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Abstract We describe and analyze a 3-state one-way
population protocol to compute approximate majority
in the model in which pairs of agents are drawn uni-
formly at random to interact. Given an initial configu-
ration of x’s, y’s and blanks that contains at least one
non-blank, the goal is for the agents to reach consen-
sus on one of the values x or y. Additionally, the value
chosen should be the majority non-blank initial value,
provided it exceeds the minority by a su�cient margin.
We prove that with high probability n agents reach con-
sensus in O(n log n) interactions and the value chosen is
the majority provided that its initial margin is at least
!(

p
n log n). This protocol has the additional property

of tolerating Byzantine behavior in o(
p
n) of the agents,

making it the first known population protocol that tol-
erates Byzantine agents.

Keywords Population protocols ·majority · epidemics ·
Byzantine faults

1 Introduction

Population protocols [2] model distributed systems in
which individual agents are extremely limited, in fact
finite-state, and complex behavior of the system as a
whole emerges from the rules governing pairwise interac-
tion of the agents. A general survey of results concerning
population protocols may be found in [5]; for a detailed
comparison with message passing models, see [4]. We de-
scribe the model formally in Section 2.

Such models have been defined and used in other
fields, for example, statistics, epidemiology, physics and
chemistry; understanding their behavior is a fundamen-
tal scientific problem. The new perspective we bring as
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computer scientists is to ask what computational be-
haviors these systems can exhibit. In addition to funda-
mental scientific knowledge, answers may provide novel
designs for distributed computational systems at many
scales.

Chemists have defined a standard model of small
molecules in a well-mixed solution, in which the molecules
are agents, the state of an agent represents the chemical
species of the molecule, and interaction rules specify the
probable products of a collision between two molecules;
the sequence of collisions is determined by uniform ran-
dom draws of a pair of agents to interact [9, 10].

In [2] it is shown that this model in principle per-
mits the design of a “computer in a beaker,” that is, we
can design interaction rules that allow a population of n
molecules to simulate the behavior of a register machine
with a constant number of registers holding numbers of
magnitude O(n) for poly(n) steps with error probabil-
ity 1/ poly(n) in parallel time that is a factor of poly(n)
larger than the number of simulated instructions. In [3]
we have shown that a careful analysis of the proper-
ties of epidemics permits us to design a much more e�-
cient simulation, in which the per-step slowdown factor is
O(log5 n) parallel time.1 A remaining bottleneck in this
construction is the need to perform comparisons between
the number of agents in two di↵erent states x and y; this
is done in [3] using a roundabout algorithm that alter-
nates phases of having x and y tokens cancel each other
out upon meeting with phases of doubling the number of
x and y tokens in the population. The need for a faster
mechanism for computing a majority value was the main
driving factor behind the present work.

We present a very simple population protocol (with
only 3 states per agent, including the input states x and
y) that computes the majority value quickly, provided
the initial majority is su�ciently large (Section 3). The
essential idea of the protocol is that when two agents
with di↵erent preferences meet, one drops its preference
and enters a special “blank” state b; a blank agent then

1 Erroneously reported as O(log4 n) in [3].



2 Dana Angluin et al.

adopts the preference of any non-blank agent it meets.
Collisions between agents with opposite preferences re-
duce support for each preference equally on average. But
because a blank agent is more likely meet an agent with
the majority preference, encounters between non-blank
and blank agents preferentially increase the majority.
This creates a strong pressure toward the majority value,
and accounts for both the speed and e↵ectiveness of the
protocol when the initial majority is su�ciently large.
Once all tokens have the same preference, the protocol
has converged—further transitions have no e↵ect on the
states of the agents.

Unfortunately, while the protocol itself is simple, prov-
ing that it converges quickly appears to be very di�-
cult. We design a potential function that approximates
the time to convergence from any given state, and show
that this potential function converges to its minimum in
O(n log n) interactions with high probability (Section 4).
We also show using a separate argument that the out-
put value correctly reports the initial majority with high
probability if the net majority is !(

p
n log n); the essen-

tial idea is that we can bound this process by bounding
the net majority from below with a coupled fair random
walk, and show that there is not enough time for the
random walk to reach 0 before convergence if the initial
majority is large enough (Section 5).

We then consider some variants of the basic model.
In Section 6, we show that correctness continues to hold
(with a larger initial net majority) even if agents ini-
tially do not participate in the protocol but are recruited
upon receiving a start signal that propagates via epi-
demic. This is needed for the register machine simula-
tion discussed above, because a comparison operation
using the approximate majority protocol is triggered in
exactly this manner. In Section 7, we consider the e↵ect
of including Byzantine agents into the model. These are
agents that can pretend to be in any state in an interac-
tion. We show that, with high probability, o(

p
n) Byzan-

tine agents cannot significantly delay convergence of the
protocol to a state where most normal agents record the
correct majority, although they can keep a small propor-
tion of the normal agents confused, and (after exponen-
tial time on average) they can eventually drive the pro-
tocol to a stable bad state where all normal agents are
blank. Finally, in Section 8, we consider the case where
there are more than two possible input values to choose
between, and describe a reduction to the two-valued pro-
tocol that converges one bit at a time to a common con-
sensus value in O(kn log n) interactions, where k is the
number of bits needed to represent an input symbol.

2 Model

A population protocol consists of a finite set of states
Q, a finite set of input symbols X ✓ Q, a finite set
of output symbols Y , an output function � : Q ! Y ,

and a joint transition function � : Q ⇥ Q ! Q ⇥
Q. A population protocol is executed by a fixed finite
population of agents with states in Q. For convenience,
we assume that each agent has an identity v 2 V , but
agents do not know their own identities or others’.

Initially, each agent is assigned a state according to
an input x : V ! X that maps agent identities to input
symbols. In the general population protocol model, there
is an interaction graph, a directed graph G = (V,A)
without self-loops, whose arcs indicate the possible agent
interactions that may take place. (G is directed because
we assume that interacting agents are able to break sym-
metry.) In this paper, G will always be a complete graph.

During each execution step, an arc (v, w) is chosen
uniformly at random from A. The “source” agent v is
the initiator, and the “sink” agent w is the responder.
These agents update their states jointly according to �:
if v is in state q

v

and w is in state q
w

, the state of v
becomes �

1

(q
v

, q
w

), the state of w becomes �
2

(q
v

, q
w

),
where �

i

gives the ith coordinate of the output of �. The
states of all other agents are unchanged. For any given
V , a population protocol computes a (possibly partial)
function g : XV ! Y in ` steps with error probability
✏ if for all x 2 g�1(Y ), the configuration c : V ! Q
reached after ` steps satisfies the following properties
with probability 1� ✏.

– All agents agree on the correct output: for all v 2 V ,
g(x) = �(c(v)).

– This is also true of every configuration reachable from
c.

We are interested in the behavior exhibited by a fixed
protocol running in any finite population. Given a fam-
ily of functions defined for all finite populations (e.g.,
majority) we ask how well a fixed protocol can compute
the function in each finite population.

Although we have described the population protocol
model in a sequential light, in which each step is a single
pairwise interaction, interactions between pairs involving
di↵erent agents are independent and may be thought of
as occurring in parallel. In measuring the speed of popu-
lation protocols, then, we define 1 unit of parallel time

to be |V | steps. The rationale is that in expectation, each
agent initiates 1 interaction per parallel time unit; this
corresponds to the chemists’ idealized assumption of a
well-mixed solution.

2.1 Byzantine Agents

We extend the basic randomized population protocol
model described above to allow Byzantine behavior from
some of the agents. In addition to the n normal agents
we allow a population to include z Byzantine agents. For
each interaction, an ordered pair of agents is selected
uniformly at random from the population of normal and
Byzantine agents. A Byzantine agent may simulate any
normal agent state in an interaction, and its choice of
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state may depend on both the global configuration and
the identity of the specific agent it encounters. The state
of Byzantine agents is not meaningful and so is not in-
cluded in the description of a configuration. We first
describe our protocol and analyze its behavior without
Byzantine agents.

3 A 3-State Approximate Majority Protocol

We analyze the behavior of the following population pro-
tocol with states Q = {b, x, y}. The state b is the blank

state. Row labels give the initiator’s state and column
labels the responder’s state.

x b y
x (x, x) (x, x) (x, b)
b (b, x) (b, b) (b, y)
y (y, b) (y, y) (y, y)

Note that this protocol is one-way: every interaction
changes at most the responder’s state; thus it can be im-
plemented with one-way communication. Only the inter-
actions xb, yb, xy, and yx change the responder’s state;
we may think of these as the only interactions that con-
sume energy. The blank configuration of all b’s is sta-
ble, but cannot be reached from any non-blank configu-
ration because no interaction can eliminate the last x or
y. The configurations of all x’s and all y’s are stable, and
every non-blank configuration can reach at least one of
them.

An intuitive description of the process is that agents
in state b are undecided, while initiators in states x and y
are attempting to convert responders that they meet to
adopt their respective states. Such an initiator immedi-
ately converts an undecided responder, but only succeeds
in reducing an opposing responder to undecided status.
The process may also be thought of as two competing
epidemics, x’s and y’s, with the ability to reverse each
other’s progress.

In Sections 4 and 5, we show that with high prob-
ability this protocol (a) converges from any non-blank
configuration to a stable configuration in O(n log n) in-
teractions; and (b) correctly computes the initial major-
ity x or y value provided !(

p
n log n) more agents carry

this value in the starting configuration than carry the
opposing value. In Section 7, we show that it can toler-
ate o(

p
n) Byzantine agents; the formal definition of this

property is given there.

4 Convergence

We show that, from any non-blank initial configuration,
the 3-state approximate majority protocol converges to
either all x tokens or all y tokens within O(n log n) in-
teractions with high probability. We divide the space

Fig. 1 Region map of configuration space

large y large x

large b

central region

y xv

u
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of non-blank configurations into four regions: three cor-
ners, where most tokens are b, x, or y, and a central
region where the tokens are more evenly balanced; see
Figure 1. We show that the number of interactions in
each region is bounded by O(n log n) with high proba-
bility, by constructing a family of supermartingales of
the form M = eaS/nf(x, y) where a > 0 is a constant,
S counts the number of interactions of a particular type
and f is a potential function defined across the entire
space of configurations. (We overload x, y and b to de-
note the number of each token in a configuration.)

The resulting proof requires a careful selection of f .
To keep the argument at least locally simple, we con-
struct separate potential functions to bound di↵erent
classes of operations, based on the type of interaction
that occurs and which region of the configuration space
it occurs in. The reason for this classification is that the
behavior of the protocol is qualitatively di↵erent in dif-
ferent regions of the configuration space. When most to-
kens are blank, the protocol acts like an epidemic, with
non-blank tokens rapidly infecting blank tokens. When
most tokens carry the same non-blank value, the pro-
tocol acts like coupon collector, with the limit on con-
vergence being the time for the few remaining minority
tokens to be converted to the majority value. In the cen-
tral region, where no token type predominates, the pro-
tocol acts like a random walk with increasing bias away
from the center. Unfortunately, in none of these configu-
rations does the protocol act enough like the analogous
well-known stochastic processes to permit a direct reduc-
tion to previous results, and the behavior in border ar-
eas blends smoothly between one form and another. The
supermartingale/potential function approach allows sep-
arate arguments designed for each region to be blended
smoothly together. Unfortunately, this still requires con-
siderable calculation to verify that each potential func-
tion does what it is supposed to.

The reader may be surprised to find that such a sim-
ple protocol requires such a lengthy proof. Despite sub-
stantial e↵orts, we were unable to apply more powerful
tools to this problem. Part of the reason is that we are
trying to obtain exact asymptotic bounds on a system
in which much of the interesting behavior occurs when
particular tokens are very rare or when the behavior of
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the protocol is highly random (e.g., with evenly balanced
numbers of x and y tokens); this (together with the fact
that the corresponding systems of di↵erential equations
do not have closed-form solutions) appears to rule out
arguments based on classical techniques involving reduc-
tion to a continuous process in the limit (e.g., [12, 14]).
Similarly, approaches based on direct computation of hit-
ting times or eigenvalues of the resulting Markov chain
would appear to require substantially more work than a
direct potential function argument.

It is possible that such di�culties are an inherent
property of randomized population protocols. The ability
to construct register machines using such protocols [2,3]
suggests that analysis of an arbitrary protocol for ar-
bitrarily large populations quickly enters the realm of
undecidability. For example, the question of whether a
given protocol computes the constant function 0 with
probability (1� 1/n) in every possible population is un-
decidable. But we cannot rule out the possibility that a
more sophisticated approach might give an easier proof
of the convergence rate for the particular protocols we
are interested in.

Our results are stated using explicit constant factors.
The reader should be warned that in many cases these
are gross overestimates, and that from simulation we ob-
serve that the expected number of interactions to conver-
gence seems to be less than 4n log n from two challenging
families of initial configurations (see Figure 2.) The first
of these, initial populations evenly divided between x
and y with no blank tokens, can be shown numerically
for reasonably small n to be the configurations that max-
imize expected convergence time.

4.1 Notation and Preliminaries

We write x
t

, y
t

, and b
t

for the number of x, y, and
blank tokens at time t (that is, following t interactions).
When it will not cause confusion, we will omit the sub-
scripts. We are interested in properties of the discrete
time stochastic process

(x
0

, y
0

, b
0

), (x
1

, y
1

, b
1

), (x
2

, y
2

, b
2

), . . .

giving the values of these quantities after each interac-
tion. Let ⌧⇤ denote the convergence time, defined to
be the first time t at which x

t

= n or y
t

= n, indicating
that the agents have reached consensus.

Formally, for each t we consider the �-algebra gener-
ated by {(x

i

, y
i

, b
i

)} for all i  t, which we denote F
t

. To
avoid writing F

t

everywhere, we will implicitly condition
any probabilities or expected values concerning a single
interaction ending at some time t on F

t�1

.
To reduce the size of some of the expressions we will

be dealing with, we introduce several variables for re-
ferring to frequently-occurring expressions. These are as
follows.

u = x� y

Fig. 2 Simulation results: parallel time of approximate ma-
jority from two initial conditions
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v = x+ y = n� b

g = 1/(n(n� 1))

Note that �n  u  n, and |u| = n indicates that con-
vergence has been reached. Also 0  v  n, with 1  v
for non-blank configurations. The change of basis to u
and v allows us to take advantage of the symmetry be-
tween x and y tokens. The variable g is the conversion
factor between numbers of pairs of tokens and the prob-
ability that one of these pairs is selected; thus, for ex-
ample, gvb gives the probability of an interaction with a
non-blank initiator and a blank responder.

We make extensive use of the � operator from the
theory of di↵erence equations, defined as (�f)

t

= f
t+1

�
f
t

.

We use 0-1 indicator variables for various events, writ-
ing for example Ivb

t

for the indicator of the event that the
interaction that ends at time t is an xb or a yb interac-
tion. Though we attempt to give these indicator variables
evocative names, we prefer convenience to absolute con-
sistency: so, for example, we use Ixy as the indicator for
the event of either an xy or a yx interaction. Table 1 lists
the indicator variables we use.
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Indicator Sum Event
Ivb Svb xb or yb interaction
Ixy Sxy xy or yx interaction
Ib Sb b corner interaction with b � (7/8)n
Ix Sx x corner interaction with x � (7/8)n
Iy Sy y corner interaction with y � (7/8)n
Ic Sc central interaction: Ib = Ix = Iy = 0
Iz Sz interaction with a Byzantine initiator

Table 1 Indicator variables and their sums.

For each indicator variable I
t

we use a corresponding
variable S

t

=
P

t

j=1

I
j

for the total number of times I’s
event has occurred.

4.2 More on Probability

In its simplest form, a supermartingale is a sequence of
real-valued random variables X

0

, X
1

, X
2

, X
3

, . . . where
each X

t

has bounded expectation and the conditional
expectation E[X

t

|X
0

. . . X
t�1

]  X
t�1

(see [11, Chapter
12]). The intuition is that a supermartingale is a process
that always stays the same or drops on average. More
generally, a supermartingale can be equipped with a se-
quence of �-algebras F

0

✓ F
1

✓ F
2

. . . that express the
information available at time t; here the requirements is
that each X

t

is measurable with respect to F
t

, and that
E[X

t

|F
t�1

]  X
t�1

. In either case the expected value of
each X

t

is bounded by the initial value: E[X
t

]  E[X
0

].
Related processes include submartingales, where

E[X
t

|X
0

. . . X
t�1

] � X
t�1

, and martingales, where
E[X

t

|X
0

. . . X
t�1

] = X
t�1

(these are also discussed
in [11]). A useful tool for bounding the value of a mar-
tingale is Azuma’s inequality [1]. This says that if the
di↵erences X

t

�X
t�1

in a martingale with X
0

= 0 are all
bounded by by 1, then Pr[X

t

> �]  exp(��2/2t), and
by symmetry Pr[X

t

< ��]  exp(��2/2t); the proof
is by bounding E[exp(↵X

t

)] for a suitable choice of ↵.
The upper bound also holds for supermartingales (as ob-
served in [14]); the intuition is that any extra drop in X

t

only makes it harder to exceed �.
For processes with varying lengths, it is useful to con-

sider the concept of a stopping time. This is a ran-
dom variable ⌧ that is finite with probability 1 and for
which the event [⌧ = t] can be determined by exam-
ining X

0

. . . X
t

(or, in the more general case, F
t

). A
(super/sub)martingale truncated by a stopping time by
setting X 0

t

= X
min(t,⌧)

is still a (super/sub)martingale,
and the property E[X

⌧

]  E[X
0

] holds for supermartin-
gales [6, 11].

In our case, we let ⌧⇤ be the stopping time at which
the protocol converges, and let ⌧ = min(⌧⇤, kn log n) for
some fixed k. Note that ⌧ is also a stopping time. This
truncation guarantees that ⌧ and quantities defined in
terms of it are finite and well-defined, despite the logical
possibility that convergence is not achieved and ⌧⇤ is un-

defined. Assuming that the potential function f does not
vary too much over the space of configurations, we can
use the supermartingale property E[M

⌧

]  M
0

to show
that eaS⌧/n is small, and then use Markov’s inequality
to get the bound on S

⌧

. Summing the bounds for each
region then gives the total bound on the number of inter-
actions. Though it would seem that truncating at time
kn log n assumes what we are trying to prove, in fact we
show that with high probability the total number of in-
teractions is much less than kn log n, implying that we
do in fact converge by the given time bound.

4.3 Relative Changes in 1/f

Some of our potential functions are of the form 1/f for
some f for which it is easy to compute �f . The following
lemma relates the relative change in 1/f to the values of
�f and f . We use this to show that various functions 1/f
drop by a constant factor conditioned on certain events,
which will pay for the rise in the exponential factor to
which they are attached.

Lemma 1 Let f be a sequence of positive real numbers

such that |�f/f | < 1. Then

�(1/f)

1/f
= ��f/f + (�f/f)2 � (�f/f)3 + . . .

=
1X

i=1

(��f/f)i. (1)

Proof Compute

�(1/f)

1/f
= f�(1/f)

= f

✓
1

f +�f
� 1

f

◆

= f

✓
f � (f +�f)

(f +�f)f

◆

=
��f

f +�f

=
��f/f

1 +�f/f

= (��f/f)
1X

i=0

(��f/f)i

=
1X

i=1

(��f/f)i.

ut

4.4 Bounding the Number of State-Changing
Interactions

We start by obtaining a bound on the number of inter-
actions in which some agent changes state: specifically,
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the xb, yb, xy, and yx interactions. Define

Svb

t

=
tX

i=1

Ivb
i

,

the number of interactions out of the first t that are of
type xb or yb and

Sxy

t

=
tX

i=1

Ixy
i

,

the number that are of type xy or yx. Because every
blank created by an xy or yx interaction must be con-
verted back to an x or y by an xb or yb interaction before
participating in another xy or yx interaction, for any t
we have

Sxy

t

 Svb

t

+ n.

At convergence (t = ⌧⇤) there are no blanks and

Sxy

⌧⇤  Svb

⌧⇤ .

We show that the potential function 1

u

2
+2n

is reduced
by �⇥(1/n) of its previous value on average conditioned
on the event that either an xb or a yb interaction occurs,
and that it rises by a smaller relative amount conditioned
on the event that either an xy or a yx interaction occurs.
This gives a high-probability O(n log n) bound on Svb

⌧⇤ �
↵Sxy

⌧⇤ for some constant 0 < ↵ < 1. But since Svb

⌧⇤ � Sxy

⌧⇤

we can derive an O(n log n) bound on Svb

⌧⇤ alone (and
thus also on Sxy

⌧⇤ alone) from the bound on Svb

⌧⇤ � ↵Sxy

⌧⇤ .
Our goal is thus to bound the change in 1/f for f =

u2 + 2n. We start by getting a bound on |�f/f |, which
limits how many terms we need to consider in the series
expansion in (1). Compute

�f = ((u+�u)2 + 2n)� (u2 + 2n)

= u2 + 2u�u+ (�u)2 � u2

= 2u�u+ (�u)2.

Because u = x � y, �u can only be �1, 0 or 1. Since
|�u|  1, we have |�(u2 + 2n)|  2|u| + 1, and thus
|�f/f |  (2|u| + 1)/(u2 + 2n) = O(min(1/|u|, |u|/2n)).
This last quantity is maximized at u = ⇥(

p
n), giving

the bound

|�f/f | = O(1/
p
n). (2)

We now consider the expected values of �f and (�f)2

conditioned on Ivb or Ixy. In computing these expecta-
tions, we also condition implicitly on the state before the
transition (so, for example, b, x, and y are all treated as
constants).

E[�(u2 + 2n)|Ivb]
= (x/v)(2u+ 1) + (y/v)(�2u+ 1)

= 2u(x� y)/v + (x+ y)/v

= 2u2/v + 1.

E[�(u2 + 2n)|Ixy]

=
1

2
(2u+ 1) +

1

2
(�2u+ 1)

= 1.

E[(�(u2 + 2n))2]|Ivb]
= (x/v)(2u+ 1)2 + (y/v)(�2u+ 1)2

= 4u2 + 4u(x� y)/v + 1

= 4u2 + 4u2/v + 1.

E[(�(u2 + 2n))2|Ixy]

=
1

2
(2u+ 1)2 +

1

2
(�2u+ 1)2

= 4u2 + 1.

Applying Lemma 1 to the relative change in 1/(u2 +
2n) conditioned on Ivb gives the following.

Lemma 2

E


�(1/(u2 + 2n))

1/(u2 + 2n)
|Ivb

�
 �15

32
n�1 +O(n�3/2). (3)

Proof Let r = u2/n, so that u2 = rn. Let f = u2 + 2n.
Then by (2), |f/�f | = O(n�1/2) and we apply Lemma 1
to get the following.

E


�(1/f)

1/f
|Ivb

�

= E

"
��f

f
+

✓
�f

f

◆
2

+O(n�3/2)|Ivb
#

= �2u2/v + 1

u2 + 2n
+

4u2 + 4u2/v + 1

(u2 + 2n)2
+O(n�3/2)

=
�(2u2/v + 1)(u2 + 2n) + 4u2 + 4u2/v + 1

(u2 + 2n)2

+O(n�3/2)

=
�2u4/v � 4u2n/v � u2 � 2n+ 4u2 + 4u2/v + 1

(u2 + 2n)2

+O(n�3/2)

=
(�2u4 � 4u2n+ 4u2)/v � 2n+ 3u2 + 1

(u2 + 2n)2
+O(n�3/2)

 (�2u4 � 4u2n+ 4u2)/n� 2n+ 3u2 + 1

(u2 + 2n)2
+O(n�3/2)

(because �2u4 � 4u2n+ 4u2  0 and v  n)

=
(�2r2n2 � 4rn2 + 4rn)/n� 2n+ 3rn+ 1

(r + 2)2n2

+O(n�3/2)
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=
�2r2n� rn� 2n+ 4r + 1

(r + 2)2n2

+O(n�3/2)

= (1/n)
�2r2 � r � 2 + 4r/n+ 1/n

(r + 2)2
+O(n�3/2)

 (1/n)
�2r2 � r � 2

(r + 2)2
+ 1/n2 +O(n�3/2),

(because (4r + 1)/(r + 2)2  1)

= (1/n)
�2r2 � r � 2

(r + 2)2
+O(n�3/2).

Some quick di↵erentiation reveals that (�2r2 � r �
2)/(r + 2)2 takes on its maximum value of �15/32 at
r = 2/7. The claimed bound follows. ut

Conditioning on Ixy, it is possible for 1/(u2 + 2n)
to rise slightly. But we can again bound the rise using
Lemma 1.

Lemma 3

E


�(1/(u2 + 2n))

1/(u2 + 2n)
|Ixy

�
 9

32
n�1 +O(n�3/2). (4)

Proof Again let r = u2/n and f = u2+2n. Now we have

E


�(1/f)

1/f
|Ixy

�

= E

"
��f

f
+

✓
�f

f

◆
2

+O(n�3/2)|Ixy
#

= � 1

u2 + 2n
+

4u2 + 1

(u2 + 2n)2
+O(n�3/2)

=
�u2 � 2n+ 4u2 + 1

(u2 + 2n)2
+O(n�3/2)

=
3u2 � 2n+ 1

(u2 + 2n)2
+O(n�3/2)

=
3rn� 2n+ 1

(r + 2)2n2

+O(n�3/2)

= (1/n)
3r � 2 + 1/n

(r + 2)2
+O(n�3/2)

= (1/n)
3r � 2

(r + 2)2
+O(n�3/2).

Here we obtain a maximum for (3r � 2)/(r + 2)2 of
9/32 at r = 10/3. ut

Shifting both coe�cients up slightly, from �15/32 to
�7/16 and from 9/32 to 5/16, we have the following.

Corollary 1 For all su�ciently large n,

E[1/f
t+1

|Ivb] < exp(� 7

16
n�1)(1/f

t

)

and

E[1/f
t+1

|Ixy] < exp(
5

16
n�1)(1/f

t

).

Proof From Lemma 2,

E[�(1/f)/(1/f)|Ivb]  �15

32
n�1 +O(n�3/2),

which implies

E[((1/f
t+1

)� (1/f
t

))/(1/f
t

)|Ivb]  �15

32
n�1+O(n�3/2),

and therefore

E[1/f
t+1

|Ivb]  (1� 15

32
n�1 +O(n�3/2))(1/f

t

).

For all su�ciently large n,

(1� 15

32
n�1 +O(n�3/2)) < exp(� 7

16
n�1),

because shifting �15/32 up to �7/16 absorbs both the
O(n�3/2) error term and the second-order and higher
terms in the Taylor series expansion of the exponential.
The second claim follows similarly from Lemma 3 by
shifting 9/32 up to 5/16. ut

For other interactions the value of 1/f is unchanged.
Combining these gives the following.

Lemma 4 The stochastic process {M
t

} given by

M
t

=
exp

��
7

16

Svb

t

� 5

16

Sxy

t

�
/n
�

u2

t

+ 2n
(5)

is a supermartingale.

Proof We analyze the expected value ofM
t

given the his-
tory of the process through interaction t�1; it su�ces to
show that conditioning on the indicator I for each pos-
sible type of interaction, E[M

t

|I]  M
t�1

. If the interac-
tion is not of type vb or xy, then M

t

= M
t�1

. If the inter-
action is of type vb then Svb

t

= 1+Svb

t�1

and E[1/f
t

|Ivb] <
exp(� 7

16

n�1)(1/f
t�1

), so E[M
t

|Ivb] < M
t�1

. Finally, if
the interaction is of type xy then Sxy

t

= 1 + Sxy

t�1

and
E[1/f

t

|Ixy] < exp( 5

16

n�1)(1/f
t�1

), so E[M
t

|Ixy] < M
t�1

.
ut

Corollary 2 Let ⌧  min(⌧⇤,M) be a stopping time,

where ⌧⇤ is the time at which x = n or y = n first holds

and M is an arbitrary bound. Then for all su�ciently

large n,

Pr
⇥
Svb

⌧

� 8n log(n+ 2) + 8cn log n+ (5/2)n
⇤
 n�c.

(6)

Proof Since {M
t

} as defined in Lemma 4 is a super-
martingale, we have E[M

⌧

]  M
0

 1/n. Since |u|  n
at ⌧ , the denominator in M

⌧

is at most n2 + 2n, giving
the bound

E


exp

✓✓
7

16
Svb

⌧

� 5

16
Sxy

⌧

◆
/n

◆�
 n2 + 2n

n
= n+ 2.
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Markov’s inequality now gives

Pr


exp

✓✓
7

16
Svb

⌧

� 5

16
Sxy

⌧

◆
/n

◆
� ↵(n+ 2)

�
 1

↵
,

from which it follows that

Pr

✓
7

16
Svb

⌧

� 5

16
Sxy

⌧

◆
� n log(n+ 2) + n log↵

�
 1

↵

or, letting ↵ = nc,

Pr

✓
7

16
Svb

⌧

� 5

16
Sxy

⌧

◆
� n log(n+ 2) + cn log n

�
 n�c.

(7)

Because for all t, Sxy

t

 Svb

t

+ n, we have

7

16
Svb

⌧

� 5

16
Sxy

⌧

� 1

8
Svb

⌧

� 5

16
n.

Substituting 1

8

Svb

⌧

� ( 5

16

)n into (7) gives the result for
Svb

⌧

. Because Sxy

⌧

 Svb

⌧

+ n, we simultaneously bound
Sxy

⌧

. ut

Because M is arbitrary in this result, we may choose
M > 8n log(n+ 2) + 8cn log n+ (5/2)n. Then if Svb

⌧⇤ ex-
ceeds 8n log(n+2)+8cn log n+(5/2)n so does Svb

⌧

. Thus
we get a high probability O(n log n) bound on Svb

⌧⇤ and on
Sxy

⌧⇤ , giving a bound on the total number of interactions
that change the state of some agent until convergence,
i.e., on the total energy cost of the protocol.

In the following sections, we extend this O(n log n)
bound on total energy to an O(n log n) bound on total
interactions, by adding in the non-state changing bb, xx,
yy, bx, and by interactions.

4.5 Bounding Interactions in the Central Region

We now consider interactions occurring in configurations
with max(x, y, b) < 7

8

n. The essential idea is that in the
central region where this condition holds, at least two of
b, x, and y must be at least n/16. It follows that whenever
an interaction in this region occurs, either Pr[Ixy = 1] �
2g(n/16)2 > 1/128 (if both x and y are at least n/16) or
Pr[Ivb = 1] � g(n/16)2 > 1/256 (if b and either x or y
are at least n/16.) Recall that g = 1/n(n� 1).

Lemma 5 Let Ic
t

be the indicator variable for the event

that the interaction at time t starts in a state with

max(x, y, b) < 7

8

n and let Sc

t

=
P

t

i=1

Ic
i

. Let ⌧ 
min(⌧⇤,M) be a stopping time, where ⌧⇤ is the time at

which x = n or y = n first holds and M is an arbitrary

bound. Then for all su�ciently large n

Pr
⇥
Sc

⌧

� 130Svb

⌧

+ 258Sxy

⌧

+ cn log n
⇤
 n�c. (8)

Proof Let

C
t

= exp
�
n�1

�
Sc

t

� 130Sxy

t

� 258Svb

t

��
.

Observe that conditioned on Ic
t

= 1, if x
t�1

and y
t�1

are both at least n/16, then there is a probability of at
most (1� 1/128) of an interaction which increases Sc

t�1

but not Svb

t�1

or Sxy

t�1

and multiplies C
t�1

by exp(1/n),
and a probability of at least 1/128 of an xy interaction,
which increases both Sc

t�1

and Sxy

t�1

and multiplies C
t�1

by exp(�129/n). Similarly, if b and either x or y is at
least n/16, there is a probability of at most (1�1/256) of
an interaction which increases Sc

t�1

but not Svb

t�1

or Sxy

t�1

and multiplies C
t�1

by exp(1/n), and a probability of at
least 1/256 of a vb interaction which increases both Sc

t�1

and Svb

t�1

and multiplies C
t�1

by exp(�257/n). Taking
the maximum of these two cases, we get the following
upper bound.

E[C
t

|F
t�1

, Ic
t

= 1]

 C
t�1

max

8
>><

>>:

✓
1� 1

128

◆
e1/n +

1

128
e�129/n,

✓
1� 1

256

◆
e1/n +

1

256
e�257/n

9
>>=

>>;

 C
t�1

max

(
1 + (1� 129/128)n�1 +O(n�2),

1 + (1� 257/256)n�1 +O(n�2)

)

 C
t�1

max

(
1� 1/(128n) +O(n�2),

1� 1/(256n) +O(n�2)

)

 C
t�1

,

for su�ciently large n. When Ic
t

= 0, C
t

cannot increase,
so we have E[C

t

|F
t�1

]  C
t�1

always, and C
t

is a super-
martingale.

It follows that E[C
⌧

]  C
0

= 1. Applying Markov’s
inequality as in the proof of Corollary 2 gives

Pr
⇥
Sc

⌧

� 130Svb

⌧

+ 258Sxy

⌧

+ cn log n
⇤
 n�c. (9)

ut

4.6 Bounding Interactions with Large b

We now consider interactions in the corner of the space
where b is large. Here we use the potential function f =
1/v, which drops consistently by ⇥(�1/n) of its current
value on average when b � (7/8)n, and whose rise in
other parts of the space is bounded by O(Ixy/n). This
gives the following result:

Lemma 6 Let Ib
t

be the indicator for the event that the

interaction ending at time t starts in a state with b �
(7/8)n. Let Sb

t

=
P

t

i=1

Ib
t

. Let ⌧  min(⌧⇤,M) be a

stopping time, where ⌧⇤ is the time at which x = n or
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y = n first holds and M is an arbitrary bound. Then for

all su�ciently large n

Pr
⇥
Sb

⌧

� 4cn log n+ 40Sxy

⌧

⇤
 n�c.

Proof We first consider the case of just one nonblank,
that is v = 1. In this case

�(1/v)

1/v
= � Ivb

v + 1
,

and

E[�(1/v)]

1/v
= � gvb

v + 1
= � 1

2n
.

Assume v � 2. The function 1/v is simple enough
that we can compute �(1/v)/(1/v) directly:

�(1/v)

1/v
= v

✓
Ivb
✓

1

v + 1
� 1

v

◆
+ Ixy

✓
1

v � 1
� 1

v

◆◆

= v

✓
Ivb

�1

v(v + 1)
+ Ixy

1

v(v � 1)

◆

= � Ivb

v + 1
+

Ixy

v � 1
.

We now consider two cases, depending on whether b
is larger or smaller than (7/8)n. When b � (7/8)n, we
have

E[�(1/v)]

1/v
= E


� Ivb

v + 1
+

Ixy

v � 1

�

= � gvb

v + 1
+

2gxy

v � 1

 �gb/2 +
2g(v/2)2

v � 1

 � (7/8)n

2n(n� 1)
+ gv

(because v/(v � 1)  2 when v � 2)

 �(7/16)n�1 +
n/8

n(n� 1)

(because v  n/8)

 �(7/16)n�1 + (1/8)n�1 +O(n�2)

= �(5/16)n�1 +O(n�2).

Alternatively, when b < (7/8)n, we have

�(1/v)

1/v
= � Ivb

v + 1
+

Ixy

v � 1

 Ixy

n/8� 1

 (9/n)Ixy,

for su�ciently large n. As in Corollary 1, we adjust the
coe�cients to absorb higher-order terms: �5/16 to �1/4
and 9 to 10. Then we have that

B
t

=
exp

⇣
n�1

h
1

4

⇣P
t

i=1

Ib
i

⌘
� 10

⇣P
t

i=1

Ixy
i

(1� Ib
i

)
⌘i⌘

v
t

is a supermartingale.
Applying the supermartingale property to B

⌧

gives

E [B
⌧

]

 E

"
exp

�
n�1

⇥
1

4

�P
⌧

i=1

Ib
i

�
� 10

�P
⌧

i=1

Ixy
i

(1� Ib
i

)
�⇤�

n

#

 B
0

 1.

Applying Markov’s inequality gives

Pr

"
n�1

"
1

4

 
⌧X

i=1

Ib
i

!
� 10

 
⌧X

i=1

Ixy
i

(1� Ib
i

)

!#
� c log n

#

 n�c.

Rearranging and observing that
P

⌧

i=1

Ixy
i

(1�Ib
i

)  Sxy

⌧

,
we have

Pr
⇥
Sb

⌧

� 4cn log n+ 40Sxy

⌧

⇤
 n�c

as claimed. ut

4.7 Bounding Interactions with Large x or y

For x � (7/8)n or y � (7/8)n we use the potential func-
tions 3y + b+ 1 or 3x+ b+ 1, respectively. As with the
large-b case, we bound the total number of steps taken
when x or y is large by showing the potential function
drops by a factor of exp(�⇥(1/n)) in these corners and
rises by an amount we can bound using previous bounds
on Svb and Sxy.

Lemma 7 Let Ix
t

be the indicator for the event that the

interaction ending at time t starts in a state with x �
(7/8)n. Let Sx

t

=
P

t

i=1

Ix
t

. Let ⌧  min(⌧⇤,M) be a

stopping time, where ⌧⇤ is the time at which x = n or

y = n first holds and M is an arbitrary bound. Then for

all su�ciently large n

Pr
⇥
Sx

⌧

� 8n log(3n+ 1) + 8cn log n+ 136Svb

⌧

+ 72Sxy

⌧

⇤

 n�c.

By symmetry the same bound holds for Sy

⌧

.
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Proof We consider the probabilities and e↵ects of inter-
action types that change the value of 3y + b + 1. For
example, a yb interaction happens with probability gyb
and increases y by 1 and decreases b by 1, for a net
change of +2 to 3y + b + 1. The analyses of yx, xb and
xy interactions proceed similarly.

Suppose (7/8)n  x < n. Then we have

E [�(3y + b+ 1)]

3y + b+ 1

= g
+2yb+ yx� xb� 2xy

3y + b+ 1

= g
+2yb� xb� xy

3y + b+ 1

= g
2yb

3y + b+ 1
� g

x(y + b)

3y + b+ 1

 g
2yb

3y + b+ 1
� gx/4

(because x < n and therefore (y+ b)/(3y+ b+1) � 1/4)

 g
n

16
� (7/32)n�1

(because y+ b  n/8 and therefore 32yb  (3y+ b+1)n)

= (1/16)n�1 � (7/32)n�1 +O(n�2)

= �(5/32)n�1 +O(n�2).

Alternatively, if x < (7/8)n, we have 3y + b + 1 >
y + b > n/8. This gives

�(3y + b+ 1)

3y + b+ 1
 2Ivb + Ixy

3y + b+ 1

 2Ivb + Ixy

n/8

= (16Ivb + 8Ixy)n�1.

Shifting the coe�cients up as in Corollary 1 and using
an argument similar to that in the proof of Lemma 6
shows that the stochastic process {X

t

} where

X
t

=exp

0

BBBB@
n�1

2

66664

1

8

 
tX

i=1

Ix
i

!

�

 
tX

i=1

(17Ivb
i

+ 9Ixy
i

)(1� Ib
i

)

!

3

77775

1

CCCCA

· (3y
t

+ b
t

+ 1)

is a supermartingale.
The supermartingale property gives that, for bounded

⌧  ⌧⇤,

E[X
⌧

]  X
0

 3n+ 1.

So by Markov’s inequality, we have

Pr

2

666664

exp

0

@n�1

2

4
1

8
Sx

⌧

�(17Svb

⌧

+ 9Sxy

⌧

)

3

5

1

A

· (3y
⌧

+ b
⌧

+ 1)

� (3n+ 1)nc

3

777775
 n�c.

The quantity 3y
⌧

+ b
⌧

+ 1 is at least 1 (the case of
all x tokens). Substituting 1 for 3y

⌧

+ b
⌧

+ 1 and taking
logarithms gives

Pr

2

4n�1

✓
1

8
Sx

⌧

� (17Svb

⌧

+ 9Sxy

⌧

)

◆

� log(3n+ 1) + c log n

3

5  n�c.

After further rearrangement this becomes

Pr
⇥
Sx

⌧

� 8n log(3n+ 1) + 8cn log n+ 136Svb

⌧

+ 72Sxy

⌧

⇤

 n�c.

ut

The same bound clearly holds for the analogous quan-
tity Sy

⌧

by symmetry.

4.8 Bounding Total Interactions

Now we can put the results of Corollary 2 and Lemmas 5,
6, and 7 together to obtain a high-probability bound on
⌧⇤, the total number of interactions before convergence.
The explicit constants in this theorem are quite large;
recall that the simulation results in Figure 2 suggest that
the true coe�cient of n log n is less than 4.

Theorem 1 Let ⌧⇤ be the time at which x = n or y = n
first holds. Then for any fixed c > 0 and su�ciently large

n,

Pr [⌧⇤ � 6769n log n+ 6773cn log n+ 2552n]  5n�c.

Proof Let the error parameter c > 0 be fixed. Let ⌧ =
min(⌧⇤, 104(c + 1)n log n). Observe that ⌧ = Sc

⌧

+ Sb

⌧

+
Sx

⌧

+ Sy

⌧

, since every interaction takes place either in
the central region or in one of the three corners. Using
Lemma 5 for the first term, Lemma 6 for the second
term, and Lemma 7 for the third and fourth terms, we
first get bounds in terms of Svb

⌧

and Sxy

⌧

. Excluding an
error probability of at most 4n�c, we have

⌧ = Sc

⌧

+ Sb

⌧

+ Sx

⌧

+ Sy

⌧

<

0

B@

130Svb

⌧

+ 258Sxy

⌧

+ cn log n
+ 40Sxy

⌧

+ 4cn log n
+ 136Svb

⌧

+ 72Sxy

⌧

+ 8cn log n + 8n log(3n+ 1)
+ 136Svb

⌧

+ 72Sxy

⌧

+ 8cn log n + 8n log(3n+ 1)

1

CA
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= 402Svb

⌧

+ 442Sxy

⌧

+ 21cn log n+ 16n log(3n+ 1).

By Corollary 2, with error probability n�c we have

Svb

⌧

< 8n log(n+ 2) + 8cn log n+ (5/2)n

and therefore also

Sxy

⌧

< 8n log(n+ 2) + 8cn log n+ (7/2)n

. Thus, with total error probability 5n�c we have

⌧ < 6752n log(n+ 2) + 6773cn log n

+ 16n log(3n+ 1) + 2552n

< 6769n log n+ 6773cn log n+ 2552n,

for su�ciently large n. But if ⌧ < 104(c+1)n log n, then
⌧⇤ = ⌧ , giving the claimed bound. ut

5 Correctness of Approximate Majority

Not only does the 3-state protocol converge quickly, but
it also converges to the dominant non-blank value in its
input if there is a large enough initial majority.

Theorem 2 With high probability, the 3-state approxi-

mate majority protocol converges to the initial majority

value if the di↵erence between the initial majority and

initial minority populations is !(
p
n log n).

Proof Without loss of generality, assume that the ini-
tial majority value is x. We consider a coupled process
(u

t

, u0
t

) where u
t

= (x
t

�y
t

) and u0
t

is the sum of a series
of fair ±1 coin flips. Initially u0

0

= u
0

. Later values of u0
t

are specified by giving a joint distribution on (�u,�u0).
We do so as follows. Let p be the probability that�u = 1
and q the probability that �u = �1. Then let

(�u,�u0) =

8
>>><

>>>:

(0, 0) with probability 1� p� q,

(1, 1) with probability 1

2

(p+ q),

(1,�1) with probability p� 1

2

(p+ q),

(�1,�1) with probability q.

The probability in the third case is non-negative if
p/(p+ q) = Pr[�u = 1|�u 6= 0] � 1

2

. This holds as long
as u � 0; should u ever drop to zero, we end the process.

Observe that unless this event happens, we have u
t

�
u0
t

. We can also verify by summing the cases that �u
rises with probability exactly p and drops with proba-
bility exactly q; and that �u0 rises or drops with equal
probability 1

2

(p + q). So we have E[�u0] = 0 and that
|�u0|  1, the preconditions for Azuma’s inequality.

Theorem 1 shows that the process converges before
O(n log n) interactions with high probability. Suppose
the process converges at some time ⌧ = O(n log n).
Then by Azuma’s inequality we have that |u0

⌧

� u0
0

| =

O(
p
n log n) throughout this interval with high proba-

bility. So if u0
0

= u
0

= !(
p
n log n), it follows that

u
0

� u0
0

� 0 throughout the execution, and in particular
that the process does not terminate before convergence
and that u is non-negative at convergence. But this ex-
cludes the y = n case, so the process converges to the
initial majority value. ut

6 Correctness with an Epidemic-Triggered Start

In this section we analyze a variant of the 3-state proto-
col, the epidemic-triggered approximate majority

protocol, where agents are recruited into the computa-
tion by an epidemic. This is important to the application
of the 3-state majority protocol to the register machine
simulation, as the signal to start the next operation is
broadcast from the leader via an epidemic.

In this protocol, in addition to the b/x/y value, each
agent has an active/inactive bit. Active agents interact
as before, inactive agents become active when an active
agent initiates an interaction with them, and all other
interactions have no e↵ect. By previous results on epi-
demics in this model, with high probability, a starting
configuration with at least one active agent will reach a
configuration where all agents are active withinO(n log n)
interactions [3]. For the following theorem we require a
somewhat larger initial majority to guarantee conver-
gence to the correct value.

Theorem 3 Let ✏ > 0. If the di↵erence between the ini-

tial majority and initial minority populations is ⌦(n3/4+✏)
and there is exactly one active agent, then with high prob-

ability, the epidemic-triggered approximate majority pro-

tocol converges to the initial majority value.

Proof Without loss of generality, assume x is the major-
ity value. Let the first half be the prefix of the execution
where there are at most n3/4 active agents and the sec-

ond half be the rest. With high probability, the first
half is over in O(n log n) interactions. Let x

active

be the
number of active x agents and y

active

be the number of
active y agents. Let u

active

= x
active

� y
active

. We show
that with high probability, u

active

> 0 throughout the
second half, which establishes the theorem statement in
conjunction with Theorem 1.

There are two types of events that can change u
active

:
a non-blank agent becomes active, or there is an inter-
action between active agents. Let u

initial

be the num-
ber of active initially-x agents minus the number of ac-
tive initially-y agents. Then �u

initial

is the change at-
tributable to events of the first type and �(u

active

�
u
initial

) is the change attributable to the second type.
During the first half, events of the first type predomi-
nate. There are n3/4 � 1 agents that become active, but
the probability of an active-active interaction is at most
(n3/4/n)2 = n�1/2. By Azuma’s inequality, the number
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of active-active interactions is O(n1/2 log n) with high
probability.

In order to apply the techniques of Theorem 2, we
must establish that x’s constitute a majority of the ac-
tive agents at the end of the first half. We apply Azuma’s
inequality again, finding that with high probability, the
value of u

initial

is within O(n3/8(log n)1/2) of its expec-
tation throughout the execution. In the second half, this
expectation is ⌦(n3/4+✏(n3/4/n)) = ⌦(n1/2+✏). We con-
clude that x’s enjoy an advantage of ⌦(n1/2+✏) to start
the second half with high probability. At this point we re-
capitulate the analysis from the previous theorem, giving
the random walk a O(n1/2 log n) head start, since each
active-active interaction from the first half might have
increased u

active

by 2. ut

7 Tolerating Byzantine Agents

In this section, we show that the 3-state approximate ma-
jority protocol can tolerate z Byzantine agents, where
z = o(

p
n), computing the correct majority value in

O(n log n) time with high probability despite their in-
terference. However, to do so we must both assume a
somewhat larger initial majority, and slightly relax the
criterion for convergence.

The issue with convergence is that Byzantine agents
can always pull the normal agents out of a converged
configuration. For example, if all normal agents are in
the x state, any encounter with a Byzantine initiator
can shift the normal agent to a b state, and a second
encounter can shift it to a y state, even though there are
no normal y agents in the population. So we must accept
a small number of normal agents that do not have the
correct value.

But in fact the situation is worse: if we run long
enough, there exists a trajectory with nonzero proba-
bility that takes us to the blank configuration, which is
stable. So we must also accept a small probability that
we reach the blank configuration quickly, and the assur-
ance that we reach it with probability 1 after a very long
time. However, we can show that with high probability
neither outcome occurs within a polynomial number of
steps.

Our technique is to adjust the potential functions
used by the non-Byzantine process to account for Byzan-
tine transitions. We then use these adjusted potential
functions to show that (a) strong pressure exists to keep
the process out of the large-b corner and in the large-x
and large-y corners, and (b) the number of interactions
(including Byzantine interactions) to reach the x or y
corner is still small.

7.1 Biased-Walk Barriers

Let us begin by showing that it is di�cult even for Byzan-
tine agents to force the protocol into a configuration with
a low value of v

t

= x
t

+ y
t

.
Observe that if the Byzantine agents attempt to min-

imize v, v nonetheless increases at each interaction with
likelihood proportional to vb and decreases with likeli-
hood proportional to 2xy + zv. So the probability of an
increase conditioned on any change in v is vb/(vb+2xy+
zv) � vb/(vb+v2/2+zv) = b/(b+z+v/2) � b/n provided
z  v/2. For large b and small z this gives a random-walk
behavior that is strongly biased upwards.

Suppose
p
n  v  n/8. Then b � (7/8)n and z =

o(
p
n) ⌧ v/2, so Pr[�v = 1|�v 6= 0] � 7/8. We wish

to bound the probability starting from some initial v
0

in this range that v reaches
p
n before it reaches n/8.

Though the probability that v rises or falls changes over
the interval, the position of v can be lower-bounded by
the position of a coupled variable v0 that moves according
to a biased random walk with fixed probability p = 7/8
of increasing by 1 and q = 1/8 of decreasing by 1.

Formally, let i
1

, i
2

, . . . be the sequence of times for
which v

ij 6= v
ij�1

. Define v0
j

by the rule v0
0

= v
0

and

1. v0
j

= v0
j�1

� 1 if v
ij = v

ij�1

� 1, or with probability
1/8�Pr[vij=vij�1�1|vij�1]

Pr[vij=vij�1+1|vij�1]
if v

ij = v
ij�1

+ 1.

2. v0
j

= v0
j�1

+ 1 with probability 7/8.

Observe that the probability of the first event, con-
ditioned on v

ij � 1, is

Pr[v
ij = v

ij�1

� 1]

+ Pr[v
ij = v

ij�1

+ 1]

✓
1/8� Pr[v

ij = v
ij�1

� 1]

Pr[v
ij = v

ij�1

+ 1]

◆

= Pr[v
ij = v

ij�1

� 1] + 1/8� Pr[v
ij = v

ij�1

� 1]

= 1/8.

From the standard analysis of the gambler’s ruin prob-
lem,2 we have that (q/p)v

0
t is a martingale, and thus that

the quantity

Pr[v0 reaches
p
n before n/8](q/p)

p
n

+ Pr[v0 reaches n/8 before
p
n](q/p)n/8

is equal to (q/p)v0 . Because (q/p)n/8 = (1/7)n/8 is ex-
ponentially small, it makes sense to ignore the second
addend, leaving

Pr[v0 reaches
p
n before n/8](q/p)

p
n < (q/p)v0

or

Pr[v0 reaches
p
n before n/8] < (q/p)v0�

p
n.

2 See, for example, [8, §XIV.2].
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It follows that if v
0

�
p
n+ c log

7

n, then the proba-
bility that v drops to

p
n before reaching n/8 is bounded

by n�c. Once v reaches n/8, further drops to
p
n become

exponentially improbable even conditioned on starting at
v = n/8� 1. We thus have:

Lemma 8 Fix c > 0. Let z = o(
p
n) and let v

0

�
p
n+

c log
7

n. Then for su�ciently large n, the probability that

v
t


p
n for any t < en/8n�c

is less than 2n�c

.

Proof The probability that v reaches
p
n before reaching

n/8 for the first time is at most n�c. For each subse-
quent drop to n/8� 1, there is a probability of at most
(1/7)n/8�1�

p
n  exp(�n/8) that v reaches

p
n before

returning to n/8. Since each such excursion below n/8 in-
volves at least one interaction, en/8n�c interactions give
at most an expected n�c drops to

p
n for a total proba-

bility of reaching v =
p
n bounded by 2n�c. ut

We can apply a similar analysis to the x and y cor-
ners, but here the protocol drifts toward the all-x or all-
y configuration instead of away from it. Here we track
3y + b for the x corner and 3x + b for the y corner.
Because these functions can change by more than just
±1, the simple random walk analysis becomes more dif-
ficult. Instead, we proceed by showing that exp(3y + b)
is a supermartingale, and bound the probability of mov-
ing from 2

p
n to 3

p
n by exp(�

p
n), the inverse of the

change in exp(3y + b).
Formally, we have:

Lemma 9 Fix c > 0. Let z = o(
p
n) and let 3y

0

+ b
0


2
p
n. Then for su�ciently large n, the probability that

3y
t

+ b
t

� 3
p
n for any t < e

p
n�1n�c

is less than n�c

.

Proof Let
p
n  3y + b  3

p
n, so that x � n�O(

p
n).

We also have z = o(
p
n) = o(3y + b) = o(y + b).

Examining the change in 3y+ b in the worst case, we
argue as in Lemma 7 to see

�(3y + b) =

8
>>><

>>>:

+2 w. p. proportional to (y + z)b,

+1 w. p. proportional to (y + z)x,

�1 w. p. proportional to xb, and

�2 w. p. proportional to xy,

where “w. p.” abbreviates “with probability.”
We show that for a suitable constant ↵ independent

of n, exp(↵(3y + b)) is a supermartingale. We will use
the fact that exp(t)  1 + t+ t2 for |t|  1.

Let us first consider the expectation of exp(�(↵(3y+
b))) conditioned on the event A that the interaction in-
volves an x token as either initiator or responder. We
have

E[ exp(�(↵(3y + b)))|A]

=
(y + z)e↵ + be�↵ + ye�2↵

2y + b+ z



0

B@
(y + z)(1 + ↵+ ↵2)

+ b(1� ↵+ ↵2)

+ y(1� 2↵+ 4↵2)

1

CA

2y + b+ z

=
(2y + b+ z) + ↵(z � y � b) + ↵2(5y + b+ z)

2y + b+ z

= 1� ↵
(1� o(1))(y + b)

2y + b+ z
+ ↵2

5y + b+ z

2y + b+ z
,

because z = o(y + b). Continuing, this is

 1� ↵
(1� o(1))(y + b)

2y + b+ (y/2 + 3b/2)
+ ↵2

5y + b+ z

2y + b+ z

 1� ↵
(1� o(1))2

5
+ ↵2

5y + b+ z

2y + b+ z

 1� ↵/3 + ↵2

6y + 3b+ 3z

2y + b+ z

= 1� ↵/3 + 3↵2.

Setting ↵ = 1/18 bounds this quantity by 1� 1/54+
3/324 = 107/108 = 1� 1/108.

In conditioning on A, we have neglected to include
the event B that a y or z token encounters a blank re-
sponder. In this latter case, the value of exp(↵(3y + b))
rises by a factor of e2↵. Fortunately, it only occurs with
probability proportional to (y + z)b, while the event A
considered above occurs with probability proportional
to (2y + b + z)x � (y + z)x � ⌦((y + z)b

p
n), since

b = O(
p
n). So if we condition on either A or B occur-

ring, we have

E[ exp(�(↵(3y + b)))|A [B]

= (1� 1/108)Pr[A|A [B] + exp(2↵) Pr[B|A [B]

= 1� 1/108 +O(1/
p
n),

which is strictly less than 1 for su�ciently large n.
If A or B do not occur, 3y+b is unchanged; it follows

that E[exp(�(↵(3y+b)))]  1 for su�ciently large n, and
thus that exp((3y

t

+ b
t

)/18) is a supermartingale.
Now suppose that at time 0,

p
n < 3y+b  2

p
n. Let

⌧ be the first time at which 3y + b reaches either
p
n or

3
p
n. From the supermartingale property we have that

E[X
⌧

]  X
0

 exp(2↵
p
n) = exp(

p
n/9). Neglecting the

3y + b =
p
n outcome, we have

exp(
p
n/9) � E[X

⌧

]

� Pr[3y
⌧

+ b
⌧

= 3
p
n] exp(3

p
n/18).

from which it follows that

Pr[3y
⌧

+ b
⌧

= 3
p
n]  exp(�

p
n/18).

We now repeat the excursions argument from the
proof of Lemma 8 to obtain the claimed bound. ut
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7.2 Adjusting the Potential Functions

Our proof of convergence for the non-Byzantine case is
based on constructing several potential functions that
decrease on average. For the Byzantine case, we keep the
same potential functions, but include a new factor that
compensates for increases due to Byzantine interactions.
We state the general approach in the following lemma:

Lemma 10 Let f be a function of the states of the non-

Byzantine agents and their interaction history in some

one-way population protocol, such that f
t

is a super-

martingale in the absence of Byzantine agents. Let (f +
�f)/f  m for all transitions involving a Byzantine

initiator starting in some subset D of the configuration

space. Then f 0
t

= f
t

m�S

z
t
is a supermartingale for all

times t less than the first time at which the protocol leaves

D.

Proof Let ⌧ be the first time at which the protocol con-
figuration is not in D, and let t < ⌧ . Then either (a)
the transition at time t does not include a Byzantine
initiator, and we have

E[f 0
t+1

|F
t

] = E[f
t+1

m�S

z
t+1 |F

t

]

= E[f
t+1

m�S

z
t |F

t

]

= E[f
t+1

|F
t

]m�S

z
t

 f
t

m�S

z
t

= f 0
t

,

or (b) the transition at time t does include a Byzantine
initiator, and we have

E[f 0
t+1

|F
t

] = E[f
t+1

m�S

z
t+1 |F

t

]

 mf
t

m�S

z
t+1

= mf
t

m�S

z
t �1

= f
t

m�S

z
t

= f 0
t

,

ut

We now produce a common bound (f + �f)/f 
1 + 3/

p
n for all of the potential functions used in the

proofs of Lemmas 4, 6, and 7, provided we stay within
an appropriately-defined domain D.

Lemma 11 Let one of the following cases hold:

– f is 1/(u2 + 2n) and D is the entire space,

– f is 1/v and D is all points with v �
p
n,

– f is 3x+b+1 and D is all points with 3x+b+1 �
p
n,

or

– f is 3y+b+1 and D is all points with 3y+b+1 �
p
n.

Then (f +�f)/f  1+3/
p
n starting from any point in

D.

Proof Observe first that a Byzantine interaction changes
the state of at most one normal agent; we use this to find
simplified upper bounds on the change in each potential
function.

– For f = 1/(u2 + 2n), we have

f +�f

f
 u2 + 2n

(u� 1)2 + 2n

= 1 +
2(u� 1) + 1

(u� 1)2 + 2n

 1 + 2/
p
n.

– For f = 1/v, we have

f +�f

f
 v

v � 1

= 1 +
1

v � 1

 1 +
1p
n� 1

 1 + 2/
p
n.

– For f = 3x+ b+ 1, we have

f +�f

f
 3(x+ 1) + b+ 1

3x+ b+ 1

= 1 +
3

3x+ b+ 1

 1 +
3p
n
.

The case of f = 3y+b+1 is symmetric with f = 3x+b+1.
ut

The following lemma bounds the total correction fac-
tor:

Lemma 12 Let ⌧  kn log n be a stopping time and let

z = o(n1/2). Let m  (1 + ↵n�1/2) for some constant

↵ > 0. Then for any fixed c > 0,

Pr[mS

z
⌧ � no(1)]  n�c.

Proof Since z = o(n1/2), we have

E[Sz

⌧

] = o((n1/2/n)(n log n)) = o(n1/2 log n),

and standard Cherno↵ bounds show that this bound
holds (for a larger constant) without the expectation
with probability at least 1� n�c. So we have

mS

z
⌧  (1 + ↵n�1/2)o(n

1/2
logn)

= (1 + ↵n�1/2)(↵
�1

n

1/2
)o(logn)

 eo(logn) = no(1).

ut
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Combining the preceding lemmas and applying the
result to our previous bounds for z = 0 gives

Corollary 3 Let k and c be positive constants. Let ⌧ 
min(⌧

S

, kn log n), where ⌧
S

is the first time at which we

leave some set of configurations D. Let D be

– the entire space for Corollary 2 and Lemma 5,

– all points with v �
p
n for Lemma 6,

– all points with 3y + b+ 1 �
p
n for Lemma 7, and

– all points with 3x + b + 1 �
p
n for the symmetric

version of Lemma 7 with y replacing x.

Then the bounds in each of Corollary 2, Lemma 5,

Lemma 6, and Lemma 7 all hold with probability at least

1�n�c+o(1)

, where all indicator variables are interpreted

as taking on the value 0 for Byzantine interactions.

Proof Observe that the proof of each of these bounds
is obtained by applying Markov’s inequality to the ra-
tio of two potential function values. Any terms in these
potential functions involving only indicator variables are
una↵ected by Byzantine transitions. Subject to the re-
quirement of remaining in the appropriateD for all times
prior to ⌧ , it follows from Lemmas 10, 11, and 12 that
the remaining quantities 1/(u2+2n), 1/v, 3x+b+1, and
3y + b + 1 are at most no(1) times their original values,
with probability of failure at most n�c, which is easily
absorbed into n�c+o(1). This increases the probability of
failure obtained from Markov’s inequality from n�c to at
most n�c+o(1), giving the full result. ut

7.3 Convergence Time with Byzantine Agents

Let’s put everything together.

Theorem 4 Let ⌧ be the time at which x � n �
p
n,

y � n �
p
n, or v 

p
n first holds. Let v

0

be the initial

number of x’s and y’s. Then for any fixed c > 0 and

su�ciently large n, if v
0

�
p
n+ c log

7

n, then

Pr

"
⌧ � 6769n log n+ 6773cn log n+ 2552n

or v
⌧


p
n

#

= n�c+o(1). (10)

Proof We bound the probabilities of the two events in
the union separately. Truncate ⌧ at 104cn log n; this does
not a↵ect the first bound. Observe that before ⌧ , we lie
in the intersection of all four domains D in Corollary 3
(the only tricky part is that we have 3y + b + 1 � n �
x + 1 �

p
n and similarly for 3x + b + 1). Thus each

of the corresponding bounds apply with probability of
failure n�c+o(1). Combining these bounds as in the proof
of Theorem 1 then gives a probability of ⌧ exceeding the
bound in (10) of 5n�c+o(1) = n�c+o(1).

For the second event, observe that Lemma 8 applies
for times less than 104cn log n, so that if ⌧ satisfies the
bound we also have that v

⌧


p
n with probability at

most n�c, which is absorbed in n�c+o(1). ut

Note that once we are in the x or y corner, Lemma 9
tells us that we remain there with high probability for
exponential time. So we have a complete characteriza-
tion of the convergence behavior of the 3-state majority
protocol with o(

p
n) Byzantine agents. It is also not hard

to see that the proof of Theorem 2 also continues to hold
for z = o(

p
n), since with high probability, the Byzan-

tine agents participate in only o(
p
n log n) of the first

O(n log n) interactions, and each interaction involving a
Byzantine agent a↵ects the random walk by at most one
step.

8 Multi-valued Consensus

It is natural to generalize the problem of reaching con-
sensus on a value of x or y to the problem of reaching
consensus on one of m possible input values. There are
reductions of multi-valued consensus to binary consensus
assuming uniform reliable broadcast [13] or randomiza-
tion [7]. However, because the criterion we consider is
convergence to a single value, in which individual agents
may change their decisions and do not in general know
when convergence has been achieved, we require a some-
what di↵erent reduction.

We describe a bitwise multi-valued consensus proto-
col that sequentially agrees on the bits of the output
value. For m-valued consensus, suppose the input values
are represented using k = dlog

2

me symbols from {x, y}.
The state of each agent is (u, c), where u is a vector of k
symbols from {x, y} equal to some input value (initially,
the input value for this agent) and c is a vector of k sym-
bols from {b, x, y} (also initially equal to the input value
for this agent.) When an initiator with state (u, c) in-
teracts with a responder with state (u0, c0), the protocol
computes the new state of the responder as follows.

1. If c = c0, then return (u0, c0) unchanged.
2. Otherwise, let i be the least positive integer such that

c
i

6= c0
i

.
3. If c

i

= b, then return (u0, c0) unchanged.
4. If c0

i

6= b, then return (u0, c00) where c00
j

= c0
j

for j =
1, . . . , i� 1 and c00

j

= b for j = i, . . . , k.
5. If c0

i

= b, then return (u, u).

Lemma 13 In a population of n agents, with high prob-

ability the bitwise consensus protocol converges to a cor-

rect consensus value in O(kn log n) interactions.

Proof We first observe that throughout the execution of
this protocol, if the state of any agent is (u, c), then u
is one of the original input values, and c consists of a
prefix of u followed by b’s. This is true in the initial
configuration because for each agent, u and c are set to
the input value for this agent. Each interaction preserves
this property because steps of type (4) simply increase
the length of the su�x of b’s in c, and steps of type (5)
set both components to u, which is one of the original
input values in the computation.
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Clearly, stable configurations are those in which all
agents have the same value of c. Consider any reachable
configuration in which all the agents agree on the values
of c

j

for j = 1, . . . , i�1. Then no interaction will change
these values, and considering the values of c in position
i, the protocol is following the steps of the approximate
majority protocol exactly. Thus, with high probability,
convergence to agreement on the value of c

i

will occur
within O(n log n) interactions. Hence, by induction on
i = 1, . . . , k, with high probability, convergence to agree-
ment on the value of c will occur withing O(kn log n)
interactions.

To see that the value of c agreed upon is in fact one
of the original input values, we note that if (u, c) is the
state of some agent, then u must be one of the original
input values and c must be a prefix of u followed by b’s.
To see that c will in fact contain no b’s we argue as fol-
lows. Suppose there is a reachable configuration in which
all the values of c are the same and c has a non-empty
su�x of s > 0 b’s. Consider a shortest execution in which
this configuration is reached, and consider the interaction
that reaches it. The initiator must already have c, and
the responder must change to c from some other value.
That previous value cannot have a blank su�x shorter
than or equal to that of c; the only possibility is a shorter
non-blank prefix of c followed by blanks. In this case, a
step of type (5) occurs, and the resulting value of c has
no blanks at all, which is a contradiction. Thus, the pro-
tocol cannot converge to a value of c with any blanks,
and the final value of c must be one of the original input
values. ut

It is open whether this protocol also has useful ma-
jority or robustness properties.
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