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Abstract

We present the discrete beeping communication model, which assumes nodes have minimal knowl-
edge about their environment and severely limited communication capabilities. Specifically, nodes have
no information regarding the local or global structure of the network, don’t have access to synchronized
clocks and are woken up by an adversary. Moreover, instead on communicating through messages they
rely solely on carrier sensing to exchange information. This model is interesting from a practical point
of view, because it is possible to implement it (or emulate it) even in extremely restricted radio network
environments. From a theory point of view, it shows that complex problems (such as vertex coloring)
can be solved efficiently even without strong assumptions on properties of the communication model.

We study the problem of interval coloring, a variant of vertex coloring specially suited for the studied
beeping model. Given a set of resources, the goal of interval coloring is to assign every node a large
contiguous fraction of the resources, such that neighboring nodes share no resources.

To highlight the importance of the discreteness of the model, we contrast it against a continuous
variant described in [17]. We present an O(1) time algorithm that terminates with probability 1 and
assigns an interval of size Ω(T/∆) that repeats every T time units to every node of the network. This
improves an O(log n) time algorithm with the same guarantees presented in [17], and accentuates the
unrealistic assumptions of the continuous model. Under the more realistic discrete model, we present a
Las Vegas algorithm that solves Ω(T/∆)-interval coloring in O(log n) time with high probability and
describe how to adapt the algorithm for dynamic networks where nodes may join or leave. For constant
degree graphs we prove a lower bound of Ω(log n) on the time required to solve interval coloring for this
model against randomized algorithms. This lower bound implies that our algorithm is asymptotically
optimal for constant degree graphs.



1 Introduction
Communication models face the unavoidable tension between their practicality and their potential for de-
signing interesting yet provably correct algorithms. With enough assumptions concerning the knowledge of
the environment and the communication capabilities of nodes, it is not difficult to design efficient and elegant
distributed algorithms. However, it is often difficult (if not impossible) to translate these algorithms to the
real world. On the other hand, communication models which are cluttered with physical details encumber
designing algorithms, and makes it significantly more complicated to prove correctness or efficiency.

This motivates the study of models such as the discrete beeping model considered in the present paper.
The model makes little demands on the communication devices, nodes need only be able to do carrier
sensing and differentiate between silence and the presence of a jamming signal. Carrier-sensing can typically
be done much more reliably and requires significantly less energy and other resources than transmitting and
receiving actual messages , see e.g. [7]. Besides requiring reliable carrier sensing, we make almost no
assumptions. In particular, we do not assume knowledge of the local or global structure of the network or
synchronized clocks. Further, we assume that an adversary controls when processors are woken up.

We show that even such a “weak” model allows for interesting algorithms for non-trivial tasks. In
particular we focus on the problem of interval coloring, a variant of classic vertex coloring. Given a set of
resources, the goal of interval coloring is to assign each node a large subset of contiguous resources such
that neighboring nodes obtain disjoint resources. Similar to vertex coloring, interval coloring is a useful
building block to establish a reliable Medium Access Layer (MAC), as it can be used to e.g. compute time
or frequency division multiple access (TDMA or FDMA) schedules that avoid conflict between potentially
interfering nodes. In some sense, interval coloring is even better suited for these tasks than standard graph
coloring. While in a standard coloring, every node gets assigned a single color (a single slot or frequency),
in an interval coloring, we can assign larger intervals to certain nodes (e.g. to nodes with a small degrees).
An interval then corresponds to multiple consecutive colors in a standard coloring context.

Moreover, by relying exclusively on carrier sensing, the beeping model becomes specially well-suited
for coordination tasks in wireless networks for various reasons, for example: � Most prior work [1, 3, 4,
9, 11, 14, 18, 23, 25] on coloring assumes some existing infrastructure to reliably exchange messages. If
used as a building block to e.g. compute a TDMA schedule, these algorithms suffer from a chicken-and-egg
problem; such colorings cannot be computed without a reliable MAC layer, however to achieve a reliable
MAC layer one first needs to compute a coloring. � The presence of a signal can be reliably detected by
carrier sensing at lower receiving power than would be required to correctly decode a message. Hence,
carrier sensing can be used to communicate more energy efficiently and over larger distances than when
transmitting regular messages. For example, by default the NS2[26] simulator uses a carrier sensing range
that is more than twice as large as the transmission range. Therefore, the beeping model (carrier sensing) can
directly be used to compute a 2-hop interval coloring of the communication graph (for regular transmission),
a necessity when using the coloring for a MAC layer that avoids hidden terminal collisions. �Although IEEE
802.11 and Bluetooth share the same frequency spectrum, they use incompatible modulation and encoding
schemes. However since carrier sensing only detects the presence of a signal, it is potentially possible
for a IEEE 802.11 radio to detect the presence of a Bluetooth jamming signal and vice versa. Therefore,
algorithms for the beeping model could be used to allow these two seemingly incompatible devices to agree
on a non-conflict transmission schedule thereby allowing them to coexist in a non-destructive fashion.

Contributions

We assume that there is a common globally known period length T . This is a parameter of the algorithms
which captures the number of resources to be shared (e.g. the number of available frequencies in FDMA).
The paper has three main contributions.

First, we significantly improve a result from [17] for a continuous variant of the beeping model. In [17],
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it is shown that in O(log n) periods, it is possible to assign an interval of length Ω(T/dmax(v)) to each
node v, where dmax(v) is the largest degree in the 1-neighborhood of v. We describe a simpler algorithm
that improves the results of [17] by computing an interval coloring with the same properties in a constant
number of periods. Our result highlights the unrealistic assumptions behind the continuous model.

Second, we give a discrete variant of the beeping model and describe a Las Vegas randomized interval
coloring algorithm for the discrete model. The algorithm computes intervals of length Ω(T/dmax(v)) in
O(log n) periods with probability 1 − 1

n . Furthermore, we describe how to adapt the algorithm to work
in a dynamic graph setting where nodes can join and leave arbitrarily. A new node obtains an interval at
most O(log n) periods after joining the network, and a node only recomputes its interval if the size of its
neighborhood becomes drastically smaller. The correctness proof of both the static and dynamic versions of
the algorithm rely on a balls and bins analysis which, due to lack of space, is presented in Appendix A.

Finally, for a local broadcast model with constant size messages, we prove a lower bound of Ω(log n)
time against randomized algorithms that solve O(∆) vertex coloring (or interval coloring with intervals of
size Ω(T/∆)). For the discrete beeping model this implies a lower bound of Ω(log n) periods for constant-
degree graphs and Ω(log n/∆) for general graphs. Moreover, if we restrict the number of beeps per period
to O(1) it yields a lower bound of Ω(log n/ log ∆) for general graphs.

Related Work

Using carrier sensing for distributed computation is not novel. Scheideler et al. [21] considered a model
where in addition to sending and receiving messages, nodes can perform physical carrier sensing, and de-
scribed how to approximate the minimum dominating set problem under this model. Flury and Wattenhofer
[7] demonstrate how to use carrier sensing as an elegant and efficient way for coordination in practice.

Our beeping model is a discretized variant of the desynchronization model first introduced by [6].
Degesys et al. [6] considered only complete graphs, and proved the eventual convergence of a biologically
inspired algorithm DESYNC to a ‘desynchronized state’ and conjectured a running time of O(n2). Degesys
and Nagpal [5] experimentally studied the performance of DESYNC in multi-hop topologies. They proved
that a desynchronized state exists for 2-colorable graphs and Hamiltonian graphs, and posed the open prob-
lem of proving that a desynchronized state exists for all graphs. Later Motskin et al. [17] studied interval
coloring under the same desynchronization model. In addition to assuming the continuous variant of the
model, [17] assumes that nodes have knowledge of their own degree and that they are able to exchange this
information to compute the maximum neighbor degree over their 1-hop neighbors. It is not clear how nodes
should obtain the maximum degree among their neighbors without reliably transmitting messages (in which
case we do not need to “zurueckgreifen” to the beeping model). Further, as we show in Section 4, their
assumptions are too strong and allow for constant time solutions. This in particular motivates the strictly
weaker discrete beeping model.

Coloring the nodes of a graph is one of the most fundamental combinatorial optimization problems
in computer science and has therefore been widely studied, also in a distributed context. The work on
distributed coloring algorithms started with the seminal work of Linial [14] and includes a large number of
papers (see e.g. [1, 3, 4, 9, 11, 13, 18, 23, 25]). The best bounds are known for randomized algorithm and
they areO(

√
log n+log ∆) for (∆+1)-colorings (i.e., the number of colors needed by the sequential greedy

algorithm) and O(
√

log n) for O(∆)-colorings [11, 25]. Interesting in the context of TDMA schemes for
wireless networks might be [12] where it is shown how to compute a coloring where each node with degree
d obtains an Ω(1/d)-fraction of the colors in a single communication round (i.e., nodes just need to learn
the identifiers of all neighbors). Coloring in unstructured radio networks (with collisions) was considered
by [16], where a randomized algorithm to computeO(∆) colorings inO(∆ log n) rounds is described (later
improved in [24] toO(∆ + log ∆ log n) rounds). In addition to the theoretical work on distributed coloring,
there are many papers that describe some variant of coloring in order to compute TDMA schedules or similar
MAC schemes (see e.g. [2, 8, 10, 15, 19, 20, 27]).
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2 Model and Definitions
We consider a wireless network model that is as primitive as possible. In contrast to standard communica-
tion models, nodes cannot exchange messages reliably (message passing) or unreliably (unstructured radio
networks), instead nodes rely entirely on carrier sensing. At any particular time, a node can be in beeping
or listening mode. When a node is listening, it can only distinguish between silence or the presence of
one or more beeps. This model is weaker than collision detection since nodes cannot distinguish between
a single beep and a collision of two or more beeps. Moreover, a beep conveys less information than a bit,
and although one could conceive coding schemes to encode bit messages using beeps, this would require
additional overhead and be susceptible to collisions, thus we focus on different techniques.

The communication network is modeled as an undirected graph G = (V,E), |V | = n, where the set
V of nodes of G represents the set of wireless devices. There is an edge {u, v} ∈ E if and only if u can
listen to a beep emitted by v and viceversa. For a node u ∈ V , let N(u) :=

{
v ∈ V

∣∣ {u, v} ∈ E} be the
set of neighbors of u, and let d(u) = |N(u)| be its degree. A phase refers to a time point (in the continuous
model) or a time slot (in the discrete model) measured relative to the beginning of the last period. We will
use phases to capture the time at which different beeps are heard with respect to the local clock of each node.
Given a set S of phases, we define S[a, b] to be the subset of phases in the range [a, b] in S. To correctly
account for ranges that cross the period boundary, we give a formal definition. Let τ be the period length
(in the continuos model the period length is T time units, while in the discrete model the period length is Q
time slots), and let x = a mod τ and y = b mod τ . If x ≤ y, S[a, b] = {p ∈ S | x ≤ p ≤ y}, otherwise
S[a, b] = {p ∈ S | p ≤ x ∨ y ≤ p}.

Consider neighboring nodes u and v, suppose that node u executes some event eu at local time tu which
is instantaneously observed by node v at local time tv. If u and v measure time using unsynchronized local
clocks, in general tu 6= tv. If tu represents the time of occurrence of some event with respect to node u we
use t̊u to represent the time of occurrence of the event in a global reference frame, hence in the previous
example t̊u = t̊v.

We say that an event happens almost surely if it happens with probability one, an event happens with
high probability if it occurs with probability at least 1 − 1

n . Let U(a, b) denote the continuous uniform
distribution in the range [a, b] and U[a..b] denote the discrete uniform distribution in the range [a..b].

We assume that nodes wake up asynchronously and the wake-up pattern is determined by an adversary.
Upon waking up, a node does not know anything about the topology of the graph, an estimate of the network
size n or the maximum degree of the graph ∆. Similarly, nodes do not know their neighbor set or have an
estimate of the size of this set. Furthermore, nodes do not have unique identifiers and the structure of the
communication graph G is not restricted in any way (e.g. by requiring G to be a unit disk graph, a bounded
independence graph, or any other special type of graph considered in the wireless networks literature [22]).
Every node has access to a local clock, where the local clock of every node advances at the same rate and
has no drift, however we do not assume clocks to be synchronized.

We believe that the above model is simple enough to enable algorithms designed for this model to be
implemented and executed in real hardware, and yet complex enough to allow for the design of interesting
algorithms with strong theoretical guarantees. We consider two variants of the basic model, a continuous
version and a discrete version.

Discrete Model

Time is divided into slots of length µ, where µ depends on the physical characteristics of the wireless devices
and of the communication medium. There is a known integer Q > 0 that denotes the number of slots per
period, and is related to the number of resources available. Hence, the period length is T = Qµ. Although
we do not assume synchronized clocks, we assume that slots boundaries are synchronized, i.e., all nodes start
new slots at the same time. Note that at the cost of small constant factors and more technical arguments, all
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results obtained in this paper can also be achieved in a model with unsynchronized slot boundaries.
In each slot s, each node v can either listen or beep for the whole duration of s. If a beep is emitted

by node u at slot s, it is heard by any neighboring node v ∈ N(u) that is in listening mode in slot s. In
particular the operation listen[m] puts the node in listening mode for the next m slots and returns the set
of slots where it detected a beep. The operation beep emits a beep for the duration of the current slot, and
returns no feedback.

Continuous Model

All nodes share some period length T and a beep can be infinitely short (i.e., a unit impulse function). If a
beep is emitted by node u at time t, it is heard by any neighboring node v ∈ N(u) that is in listening mode
at time t. In particular the operation listen(δ) puts the node in listening mode for the next δ units of time
and returns the set of time points where it detected beeps. The operation beep emits an infinitely short beep
and returns no feedback. We will discuss some of the shortcomings of this variant in Section 4.

3 Interval Coloring
One of the central motivations behind vertex coloring in distributed environments is to use it as a building
block for MAC protocols. In this setting the number of colors used translates to the number of communica-
tion channels used, and thus fewer colors imply higher throughput. In general we are interested in efficient
(polylog or better) algorithms that produce vertex colorings with O(∆) colors, where ∆ is the maximum
degree. However, most known distributed algorithms for coloring are based on the assumption that there is
already an infrastructure to reliably transmit messages with neighboring nodes, which makes them unsuit-
able for MAC protocols.

The input of interval coloring is a set of resources, and the output assigns to each node a contiguous sub-
set of the resources, where the resources of neighboring nodes are disjoint. For example, in the continuous
beeping model, interval coloring outputs at each node v a tuple 〈pv, Iv〉, where pv is the phase and Iv is the
interval length, such that for every pair of neighbors {u, v} ∈ E the intervals [p̊v − Iv, p̊v] and [p̊u − Iu, p̊u]
are disjoint. Analogous to O(∆)-vertex colorings, we are interested in Ω(T/∆)-interval colorings, where
the smallest interval length is Ω(T/∆).

Hardness of Interval Coloring. Discrete interval coloring is strongly related to vertex coloring. Consider
a fixed node v and let pv be the phase it computed when solving interval coloring and Θv be its clock offset
with respect to some arbitrary but absolute reference frame. Define the color of v as cv = pv+Θv (mod Q).
Observe that this defines a valid vertex coloring with O(∆) colors, since Q ∈ O(∆) and by definition of
interval coloring for any two neighbors u and v it follows that pv + Θv 6= pu + Θu and thus cv 6= cu.
Therefore even in executions where all nodes have either synchronized clocks or wakeup at the same time,
a Ω(T/∆)-interval coloring is at least as hard as O(∆)-vertex coloring.

4 Continuous Interval Coloring
We essentially use the same model as Motskin et al. in [17], and adhering to it we also assume each node
v knows its own degree d(v) and the maximum degree of its 1-hop neighbors dmax(v). Motskin et al.
[17] described a randomized algorithm that solves continuous interval coloring and terminates with high
probability in a logarithmic number of periods. In contrast, we present a randomized algorithm that solves
the same problem but terminates almost surely in a constant number of periods. While describing the
algorithm we expose the flaws of this model that make such an algorithm possible.

Algorithm Description. Since nodes can emit an infinitely short beep at any point in time, then if two
nodes choose to beep at random times in the interval [0, T ], their beeps collide with probability zero. We
will exploit this property with the greedy algorithm BEEPFIRST. Informally speaking, the BEEPFIRST

algorithm searches for the first available time where a node can beep while respecting a buffer of size
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bv around existing beeps. To ensure that no two nodes choose the same time to beep, the buffer size is
randomized with a continuous variable.

More precisely, the algorithm has a parameter ε ∈ (0, 1) which affects the size of the resulting intervals.
In the initialization state each node v sets its interval length to Iv = (1− ε)T/2(dmax(v) + 1) and chooses
εv ∈ U[0, ε] to randomize its start time and set its buffer length to bv = (1− εv)T/2(d(v) + 1).

In the searching state, nodes listen for one full time period T recording the phases at which beeps were
heard. If a node hears no beeps in this period it sets pv = 0 and goes to the stable state. Otherwise
nodes search for the first phase pv such that i) in the previous period no other node beeped in the interval
[pv − bv, pv + bv], and ii) in this period no other node beeps on the interval [pv − bv, pv]. Once such a phase
is found, nodes beep to reserve it and listen for whatever remains of the period, switching to the stable state.
Once a node becomes stable, it remains stable thereafter, beeping at the same phase every period.

Algorithm 1 BEEPFIRST running at node v
1: εv ← U(0, ε) . Initialize
2: Iv ← (1− ε) T

2(dmax(v)+1) , bv ← (1− εv) T
2(d(v)+1)

3: listen(εv) (* randomized start time *)
4: S ← listen(T ) . Search
5: pv ← 0
6: while ∃ beep in S[pv − bv, pv + bv] do
7: tv ← pv
8: pv ← bv+ time of last beep in S[pv − bv, pv + bv]
9: S ← S ∪ listen(pv − tv)

10: end while
11: beep, listen(T − pv) . Stable
12: loop
13: listen(pv), beep, listen(T − pv)
14: end loop

Fix a node v in the searching state, and observe that the separation between any beeps node v hears, is
at most 2bv (otherwise it would have exited the search state). Assume in a period node v hears at most one
beep from each neighbor (a slightly more technical argument shown in Appendix B proves the same result
without this assumption). Therefore node v hears at most d(v) beeps in one period, which means that after
time d(v)2bv < T in the searching state node v finds a proper phase to beep and enters the stable state.

Lemma 4.1. The searching state of BEEPFIRST lasts less than one period.

By construction node v will select pv = 0 or pv = pu + bv where pu is the phase of node u. However,
both the starting time and the buffer length are randomized using a continuous probability distribution.
Therefore, with probability one no two nodes will ever select the same phase. (The same argument is used
by Motskin et al. [17] to prove that neighbors “pick the exact same start time with probability 0”.) Which is
captured by the following proposition.

Proposition 4.2. Given a pair of nodes u and v (where u 6= v) at any point during the execution of BEEP-
FIRST almost surely p̊u 6= p̊v.

From Proposition 4.2 it follows that given two neighboring nodes which have selected phases, one
selected an earlier phase than the other, and therefore by construction the intervals output by BEEPFIRST do
not overlap (proved in Appendix B).
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Lemma 4.3. Let u and v be two neighboring nodes in a stable state of BEEPFIRST, then their intervals do
not overlap (p̊u /∈ [p̊v − Iv, p̊v + Iv]).

Finally, Lemmas 4.1 and 4.3 imply the following theorem.

Theorem 4.4. The continuous interval coloring algorithm computes an Ω(T/∆)-interval coloring and ter-
minates almost surely in O(1) time.

If instead of setting the interval length in the initialization phase we delayed it until the stable phase
by setting it to the largest value such that [pv − Iv, pv + Iv] does not contain any beeps, we would get
a slightly stronger result which does not require knowledge of dmax(v). This hints at two flaws in this
model i) It assumes knowledge of d(v) and dmax(v), where neither is trivial to compute. ii) The algorithm’s
correctness relies on computation with arbitrary real numbers and sampling from continuous probability
distributions.

5 Discrete Interval Coloring
We now turn our attention to a more realistic model where beeps occur at discrete times and have a minimum
length; thus the probability distributions involved are discrete and finite. We present a Las Vegas randomized
algorithm for Ω(Q/∆)-interval coloring that terminates with high probability in O(log n) periods. This
requiresQ ≥ ∆ and in particular we assumeQ = κ∆ where κ is a large enough constant (κ ≥ 3/η suffices,
for η to be fixed later).

Algorithm Description. The JITTERANDJUMP algorithm relies on three key insights: i) The number of
beeps heard by a node is a good estimate of its degree. ii) By adding a small random jitter to every beep,
neighboring nodes which beep at the same slot can detect the collision with constant probability. iii) If
a node jumps into a random slot which is surrounded by “enough” empty slots it finds a non-conflicting
interval assignment with constant probability.

Specifically, all nodes executing JITTERANDJUMP are initially uncolored. Nodes become colored as
soon as they believe to have found their interval. Except for the first period (where nodes listen without
beeping), all nodes beep once per period. Since nodes beep at most once per period, then in a single period
a node can hear at most two beeps per neighbor. Hence if d̃v is the number of beeps observed by node v
during a period, then 1 ≤ d̃v ≤ 2d(v).

To resolve collisions, if node v has decided to beep at the slot pv, it chooses choses at random jitterv ∈
U[0..1], and beeps at pv + jitterv instead. If a colored node detects a beep one slot before, or two slots after
its own beep, it becomes uncolored.

Each node v sets the buffer length bv = η Q

d̃v+1
to a fraction of the period proportional to its degree

estimate, where η is a sufficiently small constant (we will show that any η ≤ 1/16 suffices). Using the
information collected in the previous period, node v computes a set of free slots Fv. A free slot s ∈ Fv is
one where no beep was heard in the bv + 2 slots preceeding it, and the bv + 1 following it. An uncolored
node v selects a slot pv to beep uniformly at random from the set of free slots Fv. If after beeping node v
determines no other node is in the interval [pv − bv, pv] it becomes colored.

Two neighboring nodes are colliding if they beep at the same slot. Every period nodes select inde-
pendently at random a jitter which affects where they beep. Therefore two collided nodes will detect the
collision and become uncolored with constant probability (proof in Appendix B).

Lemma 5.1. If neighboring nodes u and v collide in JITTERANDJUMP, they become uncolored in the next
period with probability at least 1

2 .

By adjusting κ and η appropriately, it’s possible to guarantee that the number of free slots observed by
each node is a constant fraction of the number of slots.
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Algorithm 2 JITTERANDJUMP running at node v
1: coloredv ← false
2: S ← listen[Q]
3: d̃v ← max(|S|, 1)
4: bv ← η Q

d̃v+1
5: loop
6: if not coloredv then
7: Fv ← {p | S ∪ {pv} [p− bv − 2, p+ bv + 1] = ∅}
8: pv ← UFv
9: end if

10: jitterv ← U[0..1]
11: S ← listen[pv + jitterv − 1] ∪ beep ∪ listen[Q− pv − jitterv]
12: Iv ← max s s.t. S[pv − s, pv] = ∅
13: d̃v ← max(|S|, 1)
14: bv ← η Q

d̃v
15: if S[pv − bv, pv + bv] = ∅ then
16: coloredv ← true
17: else if S[pv − 1, pv + 2] 6= ∅ then
18: coloredv ← false
19: end if
20: end loop

Proposition 5.2. If κ ≥ 4/η and η ≤ 1/3 then |Fv| ≥ (1− 3η)Q for every node v.

We’ve established that the degree estimate is an upper bound on the real degree; we also show that with
constant probability it is a lower bound on the number of uncolored nodes.

Lemma 5.3. With probability 1
2 the number of beeps observed by a node is at least a quarter of the number

of its uncolored neighbors.

Proof. Fix node v and let P ⊆ N(v) be its uncolored neighbors. We want to show P
[
d̃v > |P |/4

]
≥ 1

2 .
Each node u ∈ P beeps at random in Fu and if κ ≥ 4/η then from Proposition 5.2 |Fu| ≥ (1− 3η)Q =

(1− 3η)κ∆. If we let η ≤ 1/16 then κ ≥ 1/(1− 3η) and thus |Fu| ≥ ∆.
On the other hand, the probability of collisions (and a lower degree estimate d̃v) is increased if ∀u,w ∈ P

Fu = Fv. In other words, if |P | ≤ ∆ beeps are randomly distributed in |Fv| ≥ ∆ slots, and we want to
show that the with probability 1

2 the number of occupied slots is |P |/4. This can be cast as a balls and bins
problem, where the number of balls is less than the number of bins. Due to lack of space, the balls and bins
analysis is presented in Appendix A.

To argue termination we partition nodes into good and bad nodes. Informally, a good node is one
which, modulo the jitter, continues to beep at the same slot in the rest of the execution.

Definition 1. Node v is good if it is colored and there does not exist a neighboring node u ∈ N(v) with a
phase pu such that |p̊u − p̊v| ≤ 1; otherwise v is bad.

By definition, once a node becomes good no neighboring node is colliding with it. Moreover, nodes
always listen before beeping and beep at slots which were previously unoccupied. Therefore, it is not
surprising that once a node becomes good, it remains good thereafter (proof in Appendix B).
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Lemma 5.4. Once a node is good, it remains good for the rest of the execution.

We classify bad nodes further as colored and uncolored. First we consider the easier case of colored
bad nodes.

Lemma 5.5. A colored bad node becomes good or uncolored with probability ≥ 1
2 .

Proof. Fix a colored bad node v. By definition a nonempty set of its neighbors P ⊆ N(v) beep at the same
slot as u.

If all nodes in P are uncolored then they all jump to a random slot and node v becomes good. Otherwise
there exists a colored node u ∈ P . However by Lemma 5.1 with probability 1

2 in the next period nodes detect
the collision become uncolored.

Now we consider uncolored bad nodes.

Lemma 5.6. An uncolored bad node becomes good with probability ≥ 1
2e
− 16η

1−3η .

Proof. Fix an uncolored bad node v. Let Bu be the event that node u choses to beep in the interval
[pv − bv, pv + bv]. In other words, Bu is the event that node u interferes with the beep of v. By definition
P [Bu] ≤ 2bv

|Fu| , and from Proposition 5.2 |Fu| ≥ Q(1− 3η) and thus P [Bu] ≤ 2bv
Q(1−3η) ≤

2η

d̃v(1−3η)
.

Let Gv be the event that node v becomes good. Node v becomes good unless a non-empty subset of its
(uncolored) neighbors choose a random slot that interferres with its beep. Hence P [Gv] =

∏
u∈P P [¬Bu]

where P ⊆ N(v) are the uncolored neighbors of v.
Let Pv be the event that the number of beeps observed by v is at least one quarter of the number of

its uncolored neighbors, that is d̃v ≥ |P |/4. We show that conditioned on Pv, node v becomes good with
constant probability.

P [Gv|Pv] =
∏
u∈P

P [¬Bu|Pv] =
∏
u∈P

(1− P [Bu|Pv]) ≥
(

1− 8η

|P |(1− 3η)

)|P |
≥ e−

16η
1−3η

Where the last inequality holds for sufficiently small η ≤ 1
16 . Finally from Lemma 5.3 we have P [Pv] ≥ 1

2 ,

hence P [Gv] ≥ P [Gv|Pv]P [Pv] ≥ 1
2e
− 16η

1−3η .

From Lemmas 5.5 and 5.5, after two periods a bad node becomes good with constant probability.
Therefore the probability that a node remains bad drops off exponentially with the number of periods. Using
standard arguments (see Lemma B.1) one can show that a bad node becomes good with high probability
after 6

e
− 16η

1−3η

log n ∈ O(log n) rounds.

Finally, we show that the output is indeed a valid Ω(T/dmax(v))-interval coloring.

Lemma 5.7. Let v be a good node, then Iv ≥ η Q
2dmax(v)+1 .

Proof. Consider the period when v became colored. By construction node v observed no beeps in the
interval [pv − bv, pv], thus Iv ≥ η Q

d̃v+1
.

Fix a node u ∈ N(v). Node u will only select to beep in phases that respect a buffer of size bu + 2 =
η Q

d̃u+1
+2 before the beep of node v. So independent of the jitter, node v will never observe a beep of uwithin

within bu of its phase. Finally, since ∀u ∈ V it holds that d̃u ≤ 2dmax(v), we obtain Iv ≥ η Q
2dmax(v)+1 .

This leads to our main theorem.

Theorem 5.8. Node v becomes good in O(log n) periods after waking up with high probability, with an
interval of size Ω(T/dmax(v)).
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5.1 Dynamic Graphs
Let us now turn our attention to dynamic graphs, where nodes and edges are added and removed throughout
the execution. Adding nodes or edges is analogous to waking up, which is already handled gracefully by
JITTERANDJUMP; however this is not the case for node or edge removals. In particular, once the algorithm
has stabilized to an Ω(T/∆)-interval coloring, the interval of each node is not guaranteed to increase, even
if sufficiently many nodes leave and the new maximum degree becomes ∆′ � ∆.

A natural solution would be to go back to an uncolored state when the degree estimate falls below a
certain threshold. However, colliding nodes can cause the degree estimate to drop artificially, even when no
nodes or edges are removed. In some cases, the colliding nodes are not aware of each other and can remain
collided forever despite jittering. For example in a star graph, from the center’s perspective the spokes may
be colliding, but they have no means of detecting the collision.

Algorithm description (modifications to JITTERANDJUMP). Regardless of the state, each node v picks
a second phase p′v at random from the free slots Fv. In addition to beeping at pv + jitterv as before, node
v will also beep at p′v. Let Sv(i) be the set of slots where node v heard a beep in period i. We define
d∗v(i) = maxj∈[i−r,i]) |Sv(j)| as the maximum number of beeps over a moving window of the last r periods.
At period i we update the degree estimate by taking the maximum of the current beep count and d∗v(i) (
d̃v = max(d̃v, d

∗
v(i))). Finally, if d∗v(i) <

d̃v
16 we set d̃v = d∗v(i) and uncolor node v.

Since nodes beep twice at every period then Sv(i) ≤ 4d(v). In executions where the degree estimate
doesn’t decrease, the analysis of Section 5 holds with slightly different constants. To prove correctness we
need to show that with sufficiently high probability the degree estimate will decreases if and only if the
degree drops by a large enough factor.

From proposition 5.2 the number of free slots is |Fv| ≥ (1− 3η)Q = (1− 3η)κ∆, and since κ ≥ 1
1−3η

then |Fv| ≥ ∆. Given that a node v has d(v) neighbors, and each neighbor beeps at least once per period
in a random slot (at most twice), we are interested in the probability that the beeps observed account for
a constant fraction of the neighbors. This is essentially the same scenario described by lemma 5.3 which
can be viewed as an occupancy problem (see appendix A). We can show that with probability at least 1

2 the
number of beeps observed is at least d(v)/4.

Hence, with probability ≥ 1
2 at every period |Sv(i)| ≥ d(v)/4. Since the degree estimate is computed

using the information of the last r periods, the degree estimate decreases only if in the last r periods the
beep count observed was below d̃v/16. However, unless the real degree has decreased by a constant factor,
this happens with probability less than 1

2

r. On the other hand, if the real degree decreases by a large enough
factor, the degree count observed for the next r periods will be at most four times the real degree, which will
cause the degree estimate to decrease with certainty after r periods.

By setting r ∈ O(log 1/ε) the same argument used before (see lemma B.1) can be used to prove the
algorithm described computes an Ω(T/∆)-interval coloring in O(log 1/ε) periods with probability 1− ε.

6 Lower Bound
We consider a stronger model, namely standard synchronous local broadcast with messages of constant
size. During each slot a node sends a message of constant size and receives the set of messages sent by its
neighbors. Assume every node v knows its own degree d(v), the maximum degree ∆ and the size of the
network n, but does not have unique IDs. All nodes start the execution (wakeup) simultaneously.

The rest of this section is devoted to proving the following theorem.

Theorem 6.1. Under the model described, it is not possible to compute an Ω(T/∆)-interval coloring or a
O(∆) vertex coloring with high probability in less than O(log n) slots.

Proof. Let Gi = (Bi, Ei) be a graph on four vertices, with vertex set Bi = {ai, bi, ci, di} and edge set
Ei = {(ai, bi), (bi, ci), (ci, di), (ai, ci), (bi, di)}. DefineG as the graph the cycle graph generated by pasting
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together n/4 copies of Gi, where ∀i ∈ [n4 ] the component Gi is connected with the component Gi+1 mod n
4

with the edge (di, a(i+1 mod n
4
)). G is a 4-regular graph of size n and inside every componentGi the vertices

bi and ci have the same closed neighborhood (see Figure 2 in appendix).
Let sku be the state of node u at slot k, and let mk

u be the message sent by node u in slot k. Regardless of
its state, a node can only choose to send a message amongst a set of constant size of possible messages, let
c be the size of this set.

Consider a component Bi, and assume the states of bi and ci are identical at slot k. Since their closed
neighborhood is identical, if they send the same message at slot k, they will receive the same set of messages
and remain in identical states at slot k + 1. Formally, if skbi = skci and mk

bi
= mk

ci then sk+1
bi

= sk+1
ci .

Moreover, if bi and ci are in the same state at slot k, they choose what to send according to the same
probability distribution, in particular let pi (where i ∈ [1, c]) be the probability of sending the ith message.
By definition

∑c
i=1 pi = 1, and thus by Cauchy-Schwarz we have

∑c
i=1 p

2
i ≥ 1

c
We prove a lower bound on the probability that bi and ci remain in the same state in the next slot:

P
[
sk+1
bi

= sk+1
ci | skbi = skci

]
≥ P

[
mk
bi

= mk
ci | s

k
bi

= skci

]
=

c∑
i=1

p2i ≥
1

c

Therefore, if nodes bi and ci start at the same state (s0bi = s0ci) the probability that they remain in the same

state after ` slots is P
[
s`bi = s`ci | s

0
bi

= s0ci
]
≥ 1

c

`. If we let ` = logc
n
4 then P

[
s`bi = s`ci | s

0
bi

= s0ci
]
≥ 4

n ,
and thus P

[
s`bi 6= s`ci | s

0
bi

= s0ci
]
≤ 1− 4

n .
Since there are no unique identifiers, initially all nodes have the same state ∀u, v ∈ V s0u = s0v), and the

probability that after ` slots every component Bi has s`bi 6= s`ci is:

P
[
∀Bi, s`bi 6= s`ci

]
=

n/4∏
i=1

P
[
s`bi 6= s`ci

]
≤
(

1− 4

n

)n
4

≤ 1

e

Therefore there exists a pair of neighboring nodes that remain in the same state after ` slots with constant
probability.

P
[
∃(u, v) ∈ E s.t. s`u = s`v

]
≥ P

[
∃Bi s.t. s`bi = s`ci

]
= 1− P

[
∀Bi, s`bi 6= s`ci

]
≥ 1− 1

e

Moreover, since G is a 4-regular graph, it should ensure interval lengths of size Ω(Q/4) ∈ Ω(Q).
Finally, if two nodes in the same state select intervals of size Ω(Q) slots out of a total of Q slots, the
probability that they select overlapping intervals is greater than a constant (or in generalO(1/∆)). Therefore
with constant probability after Ω(log n) slots there is a pair of neighboring nodes which do not have an
O(Q/∆) coloring.

Observe that if instead of solving interval coloring we were considering vertex coloring, the probability
that two neighboring nodes select the same color out of ∆ available colors is also a constant, and thus with
constant probability a pair of neighboring nodes select the same color. Which concludes the proof.

In light of the upper bound of O(log n) periods presented in Section 5, the previous bound is asymptot-
ically tight for constant degree graphs. Since each period has Q ∈ O(∆) slots this implies a lower bound
of Ω(log n/∆) periods for general graphs. If we additionally assume each node beeps at most O(1) times
per period, the same argument yields a lower bound of Ω(log n/ log ∆) periods for general graphs, since for
each node the probability of beeping in the same slot as a neighbor is 1/κ∆.
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A Balls and Bins
Consider the problem of placing m balls randomly into n bins, by putting each ball into a bin selected
independently at random. We focus on the case where there is at least one bin per ball (n ≥ m).

Let Aji be the event that the j th ball is placed in the ith bin. Since each ball picks a bin uniformly at

random, then P
[
Aji

]
= 1

n . Define Zi as the random variable that describes the number of balls placed into
the ith bin. We want to lower bound the probability that bin i is occupied (contains at least 1 ball).

P [Zi > 0] = P

 m⋃
j=1

Aji


≥

m∑
j=1

P
[
Aji

]
−
∑
j<j′

P
[
Aji ∩A

j′

i

]
=
m

n
−
∑
j<j′

P
[
Aji

]
P
[
Aj
′

i

]
=
m

n
−
(
m

2

)
1

n2
=
m

n
− m

2

(
m− 1

n2

)
=
m

n

(
1− 1

2

(m− 1)

n

)
>
m

2n

We define the indicator variable IZi =

{
1 Zi > 0

0 otherwise
.

Let Z be the number of occupied bins, by definition Z =
∑n

i=1 IZi , thus we can now lower bound the
expected number of occupied bins by a constant fraction of the balls.

E [Z] = E

[
n∑
i=1

IZi

]
=

n∑
i=1

E [IZi ] = n · P [IZi = 1] > n
m

2n
=
m

2
(1)

For i ∈ [1,m] let Xi be the placement of the ith ball, we can define the number of occupied bins as
Z = f(X1, . . . , Xm). Hence, consider the Doob Martingale sequence Yi = E [Z|X1, . . . , Xi] where by
definition Y0 = E [Z] and Ym = Z. The placement of one ball changes the expected number of occupied
bins by at most one, thus ∀i ∈ [1,m] it holds that |Yi − Yi−1| ≤ 1.

If the sequence W1, . . . ,Wk is a martingale, where |Wi − Wi−1| ≤ c for i ∈ [1, k], then Azuma’s
inequality states that P [|Wm −W0| ≥ λ] ≤ 2e−λ

2/2kc2 . Applying this to our context, we can show that
with constant probability the number of occupied bins does not deviate from its expectation by more than a
constant fraction.

P
[
|Z − E [Z]| ≥ 1

2
E [Z]

]
≤ 2e−

m
8

Which proves the following theorem:

Theorem A.1. When placing m balls randomly into n bins, if the number of bins is at least the number of
balls (n ≥ m) and the number of balls is large enough (m ≥ 12), then with probability more than 1

2 the
number of occupied bins is greater than one fourth the number of balls (m4 ).
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B Deferred Proofs
Proof of Lemma 4.1. LetP be the set of distinct phases at which node v hears a beep during any execution
(possibly infinite). By construction nodes beep at most once every period and once a node starts beeping
it beeps at the same phase for all subsequent periods. Hence, even in an infinite execution, it follows that
|P | = m ≤ d(v), let P = {p1, . . . , pm} be the set of phases in ascending order.

Suppose by contradiction that node v remains in the searching state for more than one period; hence
∀p ∈ [0, T ] there exists a beep in P [p− bv, p+ bv], otherwise the searching state would have stopped before
the period ended. If there exists an i ∈ [1..m − 1] such that pi+1 − pi ≥ 2bv then there would exist no
beep in P [p∗ − bv, p∗ + bv] where p∗ = 1

2(pi+1 + pi). Hence we assume ∀i ∈ [1..m− 1] pi+1 − pi < 2bv
which implies pm − p1 < (m − 1)2bv. Similarly if T − pm + p1 ≥ 2bv then there would exist no beep in
P [p∗ − bv, p∗ + bv] where p∗ = T+pm+p1

2 mod T . Hence we assume T − pm + p1 < 2bv which implies
T − 2bv < pm − p1. Thus we have:

T − 2bv < pm − p1 < (m− 1)2bv

T < 2mbv ≤ 2m
T

2(d(v) + 1)
= T

m

d(v) + 1
≤ T d(v)

d(v) + 1
< T – a contradiction.

Proof of Lemma 4.3. By definition ε ≥ εv and dmax(v) ≥ d(v), thus clearly bv ≥ Iv and in fact ∀u ∈
N(v) bv ≥ Iu. From Proposition 4.2 we can assume that p̊v 6= p̊u, we proceed in cases:

• p̊v > p̊v. Then node u hears a beep from v at phase p̊v before leaving the search state. By construction
node v doesn’t leave the search state if p̊v ∈ [p̊u − bv, p̊u + bv], and since bv > Iv this means
p̊v /∈ [p̊u − Iv, p̊u + Iv] or equivalently p̊u /∈ [p̊v − Iv, p̊v + Iv].

• p̊v < p̊u. Then node v hears a beep from v at phase p̊u before it leaves the search state. By construction
node u doesn’t leave the search state if p̊u ∈ [p̊v − bu, p̊v + bu] and since bu > Iv this means
p̊u /∈ [p̊v − Iv, p̊v + Iv].

Proof of Lemma 5.1. Since nodes u and v beep at the same slot then x = p̊u + jitteru = p̊v + jitterv,
and since jitteru, jitterv ∈ {0, 1} there are four possibilities.

p̊u jitteru p̊v jitterv
x 0 x 0

x− 1 1 x− 1 1
x 0 x− 1 1

x− 1 1 x 0

In the first two cases nodes beep at the same slot on the next period iff jitteru = jitterv, which happens
with probability 1

2 . On the remaining cases nodes beep at the same slot if both choose the same jitter on the
next period, which happens with probability 1

4 and thus beep at different slots with probability 3
4 . Hence

in all cases nodes beep at different slots in the next period with probability ≥ 1
2 . The condition in line 17

ensures that if u and v beep at different slots in the next period, they both become uncolored.

Proof of Lemma 5.4. By definition good nodes are colored, consider the last period when u became
colored. A neighbor v of u whose beep did not collide with u’s will respect a buffer around the beep of u,
and independent of the jitter |p̊u − p̊v| ≥ bv for all future periods.
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Since node u eventually becomes good, then all its collided neighbors v ∈ P select a random phase
pv, and since when selecting a phase nodes respect a buffer around existing beeps (including their own), it
follows that |p̊u − p̊v| ≥ bv. Hence, by letting k ≥ 2/η we ensure bv ≥ 1 and the lemma follows.

Lemma B.1. If a bad node becomes good with probability p after c periods, then after c(q+1)
p log n periods

all nodes become good with probability 1− 1
nq .

Proof. Let Xv be the number of periods before node v becomes good, we lower bound the probability that
node v remains good for c(q+1)

p log n periods.

P
[
Xv >

c(q + 1)

p
log n

]
=

(q+1)
p

logn−1∏
i=0

P [Xv > i|Xv > i− c] ≥ (1− p)
(q+1)
p

logn ≤ e−(q+1) logn =
1

nq+1

And by the union bound,

P
[
∃v ∈ V s.t. Xv >

c(q + 1)

p
log n

]
≤
∑
v∈V

P
[
Xv >

c(1 + 1)

p
log n

]
≤ 1

nq
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C Figures

Figure 1: Discrete Interval Coloring Output

Figure 2: Lower bound graph G on n vertices.
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