor, concurrent inserts operate
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with respect to different insertion points and there are no
conflicts during inserts. Queries are similar, modulo the
details of the query itself which also takes O(1) time. To
see that inserts do not conflict with queries, it is enough to
observe that 1) all queries by SP-order query elements that
have already been inserted into the OM structures, and 2)
in the absence of relabels, inserts do not change labels of
any existing elements.

Lemma 4.2. Consider a P -processor execution of a series-
parallel computation augmented to perform SP-maintenance.
Let T1 and T∞, respectively, denote the work and span of
the underlying a posteriori computation DAG not count-
ing the SP-maintenance operations. Then the total time
spent in core phases, including SP-maintenance operations,
is TP = O(T1/P + T∞) in expectation.6

Proof. First, create a augmented core DAG by aug-
menting every node in the computation DAG by O(1) to
reflect the worst-case time of any OM operation apart from
relabels (with constant chosen according to Lemma 4.1).

Observe that, using standard work-stealing [6], the aug-
mented core DAG executes in O(T1/P +T∞) expected time
on P processors. It remains only to confirm that the ex-
ecution of core phases is no worse than executing the aug-
mented core DAG. In particular, consider the execution with
all relabel phases elided. By Lemma 4.1, all data-structure
operations during this subexecution take O(1) time. More-
over, when a processor starts working on its DS deque (only
during a relabel phase), it simply suspends works on its
core deque and resumes where it left off at the start of the
next core phase. The execution thus corresponds to a work-
stealing execution of the augmented core DAG, except that
some nodes (finished during relabel phases) may be removed
for free; specifically some processors (those neither stealing
nor performing data-structure operations) may continue to
make progress on their core deques during relabel phases,
which only improves the time bound of core phases.

4.3 Relabel Phases
We next analyze the work and span of relabel phases,

which we can use to get total time spent in relabel phases
by applying a work-stealing analysis. We will subdivide the
phases further to consider the running time.

Lemma 4.3. The amortized work complexity of each order-
maintenance insert is O(1).

Proof. This analysis is very similar to the standard order-
maintenance analyses, e.g., [9]. The only difference is in our
parallel implementations of the structures.

Consider any bottom-level tree that is split, i.e., that is
heavy at the start of the relabel phase, and m be the number
of elements (leaves) in the tree. The split is implemented as
several (parallel) tree walks, so the work is asymptotically
the number of nodes in the tree. Since each internal node
has 2 children, the number of internal nodes is less than m.
The total work is thus O(m).

To get O(1) work per element, we need to charge this
O(m) work against Ω(m) new insertions. Again consider the
bottom-level tree. When this tree was created (the result of

6In fact, this bound can be extended to a high probability
bound as in [6]. Specifically, with probability at least 1 − ε,
the time is O(T1/P + T∞ + lgP + lg(1/ε)).

a previous split), it had m′ = Θ(b) elements, and it was as
balanced as possible, i.e., having depth lgb+O(1). Since it
is now heavy, its depth has grown to b/2, meaning that it
has experienced at least Ω(b) inserts. We charge the cost
of the split against these insertions. That is, we divide the
O(m) cost by the m −m′ new insertions. Since m′ = O(b)
and m−m′ = Ω(b), we conclude that m−m′ = Ω(m). The
work per insertion is thus O(m/(m−m′)) = O(1).

The analysis of rebalancing the top-level structure is simi-
lar to that of scapegoat trees [18], where the amortized work
of an insert is O(lgn) as long as the cost of rebuilding a sub-
tree is linear in its size. In WSP-Order, the parallel rebal-
ance process has two components 1) following leaf-to-root
paths for each top-level insert, giving a worst-case cost of
O(lgn) per top-level insert, and 2) tree walks, giving cost
linear in size of the subtrees walked, which yields O(lgn)
amortized work per the standard analysis. Adding these
gives O(lgn) amortized work per top-level insert. Since each
bottom-level structure contains Ω(b) elements, the number
of top-level inserts is O(n/b) and giving the cost per inser-
tion of O((1/b)lgn) = O((1/lgn)lgn) = O(1).

Lemma 4.4. The span of each relabel is O(b), where b is
the number of bits in a machine word.

Proof. The algorithm first acquires all P local locks.
Since local locks are fair, it never has to wait for more than
1 operation to finish before it gets a lock and all non-relabel
operations finish in O(1) time. Therefore, it can acquire
all local locks in parallel with O(lgP ) span. Concatenating
each worker’s local list of heavy nodes and then splitting
these list in parallel can be done with span O(lgP + lgn).
Next, bottom-level splits take O(b) to perform divide and
conquer on the trees. Finally, the top-level rebuilding has
O(lgn) span to walk up the tree and O(lgn) span to perform
the rebuilding tree walks. Adding these up gives O(lgP +
lgn+ b) = O(b) by the transdichotomous assumption.

To bound the time in relabel phases, we subdivide the
phases further. A busy subphase occurs while at least P/2
processors are still working on the core deques, i.e., since the
beginning of this relabel phase, they have neither stolen nor
tried to acquire a the local lock to perform data-structure
operations. The remainder of the relabeling phase is the
stealing subphase, i.e., when most processors are either
working off or trying to steal from DS deques. Note that
each relabel phase has at most one busy subphase and one
stealing subphase — the busy subphase starts at the begin-
ning of the relabel phase, and the stealing subphase persists
to the end. But it is possible for a relabel phase to be entirely
a busy subphase or entirely a stealing subphase.

Lemma 4.5. Consider a relabel phase consisting of a w-
work relabel. The expected time spent in the stealing sub-
phase is O(w/P + b), where b is the size of a machine word.

Proof. By definition of a stealing phase, at least P/2
processors are performing work stealing on the DS deque.
We can thus apply the work-stealing theorems to a dag with
w+P work and b span (Lemma 4.4), where the P work comes
from the work of acquiring/releasing all P local locks. This
gives expected time O((w + P )/P + b) = O(w/P + b).
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4.4 Total Time across Relabel Phases
Consider the time bound in Lemma 4.5. The work term,

O(w/P ), is good — the work is low (according to Lemma 4.3)
and the term implies linear speedup. The problem is the
span term of O(b). Specifically, if there are too many rela-
bel phases, e.g., n/b of them, then all we have concluded is
that the total time spent in relabel phases is O(n), and we
would be better off just running sequentially.

To get a good bound on runtime, we argue next there are
not too many relabel phases. We do so by arguing that core
phases have to be long.

Lemma 4.6. Let TP be the total time spent in core phases.
Then there are at most O(TP /b) relabel phases.

Proof. In 1 timestep of a core phase, each worker can
perform at most one insert into the bottom-level structures.
Since each insert is to a different node in the tree, the depth
of a bottom-level tree increases by at most 1 per timestep.

In addition, at the start of a core phase, all bottom-level
trees have depth at most b/2. In particular, any trees deeper
than b/2 are marked as heavy and split during a relabel
phase. When split, any new bottom-level trees are built
with a height of lgb + O(1) < b/2 for sufficiently large b.
Since, by definition, a core phase ends when some bottom-
level tree reaches depth b, each core phase requires at least
b/2 time. It follows that the number of core phases (and
hence the number of relabel phases) is at most O(TP /b)

We are now ready to sum the time across all relabel phases.
We consider the busy and stealing subphases separately.

Lemma 4.7. The total time in busy subphases is O(T1/P+
TP /b), where T1 is the work of the computation DAG not
counting data-structure operations, P is the number of pro-
cessors, and TP is the total time of the core phases.

Proof. By definition, a busy phase is the time during
which at least P/2 processors are working on the main com-
putation. Ignoring failed lock acquisitions, each step makes
Ω(P ) progress towards the work of the augmented core DAG.
Unfortunately, some steps may be unproductive, namely
when the local lock acquisition fails. But this can only hap-
pen once per processor per relabel phase, after which point
the worker shifts to the DS deque. Moreover, all attempts to
acquire the lock take O(1) time. The total work, including
failed lock acquisitions, is O(T1 + PTP /b), where the TP /b
is the number of phases from Lemma 4.6. Dividing by the
P/2 yields the claim.

Lemma 4.8. The total expected time in stealing subphases
is O(n/P + TP ), where n is the number of strands in the
computation DAG, P is the number of processors, and TP

is the total time of the core phases.

Proof. Applying Lemma 4.5 across relabel phases, the

total time across all k stealing phases is O
(∑k

i=1(wi/P + b)
)

,

where wi is the work of the ith stealing phase. By Lemma 4.3,∑
iwi = O(n). By Lemma 4.6, the number of phases is k =

O(TP /b). We’re thus left with O
(∑k

i=1(wi/P ) +
∑k

i=1b
)

=

O (n/P + (TP /b)b), which proves the claim.

4.5 Total Time
Finally, we get the overall running time by adding the

time for core phases and relabel phases together.

Theorem 4.9. Consider P -processor execution of a series-
parallel computation augmented with WSP-Order. Let T1

and T∞, respectively, denote the work and span of the un-
derlying a posteriori computation DAG, not counting the
SP-maintenance operations. The completion time, including
SP-maintenance operations, is O

(
T1
P

+ T∞
)

in expectation.

Proof. From Lemma 4.2, the total time in core phases
is TP = O(T1/P + T∞) in expectation. Adding the time in
busy and relabel subphases as given in Lemmas 4.7 and 4.8,
we get a total time of O(TP +(T1/P+Tp/b)+(n/P+TP )) =
O(T1/P + T∞) since n = O(T1).

Since executing the computation without maintaining series-
parallel relationships also takes Ω(T1

P
+T∞) time, this bound

is asymptotically optimal, in expectation.

4.6 Performance of Race Detection
As described in Section 2, in addition to SP-maintenance,

a parallel race detector must also maintain an access history
which stores one writer w and two readers, lr and rr for each
memory location `. When a strand s reads (or writes to) `,
it uses the OM data structure to check if s is in parallel with
w (or lr or rr) and reports a race if it is. Since each query
in SP-Order takes O(1) time, this race-detection operation
takes O(1) time per memory access.

There is, however, one subtlety. Strands also update the
access history if certain conditions are met, recording their
identities. Since concurrent writers only occur in the pres-
ence of a race, contention on the last writer is not a perfor-
mance problem. The readers, however, are another story.
Multiple strands reading ` simultaneously may be “left of”
`’s current leftmost reader lr. This means that we need
some concurrency control on the access history to avoid los-
ing important updates. Note that this is an issue in all race
detectors that run in parallel.

Fortunately, the “left of” (and “right of”) relations induce
total orders, and only the “leftmost” (“rightmost”) reader’s
update need be performed. One can implement these rela-
tions using a priority-write primitive [36]. If priority updates
complete in O(1) time, which seems to match performance
when the number of locations being updated is large [36],
access history updates only adds O(1) work per read. Un-
der that assumption, our race detection algorithm, including
the access history, runs in O(T1/P + T∞) expected time.

5. EMPIRICAL EVALUATION
This section evaluates the practical performance of a par-

allel race detector, C-RACER, that employs WSP-Order for
SP-maintenance. We briefly overview the implementation
of C-RACER and present experimental results that evalu-
ate C-RACER’s overhead and scalability. The results show
that a program augmented with WSP-Order (but not access
history) generally runs less than 2× slower compared with
the baseline running without race detection. Full C-RACER
also scales well, tracking the speedups obtained by the base-
line and outperforming Cilkscreen [21], a well-engineered,
state-of-the-art serial race detector from Intel when running
on two or more cores. Finally, we also measured the fre-
quency of relabel operations, and the results indicate that
relabels occur infrequently and the eager splitting of heavy
groups can indeed help.

Overview of Implementation: Our parallel race de-
tector, C-RACER, contains multiple components: (1) WSP-
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Order including a modified work-stealing runtime system as
described in Section 3.3 as well as an implementation of the
OM data structure that does parallel relabels and eagerly
splits heavy groups; (2) compiler instrumentation for Cilk
Plus’s parallel constructs and memory accesses; and (3) an
implementation of the access history. WSP-Order is based
on an implementation of BATCHER [1], which was origi-
nally developed by modifying MIT Cilk [17], and we have
ported it to Cilk Plus by modifying the Cilk Plus runtime.
The instrumentation resembles previous work on tool an-
notations for Cilk Plus [38]; we have used the instrumen-
tation developed for Cilkprof [34], which is implemented in
a branch of LLVM/Clang compiler that contains Cilk Plus
language extensions [19]. This branch of LLVM/Clang also
implements ThreadSanitizer [35], which provides instrumen-
tation for memory accesses. C-RACER’s access history is
maintained with a word (four-byte) granularity.

The actual implementation of C-RACER differs from the
theoretical algorithm presented in Section 3 in a few ways.
First, in the theoretical algorithm, if the global lock is held,
workers always join a relabel operation when they steal.
In our implementation, a stealing worker joins a relabel in
progress with 50% probability. This scheduling strategy pro-
vides the same theoretical guarantees, but the full proof re-
quires an analysis similar to BATCHER [1]. Second, we have
implemented the bottom-level groups in the OM data struc-
ture as linked lists rather than trees, and the way we assign
labels and marking lists heavy treats the lists as flattened
trees. Thus the splits of the bottom-level groups are sequen-
tial. Third, instead of performing several traversals of the
upper-level tree to determine size information, we walk up
the tree only once, using atomic fetch-and-add instructions
to increment the size of each node. Fourth, as mentioned
in Section 2, parallel readers may update the access history
for a given location concurrently, and the theoretical algo-
rithm assumes the use of priority write [36]. In practice, we
simply acquire a lock whenever we need to update the loca-
tion of in the access history, with separate locks for the last
writer, left-most reader, and right-most reader per memory
location. The last three modifications potentially reduce the
theoretical parallelism of the computation. However, they
improve the overall performance due to lower overheads.

Experimental Setup: We used five benchmarks from
the Cilk-5 distribution [17] to evaluate C-RACER. matmul
performs divide-and-conquer matrix multiplication, cilk-

sort runs a parallel mergesort, fft calculates a fast-fourier
transform, heat performs heat diffusion, and cholesky cal-
culates the Cholesky decomposition of a matrix.

We ran our experiments on an Intel Xeon E5-2665 with 16
2.40-GHz cores on two sockets; 64 GB of DRAM; two 20 MB
L3 caches, each shared among 8 cores; and private L2- and
L1-caches of sizes 2 MB and 512 KB, respectively. Running
time are in seconds as a mean of five runs. The standard
deviation was within 2% of the mean for most configurations,
with a maximum of 8% for cholesky.

5.1 Overhead and Scalability
To evaluate the overhead of C-RACER, we compare the

following configurations:

• baseline: execution without race detection;

• WSP-Order: execution augmented with WSP-Order but
not the access history management.

• full: execution running C-RACER with full race detection
(i.e., including both WSP-Order and the access history).

We obtain the WSP-Order configuration of C-RACER by
turning on only the instrumentation for Cilk Plus’s paral-
lel control constructs but not memory accesses, allowing us
to measure the overhead of only SP-maintenance (including
relabel operations), but not include overheads due to access
history management.

We also compare with the execution times of these bench-
marks running with Cilksan, a serial race detector that im-
plements the SP-bags algorithm [14] for SP-maintenance,
and with Cilkscreen [21], a well-engineered, state-of-the-art
serial race detector from Intel that implements the SP-bags
algorithm but instrumented using PIN [25], a binary instru-
mentation framework from Intel, instead of compiler instru-
mentation. We have implemented Cilksan for fair compar-
ison, since unlike Cilkscreen, Cilksan uses the same com-
piler instrumentation and access history management as C-
RACER; the only difference between Cilksan and C-RACER
is the SP-maintenance algorithm used.

Table 1 presents running times of the different configu-
rations. First, note that the overheads due to WSP-Order
(SP-maintenance only) shows minimal overhead compared
with the baseline. The benchmark with the highest over-
head is fft, with 1.78 times overhead. This indicates that
WSP-Order can be implemented efficiently. Most of the
C-RACER overhead actually comes from the management
of access history — full C-RACER incurs another 30–132×
overhead, with heat being the worst case. This is expected
because the WSP-Order performs additional work only at
parallel control constructs and function boundaries, whereas
the access history management incurs additional overhead
on every memory access, and for most applications, the num-
ber of memory accesses far exceeds the number of cilk_spawn,
cilk_sync, and function boundaries. The overhead for heat
is particularly bad, for C-RACER as well as Cilksan and
Cilkscreen, since compute-to-memory-access ratio is low.

Across all benchmarks, Cilksan outperforms Cilkscreen,
so we compare to Cilksan. The ratio of C-RACER execu-
tion time to Cilksan’s is generally less than 1.5. As column
full(16) shows, however, C-RACER utilizes parallelism to
significantly outperform Cilksan when running on 16 cores.
In fact, as long as the application has some parallelism, C-
RACER outperforms Cilksan on 2 or more cores.

To evaluate how well WSP-Order and C-RACER scale,
Table 2 shows the speedup for each benchmark as we vary
the number of cores used. For most benchmarks, our imple-
mentation of WSP-Order scales with the baseline, verifying
the theory presented in sections 3 and 4. The exception is
cholesky, which executes many spawns but only a small
amount of work in each strand. In addition, the C-RACER
also scales as the number of processors increases, generally
at the same rate as the baseline program.

5.2 Detailed Breakdown of Overhead
Figure 3 shows a breakdown of the overheads due to var-

ious components of C-RACER for the fft benchmark. Due
to lack of space, we present this breakdown only for fft.
We chose fft due to the relatively high number of inserts
and relabels required, which allows us to show meaningful
results here. The x-axis shows the number of cores used,
and the y-axis shows the aggregate processing time (i.e.,
number of cores used × wall-clock time) in seconds. As
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base WSP-Order full(1) full(16) Cilksan Cilkscreen
matmul 15.69 16.22 (1.03×) 499.61 (31.84×) 31.79 (2.03×) 408.49 (26.04×) 922.23 (58.78×)

cilksort 3.20 3.38 (1.06×) 113.29 (35.40×) 10.81 (3.38×) 73.71 (23.03×) 99.82 (31.19×)

fft 18.34 32.73 (1.78×) 878.17 (47.88×) 81.34 (4.44×) 523.94 (28.57×) 991.29 (54.05×)

heat 7.33 7.73 (1.05×) 1026.70 (140.07×) 79.55 (10.85×) 726.89 (99.17×) 1202.29 (164.02×)

cholesky 5.96 7.44 (1.25×) 687.88 (115.42×) 45.45 (7.63×) 666.66 (111.86×) 962.34 (161.47×)

Table 1: Execution times for five benchmarks, in seconds. The full(16) column shows the execution time
of the full configuration of C-RACER running on 16 cores. All other columns show the execution time on a
single core. The numbers in parenthesis indicates the overhead comparing with the baseline running serially.

P
2 4 8 12 16

matmul base 2.00 3.99 7.97 11.88 15.64
WSP-Order 1.98 3.95 7.87 11.68 15.56
full 2.00 3.98 7.95 11.82 15.71

cilksort base 1.99 3.98 7.81 11.17 13.37
WSP-Order 1.98 3.94 7.71 10.82 13.31
full 1.92 3.51 6.25 8.19 10.48

fft base 1.77 3.43 6.12 8.16 9.60
WSP-Order 1.80 3.31 6.06 8.20 10.00
full 1.71 3.27 6.43 8.81 10.80

heat base 1.99 3.63 5.22 7.09 6.71
WSP-Order 1.98 3.56 5.44 6.62 7.33
full 2.06 3.86 7.43 10.71 12.91

cholesky base 1.99 3.96 7.83 11.31 14.69
WSP-Order 1.86 3.54 6.65 8.73 10.28
full 1.98 3.87 7.64 11.44 15.13

Table 2: Speedup over the sequential version when
running with different configurations. For each con-
figuration, the speedup is computed with respect to
the running time of the same configuration running
on one core.

the WSP-Order line shows, access history contributes the
bulk of the overhead. The other three lines break down
the overheads of various components of maintaining the ac-
cess history. As explained in Section 2, the access history
records three strands per memory location and on every ac-
cess, the race detector queries both OM data structures with
the current strands and all three strands, updating the ac-
cess history as necessary. As shown in breakdown, half of
the overhead of access history management is due to the 6
queries and the other half is due to checking and updating
the access history. Moreover, whenever a strand s tries to
update the shadow memory, it must acquire a lock. This
locking overhead (the gap between lines nolocks and full)
appears to be relatively small.

5.3 Effect of Eagerly Splitting Heavy Groups
We now analyze the effect of our modification to OM data

structure where instead of only splitting full bottom-level
groups, we eagerly split heavy groups. Recall that a tree is
full when its depth reaches b and we set the heavy thresh-
old as 50%; that is, a tree is considered heavy when it has
depth b/2. In practice, we have implemented the bottom-
level groups using lists, which means that we mark a list
heavy when we discover a label with b/2 bits used before
trailing 0s. We ask a few different questions here: (1) Does
the eager splitting reduce the total number of relabels? (2)
How many more splits do we get due to eagerly splitting
trees? (3) What effect does the heavy threshold have on the
number of relabels and the number of splits?

Table 3 shows the stats of relabel operations for three
benchmarks running with C-RACER on 16 cores. These
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Figure 3: Detailed breakdown of C-RACER over-
heads for fft, in seconds. The lines base and inserts

show the overall processing time when running the
baseline and inserts configuration described earlier.
The line queries shows the processing time after in-
cluding the overhead for queries on top of the inserts
configuration. The line nolocks shows the processing
time of C-RACER running in full configuration but
does not acquire locks when updating the shadow
memory. The line full shows the overall processing
time of C-RACER running in the full configuration.

numbers are from a single run; general trends are similar
across runs. We varied the heavy threshold (described here
as the percentage of the total bits in a label — 64 in our
case). For the most part, relabels occur infrequently; in
fact, we omit the results for matmul and cilksort because
their executions contain no relabels even for very large input
sizes. For heat and cholesky, some relabels occur but not
many. We see that the total number of heavy groups de-
creases as we increase the heavy threshold, but the number
of relabels does not change. This makes sense, since with
a lower threshold, more groups get marked as heavy early,
but no relabel is triggered until some group becomes full.

The interesting one is fft, which triggers the most relabels
among all our benchmarks. When the heavy threshold is 1
(last row) — that is, we only split full nodes — as expected,
most relabels split only a single heavy group; very occasion-
ally, a couple of heavy groups may become full concurrently
and causes a relabel to split more than one group. Even by
just decreasing the threshold to be .875, we already see that
the median of the number of heavy groups increase to 5.7
and the number of relabels reduces dramatically. This trend
continues as we decrease the heavy threshold. This result
demonstrates that when many groups can become full dur-
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fft heat cholesky
threshold relabels median max total relabels median max total relabels median max total
0.25 1567 18 40 32207 24 3 4 54 22 4 5 66
0.375 1576 15 27 21905 24 1 1 24 22 2 4 56
0.5 1614 19 22 20270 24 1 1 24 22 1 2 31
0.625 1642 12 22 18959 24 1 1 24 22 1 2 31
0.75 1725 7 17 17345 24 1 1 24 22 1 2 24
0.875 2838 4 11 11285 24 1 1 24 22 1 1 22
1 7985 1 3 8090 24 1 1 24 22 1 1 22

Table 3: The effects of varying the heavy threshold when running C-RACER 16 cores. The first column for
a given benchmark shows the number of relabels. The other columns provide information about the number
of heavy groups — the median and maximum for individual relabels, and the total number of heavy groups
split across all relabels.

ing the execution, eager splitting indeed helps in decreasing
the number of relabels.

6. RELATED WORK
Netzer [29] formalized definitions for determinacy and data

races. Static checking for races has been studied in [12, 27,
13], while [8, 28, 2] investigate post-mortem analysis. Re-
search on race detectors for general parallel computations
include [15, 33, 30, 11]. In addition to English-Hebrew label-
ing and SP-Order (and the related SP-hybrid), many algo-
rithms have been proposed for on-the-fly race detection for
series-parallel programs. Offset-span labels[26] are shorter
than English-Hebrew labels, but still not bounded by a con-
stant. The Nondeterminator race detector [14] runs serially
and uses Tarjan’s nearly linear-time least-common-ancestor
algorithm [37] to simulate the SP-parse tree of a computa-
tion. Raman et al. [31] develop a race detection algorithm
for async-finish parallelism and implement it in Habanero
Java [7]. Raman et al. [32] developed an simple parallel al-
gorithm that maintains the entire computations tree; while
it provides good empirical results, it provides no theoret-
ical guarantees. That implementation takes advantage of
compiler optimizations to avoid instrumenting all memory
access; we have not yet applied such optimizations. Lastly,
in contrast to existing race detectors for fork-join compu-
tations, TARDIS [22, 24] does not explicitly keep track of
the series-parallel relationships among strands. Instead, it
employees a log-based access set and detects races by inter-
secting the access sets of logically parallel subcomputations
at the join point. Moreover, it does not provide provably
good time bounds as intersecting the access sets can lead to
an asymptotic increase in the span of the computation.

Our runtime modification — the idea of switching between
two deques — also exists in the BATCHER runtime [1].
BATCHER is a runtime scheduler augmented specifically
for programs that use shared data structures. In particu-
lar, BATCHER allows the programmer to replace concur-
rent data structures by certain (non-concurrent) batched
data structures.7 The runtime automatically batches oper-
ations and allows workers that are blocked on a batch to
help it complete. One possible way to parallelize SP-Order
would apply BATCHER directly with a batched OM data
structure. Unfortunately, roughly speaking, BATCHER it-
self adds Ω(lgP ) work/time to each data-structure access —
therefore, even with an efficient OM data structure, it seems

7A batched data structure supports, e.g., inserting a set of
elements instead instead of inserting elements one by one.

impossible to achieve an optimal SP-maintenance algorithm
using BATCHER directly.

7. CONCLUDING REMARKS
WSP-Order maintains series-parallel relationships in par-

allel and without any asymptotic slowdown for fork-join pro-
grams. In addition, our implementation of C-RACER pro-
vides good speedup in practice. One aspect we have not
discussed is deletion from the order-maintenance data struc-
tures. In WSP-Order and in C-RACER, once a strand is in-
serted it will never be removed, even though it may never be
used again. Performing some kind of garbage collection on
such nodes may improve memory usage. In addition, WSP-
Order is designed for series-parallel programs; it would be
interesting to consider race detection for broader classes of
parallelism, such as pipeline parallelism [23].
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