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ABSTRACT
Desynchronization is a novel primitive for sensor networks: it
implies that nodes perfectly interleave periodic events to oc-
cur in a round-robin schedule. This primitive can be used to
evenly distribute sampling burden in a group of nodes, sched-
ule sleep cycles, or organize a collision-free TDMA schedule
for transmitting wireless messages. Here we present Desync,
a biologically-inspired self-maintaining algorithm for desyn-
chronization in a single-hop network. We present (1) theoret-
ical results proving convergence and bounding convergence
rates, (2) experimental results on TinyOS-based Telos sensor
motes, and (3) a Desync-based TDMA protocol. Desync-
TDMA addresses two weaknesses of traditional TDMA: it
does not require a global clock and it automatically adjusts
to the number of participating nodes, so that bandwidth is al-
ways fully utilized. Experimental results show a reduction in
message loss under high contention from approximately 58%
to less than 1%, as well as a 25% increase in throughput over
the default Telos MAC protocol.

1. INTRODUCTION
The spontaneous emergence of synchronization from sim-

ple rules—cardiac cells beating together or fireflies flashing in
unison—has long provided inspiration to biologists and math-
ematicians. Lately, it has also become an important primitive
in wireless sensor networks; several groups have shown how
simple models of natural synchronization can be used to de-
sign decentralized algorithms for time and event synchroniza-
tion [5, 14, 2]. A benefit of the biologically-inspired approach
is that simple, local node behaviors result in the whole net-
work robustly maintaining synchronization despite individual
faults or changes in topology.

Here we introduce a related primitive: desynchronization.
Desynchronization is the logical opposite of synchronization;
instead of nodes attempting to perform periodic tasks at the
same time, desynchronization occurs when each node per-
forms its task as far away as possible from all other nodes.
Imagine fireflies that, instead of flashing in unison, flashed in
a uniformly distributed, round-robin fashion.

Desynchronization is a useful primitive for periodic resource
sharing and applies to many sensor network applications. Con-
sider a set of nodes that sample a common geographic re-
gion. By desynchronizing their sampling schedules, the re-
quirements of the monitoring task can be equitably distributed.
Similarly, one can use desynchronization to organize sleep cy-

cles such that nodes take turns being awake, and therefore,
consume less energy. Another application is to use desynchro-
nization to implement time division multiple access (TDMA),
a well-known medium access control (MAC) protocol in which
nodes use a round-robin schedule for sending messages. In
TDMA, scheduled nodes do not have to contend for the shared
medium nor worry about message collisions. It is especially
attractive in many settings where nodes are transmitting streams
of data or there are real-time constraints on message latency,
as is common in wireless sensor networks [13, 4, 11].

In this paper we present Desync, a biologically-inspired al-
gorithm for achieving desynchronization in a single-hop net-
work. Given a set of n nodes that generate events periodically
with a common, fixed period T , the nodes adjust such that
the events are evenly distributed throughout the time period
(i.e. they are spaced at intervals of T/n). The algorithm
is simple, decentralized, and requires constant memory per
node regardless of network size. Furthermore, if nodes are
added or removed, the system self-adjusts to re-equalize the
event intervals. Thus, Desync implements a self-maintaining
desynchronization primitive.

We evaluate Desync along three fronts: theory, implemen-
tation, and application. First, we prove convergence for n
nodes and give an upper bound on the time required. Second,
we implement Desync on TinyOS-based Telos sensor nodes
(a.k.a. “motes”). Our experimental results on a 20-mote
single-hop network confirm that the system rapidly achieves
desynchronization and seamlessly accommodates the addition
and removal of motes. Finally, we present an implementation
of Desync-TDMA, a self-organizing TDMA MAC protocol
designed for single-hop wireless networks.

Desync-TDMA has two novel features compared to tra-
ditional TDMA implementations: (1) it does not require a
global clock or other infrastructure overhead and (2) the sched-
ule automatically self-adjusts to the number of participating
nodes so as to fully utilize the bandwidth. Our experimental
results show that Desync-TDMA achieves over 90% band-
width utilization (a 25% increase from the default Telos MAC
implementation) and less than 1% message loss in high traffic
(down from 58%). It also significantly outperforms Z-MAC,
a representative hybrid TDMA protocol.

The rest of the paper is as follows: Section 2 presents re-
lated work. Sections 3 and 4 introduce the Desync and
Desync-TDMA algorithms along with theoretical results.
Sections 5 and 6 present the experimental results along with
a comparison to existing MAC protocols. Section 7 presents
directions for future work, and we conclude in Section 8.



2. BACKGROUND AND RELATED WORK

2.1 Models of Synchronization in Biology
Many natural synchronizing systems, such as networks of

neurons or swarms of fireflies, are modeled as networks of
pulse-coupled oscillators, where each node in the network rep-
resents an adjustable oscillator that pulses at a fixed fre-
quency. Each oscillator observes other oscillators’ pulses (e.g.
a neuron firing or a neighboring firefly’s flash) and uses this
information to adjust its own oscillator. Ultimately, all oscil-
lators pulse synchronously.

In a seminal paper, Mirollo and Strogatz proved that a
complete network of n pulse-coupled oscillators, using a sim-
ple oscillator-adjustment function, would always converge to
synchrony, irrespective of the initial state [7]. Recently, this
biological model has been extended and shown to be able to
achieve decentralized time synchronization and coordinated
sensor control in wireless sensor networks [5, 14, 2]. One of
the key benefits of this model is its ability to adapt—the sys-
tem adjusts automatically to nodes entering and leaving the
system, even though the individual nodes are only using very
simple, local rules. Thus, synchronization in this model is
self-maintaining.

In some natural systems, the goal is not synchronization,
but patterned synchronization. For example, in animal loco-
motion, limbs can be modeled by individual oscillators that
are coupled so as to produce different gaits. Similarly, in the
intestines, a series of oscillators can be coupled to produce a
systolic wave. In these cases, the oscillators do not first syn-
chronize and then negotiate a schedule for the pulse pattern.
Instead, they use different adjustment rules to directly gener-
ate the desired pattern, with the advantage being that these
adjustment rules are also self-maintaining.

In our case of desynchronization, we are interested in the
pattern in which all of the oscillators pulse at evenly spaced
intervals (the oscillators are completely out of phase). We use
the Mirollo and Strogatz framework to design a simple oscilla-
tor adjustment rule that causes the system as a whole to con-
verge to desynchrony. As with the original model, the system
self-adjusts to maintain desynchronization; if new nodes are
introduced, or current nodes removed, the system automati-
cally converges to a new state where the new set of nodes has
evenly spaced pulses. Protocols built on top of this primitive
inherit the same self-maintaining property.

2.2 Channel Sharing in Wireless Networks
In wireless networks, nodes share the medium in which they

transmit messages. It is the MAC protocol’s responsibility to
mediate their transmissions. Any of these protocols can usu-
ally be described as being either a contention-based protocol
or a schedule-based protocol [12, 3].

In contention-based, carrier sense multiple access (CSMA)
protocols, nodes check the channel before transmitting, and
if the channel is busy, they randomly back off for a short time
and try again. This method is simple, adaptive, and frees
nodes from having to maintain complex state about their en-
vironment. As a result, CSMA is often used when the ex-
pected contention is low (i.e. few nearby nodes transmitting)
or when bursty traffic is expected.

In TDMA-based protocols, nodes use a round-robin sched-
ule to transmit messages. Time is partitioned into fixed-size
slots, and each node selects a time-slot during which it may
regularly send messages collision-free. Since each node gets

an equally sized slot, fairness is ensured. Message latency is
bounded since nodes transmit at a fixed frequency.

TDMA is especially useful when nodes are transmitting
streams of data, experience periods of high contention, have
a high cost for message loss (e.g. energy cost of retransmis-
sions), or require real-time constraints on message latency.
These requirements are found in many sensor network appli-
cations due to their emphasis on periodic monitoring and lo-
cal, event-triggered traffic [13, 4, 11]. As such, several TDMA
protocols have been designed specifically for these settings [3].
However, almost all traditional TDMA implementations still
encounter the following difficulties:

Overhead: Nodes must know when their slots begin and
end, which usually requires accurate time synchronization
among nodes and a negotiation of the slot schedule. The
message overhead involved in maintaining these adds to the
energy consumption and implementation complexity [6].

Wasted Slots: Nodes are assigned exclusive time slots.
This means that slots go unused when nodes do not have
data to send or have left the network. Thus, it is important
for the network to be able to reclaim this lost bandwidth.

There is a large body of literature on modified TDMA pro-
tocols that attempts to address the second problem by either
periodically renegotiating the schedule or by allowing nodes
to contend for unused slots [3]. For example, TRAMA [9] pe-
riodically recomputes and reassigns slot schedules in order to
utilize bandwidth and conserve energy. However, the proto-
col implementation is complex and assumes a global clock and
application-level forecasting of traffic. Z-MAC, a hybrid pro-
tocol, focuses on recapturing wasted slots by allowing nodes to
compete for all slots with a bias towards the owner of the slot.
This method allows nodes to recapture unused bandwidth
without having to renegotiate the slot schedule. However,
this removes the collision-free guarantee on message trans-
mission and often cannot fully recover the bandwidth. It also
does not solve the problem of requiring time synchronization
amongst communicating nodes.

In general, the complexity and cost of maintaining any
TDMA schedule in the face of node and traffic changes can
often outweigh the benefits of fairness, reliability, and high
throughput. Hence, the default MAC protocols most used by
sensor motes are CSMA protocols [8, 15].

Here we make a key observation regarding TDMA—there
is no explicit need for nodes to agree upon a global time or to
maintain information about each others’ identities. Rather,
TDMA only requires nodes to desynchronize the timing of
their transmissions. If nodes could self-maintain desynchro-
nization, then both weaknesses of TDMA would be addressed
simultaneously. For example, if a node does not need to trans-
mit, it can go to sleep and the remaining nodes will adjust
to fully utilize the available bandwidth without message col-
lisions.



(a)

Global View

Fire
B

A

C

D

E

(b)

Local View

Fire
B

A

C

(c)

Local View

Fire
C

B

A

B'

A'

(d)

Global View

Fire
C

BD

E A

Figure 1: Desync algorithm: (a) Global view of five nodes that are not yet desynchronized. (b) Node B’s local neigh-

borhood view. (c) When C fires, the node that fired immediately before it, node B, now knows both of its neighbors’

positions—it heard A fire earlier and C just fired. Therefore, node B can now compute where it should have been if it

were positioned ideally, B′, and jump towards it. However, A has since jumped to A′, unbeknownst to any other nodes.

(d) The desynchronized state. All nodes are at the midpoints; thus, no node jumps and the system is stable.

3. ALGORITHMS
In this section, we first provide a description of the pulse-

coupled oscillator framework, introduced by Mirollo and Stro-
gatz [7]. We then use this framework to describe the Desync
and Desync-TDMA algorithms.

3.1 Framework
Suppose there are n nodes that can communicate with each

other (i.e. they are in a fully-connected network). Each node
performs a task periodically with a period T . Thus, we can
model each node as an oscillator with frequency ω = 1/T .
Let φi(t) ∈ [0, 1] denote the phase of node i at time t where
the phases 0 and 1 are identical. For example, if φi(t) =
0.75, then node i is 75% of the way through its cycle. Upon
reaching φi(t) = 1, node i “fires” (or “pulses”) indicating the
termination of its cycle to the other nodes. Upon firing, the
node resets its phase to φi(t

+) = 0.
We can imagine the nodes as beads moving clockwise on a

ring with period T (Figure 1). When a node reaches the top,
it fires. All nodes observe this firing, and can use this infor-
mation to jump forwards or backwards in phase. However,
nodes are otherwise oblivious of the phases of other nodes;
they can not observe the current state of the ring, only the
firing events.

The goal is to have each oscillator adjust the timing (phase)
of its own firing such that eventually the network is desynchro-
nized. This occurs when (1) all firing events are spaced T/n
apart, and (2) each node fires once per cycle at intervals of
T . Visually, if the nodes are equally spaced around the ring,
we have desynchronization.

3.2 DESYNC Algorithm
We now present a simple algorithm for achieving desynchro-

nization among a set of n wireless sensor nodes in a single-hop
network. We assume that a firing event corresponds to a node
broadcasting a wireless firing message that all other nodes can
hear.1 Intuitively, the algorithm works as follows: each node
adjusts its phase to be at the midpoint of the nodes right be-
fore and after it on the ring. In order to achieve this, a node
must pay attention to the timing of firings before and after its
own. If each node can fire closer to the midpoint, then over
successive periods this jumping towards the average will bring
the system to a state in which all nodes are at the midpoints
of their neighbors. This is exactly the desynchronized state.

1In section 5 we describe how we deal with message delays

In more detail, a node i keeps track of the times of two
events: the firing that occurs just before it fires and the fir-
ing that occurs just afterwards. We call the senders of those
firing messages the phase neighbors of node i. The firing
times of the previous and next neighbors are recorded rel-
ative to node i’s firing as ∆̃p(i) and ∆̃n(i), respectively. In
this way, node i can approximate the phases of its previous
and next phase neighbors as φ̃p(i)(t) = φi(t) + ∆̃p(i) (mod 1)

and φ̃n(i)(t) = φi(t)− ∆̃n(i) (mod 1). Using this information,
node i adjusts its phase before it fires again so that at the time
of its next firing, tf , its phase will be closer to the midpoint
of its neighbors:

φ̃mid(tf ) =
1

2

h
φ̃p(i)(tf ) + φ̃n(i)(tf )

i
φ′i(t) = (1− α)φi(t) + αφ̃mid(t) (1)

where α ∈ [0, 1] is a parameter that scales how far node i
moves from its current phase towards the desired midpoint.
Thus, after hearing both neighbors fire, node i instantaneously
jumps from φi(t) to φ′i(t). Note that this adjustment is not
apparent to other nodes until node i fires again. Furthermore,
node i’s neighbors are also making adjustments without node
i’s knowledge.

To further illustrate this point, consider Figure 1(b) where
there are three nodes: A, B, and C. First, A fired followed
by B, and now, C is about to fire. In Figure 1(c), C fires;
thus, B has enough information to make a jump. However, at
this point, A too has heard both of its neighbors, B and E,
and has already jumped to A′. Thus, by the time B makes
its adjustment, ∆̃p(B) is no longer the true distance between
A and B. It is in this way that nodes continually make ad-
justments based on stale information. However, as we show
in section 4, this system is still guaranteed to converge to a
desynchronized state.

This algorithm has several key features:

• Guaranteed Convergence to Desynchrony: Regard-
less of the initial state and number of nodes, the system
provably converges to a state in which all nodes are evenly
spread out with a spacing of T/n. We also analytically
calculate the convergence rate (section 4).

• Simple Implementation: Nodes only record the timing
of two firing events and are not concerned with the iden-
tity of the senders nor how many firings occur in a given



period. Therefore, nodes use constant memory, regardless
of network size and do not need to maintain any internal
state on network composition.

• Self-Adapting: If the number of nodes changes (a node
is added or removed) then the system is no longer desyn-
chronized. This local imbalance causes nodes closest to the
disturbance to adjust their phases, eventually leading the
system back to a stable, desynchronized state. Nodes do
not need to explicitly monitor the network membership.
Furthermore, single-node failures are similarly accounted
for in the normal operation of the algorithm. Thus, the
system ensures a fair sharing of the time period, T , even
when the network size changes or nodes experience faults.

3.3 DESYNC-TDMA Algorithm
In this section, we describe how one can implement TDMA

using Desync. As discussed in section 2, TDMA-based pro-
tocols suffer from overhead and wasted slots. Desync allows
us to design a simple low-memory TDMA protocol that auto-
matically regulates slot sizes, fully utilizing bandwidth with-
out incurring any collision costs.

We define node i’s TDMA slot in period k + 1 to begin at
the midpoint between node i and its previous phase neighbor
in period k. Likewise, it ends at the midpoint between node
i and its next phase neighbor from period k. Intuitively, each
period’s set of firings are used to compute the TDMA slots in
the next period. Figure 2 illustrates this slot definition.

Defining slots in this manner also guarantee that a node
will never fire outside its own slot. Note that if this were not
the case, node i would be unable to send its firing message
as the channel would be occupied by the current slot owner’s
transmissions. To see that this is the case, we will consider the
local behavior for a set of nodes: A, B, and C (see Figure 2).
First, we note that B’s phase in round k is always contained
by its own time slot in round k + 1:

φC < φB < φA

φC + φB < 2φB < φB + φA

(φC + φB)/2 < φB < (φB + φA)/2

mid(CB) < φB < mid(BA) (2)

Second, the target jump point, mid(CA) = (φC + φA)/2, is
also between mid(BA) and mid(CB) since

φB < φA φC < φB

φC + φB < φC + φA φC + φA < φB + φA

φC + φB < φC + φA < φB + φA

(φC + φB)/2 < (φC + φA)/2 < (φB + φA)/2

mid(CB) < mid(CA) < mid(BA) (3)

Therefore, (2) and (3) imply that if node B jumps towards
the midpoint of its neighbors, it will always jump to a point
(B′) that is within its time slot.
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Figure 2: Desync-TDMA slots: Here, we have unravelled

the ring into a line segment. The nodes in round k rep-

resent the current state in Figure 1(c) where node C is

firing. The TDMA slots in round k + 1 are defined by the

midpoints of the firings the occurred in round k. Despite

their information being a round old, if the nodes update

according to equation (1), their firings will always occur

during their own TDMA slots.

Desync-TDMA has the following characteristics:

The algorithm fully utilizes the channel regardless
of the network’s state of desynchronization. The algo-
rithm always defines a set of non-overlapping slots that cover
T , and nodes continually send collision-free data, even while
they are desynchronizing. As the network approaches desyn-
chronization, the slots converge to be of equal size. Thus, the
system always provides collision-free, fully-utilized bandwidth,
and constantly adjusts to increase fairness.

The TDMA schedule seamlessly adapts to nodes
entering or leaving. When a node leaves, the neighboring
nodes adjust their slot boundaries to fully utilize the band-
width. The slot sizes equalize over time as the system ap-
proaches desynchronization, having the effect of leaving T
fixed and increasing slot size. Thus, if a node does not need
to transmit again for multiple periods, it can simply leave
the protocol, sleep, and re-enter when it needs to send again.
In the meantime, other nodes will have reaped the benefit of
automatically acquiring the sleeping node’s slot. We explore
this experimentally in section 6.

When a node enters the algorithm, it must first interrupt
an existing node’s data slot with its firing message (in section
5, we show how this can be simply and reliably implemented).
Here, the costs of entering for a node are the latency of one
time period and the lost bandwidth that results from the one
interrupted data slot. Other nodes remain oblivious to the
entry and send data uninterrupted.

The algorithm is self-contained. Nodes do not need
to know the network size or discover their neighbor IDs in
order to create an initial schedule. The round-robin schedule
order emerges as a result of the order in which nodes enter
the process. Unlike other TDMA-style protocols, such as [10,
9], nodes do not need to agree on global time nor rely on a
time synchronization protocol. While it is possible to write
additional code to support each of these additional tasks (dis-
covering neighbor IDs reliably, renegotiating schedule orders,
electing leaders for global time consensus) this can add sig-
nificant complexity to the implementation.



4. THEORETICAL RESULTS
Here we show that the desynchronized state is the only

attracting fixed point of Desync.

Theorem 1 (Desync Convergence). For all initial con-
ditions and α ∈ (0, 1), n nodes whose dynamics are governed
by Desync will be driven to desynchrony.

Proof. First, we define the delta-phase variable as ∆i(t) =
φp(i)(t) − φi(t). Taking the difference of φ′p(i)(t) − φ′i(t) and
looking at the progression from t to t + T , we have

∆′
i = (1− α)∆i + α

„
∆i−1 + ∆i+1

2

«
(4)

In matrix-vector form, equation (4) is:

~∆(k+1) = B(α)~∆(k) (5)

where k is the current round and B(α) = (1 − α)I + αA.
The matrix A is a circulant matrix with Ai,i±1 = 1

2
, where

indices are taken modulo n, and all other elements are 0. Note
that multiplication by A corresponds to exactly one round of
all n nodes firing in turn. Hence, the algorithm is a linear
dynamical system for ~∆ ∈ [0, 1]n.

The desynchronized state ~∆∗ is a fixed point of this system
(i.e. B~∆∗ = ~∆∗); thus, ~∆∗ is an eigenvector of B with the
trivial eigenvalue λ0 = 1. If we can show that all other eigen-
values of B lie strictly inside the unit circle in the complex
plane (i.e. |λl| < 1 for l > 0), then we are guaranteed that
~∆(k) = Bk ~∆(0) → ~∆∗ as k →∞, and we are finished.

Using the properties of permutation matrices, we can com-
pute the eigenvalues of B(α) as:

λl = (1− α) + α cos

„
2πl

n

«
(6)

For α ∈ (0, 1), |λl| < 1. Thus, Desync always converges to
desynchrony, irrespective of initial conditions. QED

We will use the notion of ε-convergence and a standard
bound on the second largest eigenvalue, λ∗ to bound the con-
vergence rate. The sum of the error in round k is defined to
be δk = ||~∆(k) − ~∆∗||1. Thus, our system has ε-converged in
round k if δk < ε. The minimum number k for which this is
true is defined as kreq.

Theorem 2 (Desync Rate of Convergence). A
system of n nodes whose dynamics are governed by Desync
will achieve desynchrony to within ε in O(n2 ln( 1

ε
)/α) rounds

for n > 2 and α ∈ (0, 1).

Proof. Using equation (6), we can compute λ∗ as the greater
of |λ1| and |λbn/2c|. For n > 2, we have

λ∗ =≤ 1− απ2/n2 ≤ e−απ2/n2
(7)

where we have used cos(z) ≤ 1 − z2/4 for 0 ≤ z ≤
√

6 and
1− z ≤ e−z for any z. Solving δ0λ

k
∗ < ε yields

kreq(ε) =
n2 ln( δ0

ε
)

π2α
(8)

Thus, kreq(ε) ∼ O(n2 ln( 1
ε
)/α), and so, the time to desyn-

chronization is proportional to n2 ln(1/ε) and inversely pro-
portional to α. QED
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Figure 3: MATLAB simulation results on convergence

rates. Here we show the number of rounds required to

reach an average desynchronization error of ε = 10 µsec

for varying n and α. All simulations were started in a

near-synchronized state. These results confirm an O(n2)

running time.

Figure 3 graphically depicts these results via MATLAB sim-
ulations for varying values of n and α. Choosing α closer to
1 begins to produce oscillatory behavior that can slow the
convergence rate.

5. IMPLEMENTATION
The Desync-TDMA algorithm was implemented on Telos

wireless sensor motes running the TinyOS v1.1.14 operating
system [1]. The 802.15.4-compliant motes use a 250 kbps,
2.4 GHz Chipcon CC2420 wireless transceiver. When trans-
mitting messages, we used TinyOS’s standard, 35-byte active
message format. Data packets used a 28-byte payload and
included both mote IDs and message sequence numbers to
aid in computing statistics. Desync-TDMA utilized fixed
back-offs of 1.2 ms in its implementation.

The basic implementation for Desync-TDMA is summa-
rized in Figure 4. The motes use their local clock to keep
track of their own firing time as well as the firing times of
their two phase neighbors. Once a mote has received these
firing times, it performs a simple update via equation (1).

As shown by Maróti et al. [6], sending radio messages in
TinyOS can result in non-deterministic delays on the order
of several milliseconds before they are actually transmitted.
To compensate, we use MAC-level time stamping, which in-
serts a delay value into the message to indicate how long the
message was delayed. The receiving mote subtracts this delay
value from the received time in order to better estimate the
intended send time. Thus, motes can use their local clocks to
estimate when their neighbors intended to fire, even though
the message containing that information may be delayed. We
used the FTSP [6] code available from the TinyOS source
tree.

When a new mote enters an existing DESYNC-TDMA net-
work, it first sends a series of short interrupt messages before
sending its initial firing message. The interrupt messages are
meant to notify the current slot-owner that a new node needs
to send a firing message, and thus, the slot owner should tem-
porarily pause data transmissions to avoid message collisions
with the upcoming firing message.



init() {

T = 1 second

alpha = 0.95

just_fired = False

[ next_fire, prev_fire, last_fire ] = 0

call SetFiringTimer(T)

}

on_firing_timer_expire() {

call SendFiringMessage()

just_fired = True

my_fire = Now

prev_fire = last_fire

call SetFiringTimer(T)

}

on_receive_firing_message(msg_time) {

last_fire = msg_time

if (just_fired == True) {

just_fired = False

next_fire = msg_time

slot_start = T + (prev_fire + my_fire)/2

slot_end = T + (next_fire + my_fire)/2

goal_time = T + (1 - alpha) * my_fire

+ alpha * (prev_fire + next_fire)/2

call SetFiringTimer(goal_time - Now)

call SetSlotStartTimer(slot_start - Now)

call SetSlotEndTimer(slot_end - Now)

}}

Figure 4: Pseudocode for Desync-TDMA

6. EVALUATION
In this section we investigate the performance of Desync-

TDMA. Note that these results also apply to Desync alone,
since the algorithm for sending data does not affect the desyn-
chronization process.

6.1 Experimental Setup
We constructed a single-hop network by placing 20 Telos

motes around a single Tmote Sky mote designated as a base
station. The base logged all messages transmitted by the
other motes over its USB port to a PC. As the base station
did not send any messages once the experiment started, it
was able to observe the algorithm without affecting its per-
formance. For all experiments, we used the same fixed pa-
rameters: T = 1 sec and α = 0.95. We performed two classes
of experiments:

• Fixed-size: Here we chose a fraction of the total motes
(n = 4, 10, 20) to transmit data. The base station triggered
the motes, at which point each mote picked a random offset
into the first round to begin its periodic events. Motes used
their entire slots to transmit data, simulating the effect
of heavy traffic load where there is enough data to fully
saturate the channel. Five trials of 60 secs each were run
for each n-value. This experiment tested the ability of
the system to provide TDMA-like performance under peak
load conditions.

• Node Removal and Addition: In order to evaluate the
effect of motes entering and leaving the system, we con-
ducted an experiment where n = 8 initially. At t = 135

one mote stopped transmitting. At t = 180 three motes
woke up and entered the system. As in the previous exper-
iment, motes simulated heavy-traffic load by continuously
transmitting data during their slots.

6.2 Evaluation Metrics
Here we define the metrics that we use to measure the per-

formance of the system. Let N be the total network size (20
in all cases) and n be the number of currently transmitting
motes (n ≤ N).

• Average desync error: For ease of comparison across
varying n, we define error to be the average deviation
from the desired slot size (T/n) for a given round. Us-
ing the notation from Section 4, this metric is expressed as
1
n
||~∆(k) − ~∆∗||1.

• Normalized throughput: In order to estimate the best
possible data throughput one could achieve, we allowed a
single mote to transmit messages uninterrupted (with op-
timized back-off delays) and measured the throughput re-
ceived by the base. The maximum measured throughput
was found to be 62.8 Kbps. For each experiment, we mea-
sure the total number of data messages received by the base
during each round. We do not include the Desync firing
messages in this measurement. Here we define normalized
throughput as the ratio between the measured data mes-
sage throughput and the maximum measured throughput
of 62.8 Kbps. Thus, a value of 1 implies a fully-utilized
channel.

• Fairness: We computed the average throughput per node
over the course of each experiment. We report the max
and min of these average node throughputs.

• Message Loss: All messages sent by a mote include the
sender’s ID and a message sequence number, allowing the
base to detect missed messages. We use the base station
logs to compute the ratio between total number of missed
messages and total number of expected messages.

6.3 Experimental Results
Figure 5 shows a single run of a fixed-size experiment for

n = 10 motes. Figure 5(a) plots the times of each mote’s firing
events relative to those of a single mote. As can be seen, the
motes quickly and smoothly achieved desynchronization. Fig-
ure 5(b) shows how the different performance metrics changed
over time. The average desync error decreased exponentially
with time, reaching an error of less than 1 ms within 18 rounds
(note that the desired slot size is T/n = 100 ms). However,
the total normalized throughput was high (∼ 92%, or 57.8
kbps) and roughly constant throughout the experiment, re-
gardless of the desynchronization error. Message loss at the
base station was < 0.5%.

Figure 6 shows how the convergence rate scaled with n;
the average desync error is plotted as an average over 5 runs.
The systems reached convergence within 1 ms in 8, 20, and
48 rounds for 4, 10, and 20 nodes, respectively. As predicted,
the average desync error decreased exponentially with a rate
approximately proportional to n2.

Table 1 shows how the throughput and message loss of
Desync-TDMA vary with n. As n increased there were more
firing messages sent per round, leading to a linear decay in
the total throughput of approximately 0.8% (or 0.5 Kbps)
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Figure 5: Desynchronization on n = 10 sensor motes. (a) The firing times during each round are plotted relative to an

arbitrarily chosen mote. The graphs show that the firing times stabilize to be evenly spaced and that the initial ordering

of firing times is preserved throughout. (b) The average desync error and total throughput are plotted over time. Desync

error decreases over time, but the total throughput remains high and roughly constant regardless.
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Figure 7: Motes Arrival and Departure experiments. 8 motes were started at t = 0. At time t = 135 one mote left the

system and stopped transmitting. At time t = 180 three motes woke up and entered the system. The system minimizes

loss of throughput and rapidly re-equalizes slot sizes after addition or removal of motes.



Nodes:

Total Throughput (Kbps):

(normalized, %)

Max Individual (Kbps):

Min Individual (Kbps):

Message Loss (%):

4 10 20

60.8 57.9 53.0

(96.8) (92.2) (84.3)

15.2 5.8 2.8

15.2 5.6 2.4

0.2 0.3 0.5

Table 1: Desync-TDMA’s performance for different n

over 60-second runs. In our experiments, the maximum

rate at which a single node could transmit was 62.8 Kbps.

per node. Extrapolating from these results suggests that for
a fixed period of T = 1 sec, our system can support an ap-
proximate maximum of 125 motes before the bandwidth is
completely consumed by firing messages. Although we have
attempted to minimize the footprint of firing messages, a
number of optimizations, such as piggy-backing firing mes-
sages on data messages, were not explored and could further
increase system scalability. The table also shows that message
loss for all numbers of motes was near zero. In addition to in-
creasing throughput, this has the benefit of reducing latency
and the number of re-trasmissions required. Additionally, the
minimum and maximum per mote throughputs are very close,
showing that the system is able to fairly distribute bandwidth.
From these results, we conclude that Desync-TDMA is able
to provide collision-free, high bandwidth utilization indepen-
dent of the number of transmitting motes.

Figure 7 shows how the average desync error and normal-
ized throughput varied during the mote removal and addition
experiment. At t = 135, when a mote stopped transmitting,
the resulting imbalance in slot-sizes caused a jump in error
of ∼ 25 ms, which decayed to less than 1 ms over the next 8
rounds. Likewise, an error of ∼ 40 ms was introduced when
three new motes began transmitting at t = 180, requiring 19
rounds to reduce to 1 ms. The total throughput was slightly
impacted at each event, suffering two-round throughput losses
of 12.5% and 10.6%, respectively, during the removal and ad-
dition events. Within two rounds, the total throughput had
returned to normal capacity.

Overall, this experiment shows that the cost of entry and
exit for a mote is low and the system is able to adapt quickly
to recover bandwidth and re-equalize slot sizes. Furthermore,
only mote is interrupted by the incoming mote; the remaining
motes are able to compensate as part of their normal behavior
without any explicit knowledge of the entering event. The
main costs are the single round latency that an entering mote
must wait before transmitting data and a temporary drop in
fairness as the slot sizes are re-equalized.

From these results we can conclude general trends: for
Desync, the average desync error decreases exponentially
with time and proportional to O(n2). This is in line with
our theoretical results from section 4. For Desync-TDMA,
the bandwidth utilization is consistent, and message loss is
near zero, regardless of the state of desynchronization and
number of transmitting motes. Thus, nodes can easily enter
and leave with a limited impact on total throughput.

6.4 Comparison to other MAC protocols
We next compare the performance of Desync-TDMA to

other MAC protocols. As a reminder, we define N to be the
network size and n be the number of participating motes.

• Ideal TDMA: Ideally, TDMA would utilize all bandwidth
available and provide collision-free slots of exactly T/n size,
without paying any price for renegotiating slot size or slot
ownership or maintaining a common clock. This is not
realizable but provides an upper bound on the attainable
performance.

• Fixed TDMA: In this variant of TDMA, the slot sizes are
fixed at T/N . If a mote does not need to transmit during
its assigned slot, then that bandwidth is wasted. This is
simple to implement (given a global clock); however, it
performs poorly since it only uses n/N of the available
bandwidth. We do not implement this but it provides a
lower bound on what TDMA should achieve.

• Hybrid TDMA: Hybrid TDMA protocols modify the
Fixed TDMA scheme so that unowned slots can be used by
other motes. We use Z-MAC as a representative protocol
of this group [10]. Here, motes use the platform’s CSMA
default protocol to contend for the unused slots. This is
implemented by giving a mote a shorter back-off period
during its own slot than during other slots.2

• CSMA: In CSMA protocols, a mote checks the channel
before transmitting. If the channel is busy, then the mote
backs off a random amount before checking the channel
again. Message collision (and loss) occurs when motes
check a free channel simultaneously and decide to trans-
mit, or if the channel check is noisy. CSMA is a simple
and adaptive protocol that works well for small numbers
of motes and variable traffic, but experiences large backoffs
and message loss under high load. For our experiments, we
used the default CSMA (with initial and congestion back-
offs selected randomly from [0.3–4.9] ms and [0.3–19.6] ms,
respectively) as provided by TinyOS for the Telos platform.

Fixed-Size Scenario Results: In this section, we com-
pare the performance and scalability of different protocols us-
ing the fixed-size scenario from section 6.1. Table 2 shows
our experimental results, and figure 8(a) plots the normal-
ized throughput relative to the number of transmitting motes.
Desync-TDMA provided excellent bandwidth utilization, suf-
fering only a linear decay of approximately 0.8% per mote. In
addition, fairness was quite high for all n, and message loss
was near zero. In contrast, Telos-CSMA achieved a much
lower bandwidth utilization. This was due to bandwidth
wasted in backoffs. In addition, we observed high message
loss. We believe that this was due in part to listener satu-
ration; separate testing indicated that when the radio is re-
ceiving messages at peak data rates, the TinyOS 1.x CC2420
radio stack cannot always “keep up” and can drop messages.
We also speculate that under high contention the CC2420’s
clear-channel assessment is not sufficient for avoiding all mes-
sage collisions.

For n = 4, our Z-MAC implementation achieved lower
throughput than Telos-CSMA, as expected. In this case, most

2At the time of writing, no Z-MAC implementations were known
of for any CC2420-based motes. In our implementation, we used
a fixed slot size of 50 ms, a fixed frame size of 20, and set the
backoff times to 1.3-3.2 ms and 3.2-12.8 ms for the owner and non-
owners, respectively. For simplicity, and due to the experiments’
short durations (60 secs), nodes were time-synchronized at the start
of each experiment by a message from the base station but did not
send any synchronization messages during the experiment.



Ideal TDMA DESYNC-TDMA Z-MAC Telos-CSMA

Nodes (n):

Throughput (Kbps):

Max Throughput/node:

Min Throughput/node:

Message Loss (%):

4 10 20

62.8 62.8 62.8

15.7 6.3 3.1

15.7 6.3 3.1

0.0 0.0 0.0

4 10 20

60.8 57.9 53.0

15.2 5.8 2.8

15.2 5.6 2.4

0.3 0.2 0.2

4 10 20

36.3 41.0 40.4

10.0 5.1 2.8

8.0 2.9 1.4

15.4 32.4 50.7

4 10 20

44.2 46.1 35.7

11.6 4.4 5.1

9.7 3.5 0.4

35.9 57.1 87.1

Table 2: Throughput and message loss characteristics across different protocols. In our experiments, the
maximum rate at which a single node could send data was 62.8 Kbps.
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Figure 8: (a) Normalized throughput vs n, for different protocols. A normalized throughput of 1 represents a throughput

of 62.8 Kbps. (b) The achieved total throughput on a network of 10 nodes across varying data rates.

slots are not owned by any mote, so the behavior is anal-
ogous to CSMA, except that non-owner backoffs are larger
than regular CSMA backoffs, thus reducing bandwidth. How-
ever, the remaining Z-MAC results were not as expected. As
n increases the performance should approach that of Fixed-
TDMA. Instead, at n = 20, we observed that throughput
roughly remained constant and message loss increased sub-
stantially from n = 10. Z-MAC also relies on clear channel
assessment, as a result it shows similar ailments to Telos-
CSMA.

Low Traffic Results: In many sensor network monitoring
applications, nodes produce periodic sample data where the
data rate is much lower than channel capacity. Given this,
the question is whether there is still an advantage to using
other protocols over CSMA. We conducted a second experi-
ment with 10 transmitting motes, varying the periodic data
rate from 4 message/sec to 20 messages/sec (corresponding
to the fixed-size scenario). Each experiment was run twice
for 60 sec each with the averaged results plotted in figure
8(b). Desync-TDMA, Z-MAC, and Telos-CSMA all per-
formed similarly for data rates under 6 messages/sec. How-
ever, as the data rate increased, Desync-TDMA provided
appropriate throughput, whereas the bandwidth utilization
of the other protocols was suboptimal. This suggests that
even for low data rates, Desync-TDMA can still be a useful
protocol.

6.5 Summary Discussion
Desync-TDMA is a fundamentally new way of thinking

about TDMA scheduling. Without explicit scheduling or
time synchronization, Desync-TDMA is able to provide ex-
cellent total throughput and collision-free transmission un-
der high loads, regardless of the state of desynchronization.
Once desynchronized, it guarantees fairness and predictable
(stream-like) message latencies. When nodes enter or leave,
the system self-adjusts to accommodate the new nodes or
to recapture the unused slots. Furthermore, unlike hybrid-
TDMA methods, no contention is required for recapture.

However, Desync-TDMA also has some limitations and
may not be appropriate for all types of traffic. One impor-
tant limitation is that a node pays a “cost” when entering
the system: (a) 1-round latency before being able to transmit
data and (b) a smaller slot size for several rounds until the
system re-converges to the desynchronized state. A second
limitation is that Desync-TDMA provides nodes with equal
slots which, although guaranteeing fairness, can also lead to
inefficient bandwidth usage. If a node does not have enough
data to fully utilize its slot, then the unused bandwidth is
wasted. In hybrid protocols such as Z-MAC, nodes can re-
cover part of that bandwidth using CSMA contention, but
Desync-TDMA does not allow this. In the future, we plan
to extend Desync-TDMA to provide variable slot sizes that
can reflect each node’s desired bandwidth.

Another potential issue for Desync-TDMA is lossy radio
links. Message loss can occur due to reasons other than col-
lisions, and as a result, firing messages may occasionally be
lost. Although Desync-TDMA is self-correcting (a missed
message can be seen as analogous to a node leaving and then



re-entering the system one round later), missed firing mes-
sages will still result in a temporary loss in desync accuracy.
Desync-TDMA’s α parameter controls how strongly nodes
react to missed messages; larger values lead to faster con-
vergence at the cost of larger errors from dropped messages,
whereas smaller values trade convergence rate for robustness
to drop messages. We have considered mechanisms by which
nodes can dynamically vary α over time based on network
conditions, but a complete evaluation is left to future work.

Desync-TDMA is not explicitly designed to achieve
energy-efficiency by scheduling time slots for receiving nodes
to sleep, as is done in TRAMA. Instead, Desync-TDMA can
achieve energy-efficiency by utilizing asynchronous low power
listening [8] as is done by Z-MAC. It has been shown that this
can outperform duty cycling and does not require
application-level forecasting of future senders and receivers.

7. FUTURE WORK
There are several avenues of future work, including co-

ordinated sleep schedules and quality-of-service guarantees.
However, a critical next step is extending Desync-TDMA to
multi-hop networks.

Determining a slot schedule in multi-hop topologies is a
much more complex problem for two reasons: nodes belong
to intersecting and multiple-sized neighborhoods and overlap-
ping broadcast regions create hidden terminals. A standard
technique used in solving this problem is to color a constraint
graph in which all two-hop neighborhoods in the communi-
cation graph are fully connected. Assigning each node in the
graph its own color is equivalent to a global desynchroniza-
tion, whereas minimal coloring constructs the fairest distri-
bution of time amongst the nodes.

Desync-TDMA, however, allows for variable-sized slots.
Thus, larger-sized slots can be given to nodes in less-dense
areas of the graph. In this setting, Desync-TDMA could
provide a simple algorithm for self-organizing multi-hop
TDMA and automatically adjusting slot sizes as the traffic
patterns change. It also provides a different way of looking at
the multi-hop slot-assignment problem.

Our preliminary simulations suggest that Desync-TDMA
converges on multi-hop topologies and produces a slot size
comparable to T/c (where c is the chromatic number of the
node’s 2-hop neighborhood subgraph). However, proving that
the algorithm converges on all multi-hop topologies and pre-
dicting the slot size and convergence times is currently an
open question. Recent results in the control theory literature
on nearest-neighbor control may help with this analysis [5].

8. CONCLUSION
In this paper, we introduced a new primitive, desynchro-

nization, and provided a self-organizing algorithm that
achieves this in a single-hop network. Our theoretical results
prove that convergence to desynchronization is guaranteed
and occurs in time O(n2). As an application of Desync, we
presented Desync-TDMA, a self-organizing TDMA proto-
col. However, we note that each is a useful algorithm in its
own right. Desync provides the ability to space out events in
time, whereas Desync-TDMA constructs a method to share
a medium fairly by simply having the events correspond to
changes in ownership over the medium. In order to show the
simplicity and benefits of these algorithms, we implemented
them on TinyOS motes.

Our experimental results showed a reduction in message
loss from 57.1% with the default Telos-CSMA protocol to less
than 1% with Desync-TDMA for a network of 10 motes.
We also were able to gain a ∼ 25% increase in throughput. A
unique feature of this approach to TDMA is that it does not
rely on any external global infrastructure and self-adjusts to
fully utilize the bandwidth. In the future we plan to research
modifications that would expand the applicability of these
algorithms to multi-hop settings.
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