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Abstract

In this paper, we study the quantity of computational resources (state machine states and/or prob-
abilistic transition precision) needed to solve specific problems in a single hop network where nodes
communicate using only beeps. We begin by focusing on randomized leader election. We prove a lower
bound on the states required to solve this problem with a given error bound, probability precision, and
(when relevant) network size lower bound. We then show the bound tight with a matching upper bound.
Noting that our optimal upper bound is slow, we describe two faster algorithms that trade some state
optimality to gain efficiency. We then turn our attention to more general classes of problems by proving
that once you have enough states to solve leader election with a given error bound, you have (within
constant factors) enough states to simulate correctly, with this same error bound, a logspace TM with
a constant number of unary input tapes: allowing you to solvea large and expressive set of problems.
These results identify a key simplicity threshold beyond which useful distributed computation is possible
in the beeping model.
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1 Introduction

The beeping model of network communication [1–3,10,14,19] assumes a collection of computationalnodes,
connected in a network, that interact bybeepingin synchronous rounds. If a node decides to beep in a given
round, it receives no feedback from the channel. On the otherhand, if a node decides to listen, it is able to
differentiate between the following two cases: (1) no neighbor in the network topology beeped in this round,
and (2) one or more neighbors beeped.

Existing work on this model provide two motivations. The first concerns digital communication net-
works (e.g., [10, 12]). Standard network communication (in which nodes interact using error-corrected
packets containing many bits of information) requires substantial time, energy, and computational overhead
(at multiple stack layers) to handle the necessary packet encoding, modulation, demodulation, and decoding.
Beeps, on the other hand, provide an abstraction capturing the simplest possible communication primitive:
a detectable burst of energy. In theory, beep layers could beimplemented using a fraction of the complexity
required by standard packet communication, establishing the possibility ofmicro-networkstacks for set-
tings where high speed and low cost are crucial. The second motivation for the beeping model concerns a
connection to biological systems (e.g., [3,18,19]). Network communication in nature is often quite simple;
e.g., noticing a flash of light from nearby fireflies or detecting a chemical marker diffused by nearby cells.
Therefore, understanding how to achieve distributed coordination using such basic primitives can provide
insight into how such coordination arises in nature (see [18] for a recent survey of this approach).

A Key Question. As detailed below, existing work on the beeping model seeks to solve useful problems as
efficientlyas possible in this primitive network setting. In this paper, by contrast, we focus on solving useful
problems assimplyas possible (e.g., as measured by factors such as the size of the algorithm’s state machine
representation), asking the key question: is it possible tosolve problems with both simple communication
andsimple algorithms? Notice, the answer is nota priori obvious. It might be the case, for example, that
complexity is conserved, so that simplifying the communication model requires more complex algorithms.
Or it might be the case that simple algorithms coordinating with beeps are sufficient for even complex tasks.
Given the above motivations for studying beeps, answering this question is crucial, as it will help us probe
the feasibility of useful networked systems—be them constructed by engineers or evolution—that are truly
simple in both their communication methods and control logic.

Our Answers. We study a collection ofn nodes connected in asingle hoptopology (i.e., the network
graph is a clique). We model the randomized algorithmic process executing on each node as a probabilistic
state machine. The two parameters describing the complexity of these algorithms are: (1) an upper bound
on the number of states (indicated by integers ≥ 1); and (2) an upper bound on the precision of the
probabilistic transitions (indicated by integerq ≥ 2, where we allow probabilistic transitions to be labeled
with probability 0, 1, or any value in the interval[1q , 1 −

1
q ]). We ask how large these values must grow to

solve specific problems. Our motivating premise is that smaller values imply simpler algorithms. (Notice,
by considering boths andq, we can capture the trade-off between memory and probabilistic precision; a
question of standalone interest; c.f., [15]).

We begin by consideringleader election, a fundamental primitive in distributed systems. We prove that
for a given error boundǫ ∈ [0, 1/2] and probabilistic precisionq, any algorithm that guarantees to solve
leader election with probability1 − ǫ requiress = Ω(logq (1/ǫ)) states. Provided a lower bound̃N on the

size of the network, this lower boundreducesto s = Ω(logq (1/ǫ)/Ñ ) states. That is, the more nodes in the
network, the fewer states each node needs to solve the problem.

This lower bound leverages a reduction argument. We begin bydefining and lower bounding a helper
problem called(1, k)-loneliness detection, which requires an algorithm to differentiate betweenn = 1 and
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n ≥ k (but has no requirements for intermediate network sizes). This bound uses an indistinguishability
argument regarding how nodes move through a specified state sequence. We then show how to transform
a solution to leader election for size lower bound̃N , to solve(1, Ñ )-loneliness detection—allowing our
loneliness bound to carry over to leader election.

We then turn our attention to leader election upper bounds. We begin by proving our lower bound
tight by showing, for every network size lower bound̃N ≥ 1, how to solve leader election withs =
O(logq (1/ǫ)/Ñ ) states. The key idea behind this algorithm is to have nodes work together to implement a
distributed timer. The more nodes in the network, the longerthe distributed timer runs, and the longer the
distributed timer runs, the higher the probability that we succeed at leader election. In this way, increasing
the network size reduces the states required to hit a specificerror bound. A shortcoming of this new algo-
rithm, however, is that its expected running time is exponential in the network size. With this mind, we then
describe two faster algorithms (their time is polylogarithmic in the relevant parameters) that require only the
minimum precision ofq = 2. The cost for their efficiency, however, is a loss of state optimality in some
circumstances.

The first algorithm requiress = O(log (1/ǫ)) states and solves leader election with probability at least
1 − ǫ, for any network sizen. It terminates inO(log (n + 1/ǫ) log (1/ǫ)) rounds, with probability at least
1 − ǫ. The key idea behind this algorithm is to test a potentially successful election by having the poten-
tial leader(s) broadcast with probability1/2 for log (1/ǫ) rounds, looking for evidence of company. It is
straightforward to see that a single such test fails with probability no more than(1/2)log (1/ǫ) = ǫ. The
problem, however, is that as the network size grows, the number of such tests performed also increases,
making it more likely that one fails. We neutralize this problem in our analysis by showing that the test
failure probabilities fall away as a geometric series in thetest count—bounding the cumulative error sum as
the network grows.

The second algorithm requires onlys = O(1) states, and yet, for every network sizen, it solves leader
election with high probability inn when run in a network of that size. It requires onlyO(log2 n) rounds,
with high probability. The key idea driving this algorithm is to harness the large amount of total states in
the network to implement a distributed timer that requiresΘ(log n) time to countdown to0, when executed
amongn nodes. This duration is sufficient for the nodes to safely reduce contention down to a single leader.

After studying leader election, we turn our attention to more general classes of distributed decision
problems. Leveraging our leader election algorithms as a key primitive, we show how to simulate a logspace
decider Turing Machine (TM) with a constant number of unary inputs (all defined with respect to the network
sizen). Perhaps surprisingly, this algorithm requires onlyO(log (1/ǫ)) states to complete the simulation
with probability1− ǫ, and onlyO(1) states to achieve high probability inn. (Notice that this is not enough
states for an individual node to store even a single pointer to the tape of the simulated machine.) Our
simulation uses the same general strategy first highlightedin the study of population protocols [4]: simulate
a counter machine with a constant number of counters that hold values from0 to O(n), and then apply a
transformation due to Minsky [16] to simulate a logspace TM with this machine. Due to the differences
between the beeping and population protocol models, however, our counter machine simulation strategies
are distinct from [4].

Implications. The results summarized above establish that thelog (1/ǫ) state threshold for leader election
with bounded error is (in some sense) a fundamental simplicity threshold for solving useful problems with
beeps. It is striking that if you haveslightly lessthan this much memory, even the basic symmetry breaking
task of leader election is impossible, but if you instead have slightly more, then suddenly you can solve
large classes of complicated problems (i.e., everything solvable by a logspace TM). If you are satisfied
with high probability solutions (which is often the case), then this treshhold reduces even more all the way
down toO(1). Given these results, we tentatively claim a positive answer to the key question posed above:
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complexity is not destiny; you can solve hard problems simply in simple network models.

Before proceeding into the technical details of our paper, we will first take the time to place both our model
and our results in the context of the several different areasof relevant related work. Among other questions,
we want to understand the relationship of our bounds to existing beep results, and how the beeping model
compares and contrasts to similar settings.

Comparison to Existing Beep Results. The algorithmic study of beeping networks began with Degesys
et al. [12], who introduced a continuous variant of the beeping model,inspired by the pulse-coupled os-
cillator framework. They studied biologically inspired strategies for solving adesynchronizationproblem.
Follow-up work generalized the results to multihop networks [11, 17]. Cornejo and Kuhn [10] introduced
the discrete (i.e., round-based) beeping model studied in this paper. They motivated this model by noting
the continuous model in [11,12,17] was unrealistic and yielded trivial solutions to desynchronization, they
then demonstrated how to solve desynchronization without these assumptions. Around this same time, Afek
et al. [3] described a maximal independent set (MIS) algorithm in a strong version of the discrete beeping
model. They argued that something like this algorithm mightplay a role in the proper distribution of sen-
sory organ precursor cells in fruit fly nervous system development. Follow-up work [1,2,19] removed some
of the stronger assumptions of [3] and improved the time complexity. In recent work, Försteret al. [14]
considered deterministic leader election in a multihop beeping network.

To place this paper in this context of the existing work on thebeeping model, it is important to note
that the above-cited papers focus primarily on two goals: minimizing time complexity and minimizing
information provided to nodes (e.g., network size, max degree, global round counter). They do not, however,
place restrictions on the amount of states used by their algorithms. Accordingly, these existing results require
either: the ability to store values as large asΘ(n) [1–3,10,19], or uniques ids [14] (which in our framework
would require a machine withn different initial states, or equivalently,n different machines). In this paper,
we prove that the algorithmic complexity threshold for solving many useful problems is actually much
lower: O(1) states are sufficient for high probability results andO(log (1/ǫ)) states are sufficient for fixed
error bound results.1 We argue the direction pursued in this paper (how complex must algorithms become
to solve useful problems with beeps) complements the direction pursued in existing papers (how fast can
algorithms solve useful problems with beeps). Answers to both types of queries is necessary to continue to
understand the important topic of coordination in constrained network environments.

Comparison to the Radio Network Model. The standard radio network model allows nodes to send large
messages, but assumes concurrent transmissions lead to message loss (that may or may not be detectable).
The key difference between the radio network model and the beeping model is that in the former you can
recognize the case where exactly one node broadcast (e.g., because you receive a message). This capability,
which the beeping model does not offer (a single beeper lookslike multiple beepers), is powerful. It allows,
for example, algorithms that can solve leader election withdeterministic safety using only a constant amount
of state, when run in network of size at least2. If you assume receiver collision detection, these solutions
require only polylogarithmic expected time.2 These results violate our lower bounds for leader election with

1Notice, direct comparisons between many of these results iscomplicated by the variety of possible assumptions;
e.g., synchronous versus asynchronous starts, multihop versus single hop, small versus large probability precision.

2For example: divide rounds into pairs of even and odd rounds.In even rounds, nodes broadcast a simple message
with constant probability. If a node ever succeeds in broadcasting alone, all other nodes becomeheralds. They stop
competing in even rounds and begin competing in odd rounds. When the winner (who is now the only non-herald in
the network) eventually hears a message in an odd round, it elects itself leader. If we assume collision detection, we
can reduce contention fast in the even rounds with basic knockout protocols; e.g., if you choose to listen and detect a
collision you are knocked out and just wait to become a herald.
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beeps (where the state size grows toward infinity as you drivethe error bound toward0)—indicating that the
communication limitations in the beeping model matter froma computability perspective.

Comparison to the Stone Age Computing Model. It is also important to place our results in the context
of other simplified communication/computation models. Consider, for example, the stone age distributed
computing model introduced by Emek and Wattenhofer [13]. This model assumes state machines of constant
size connected in a network and executing asynchronously. The machines communicate with a constant-size
message alphabet and when transitioning can distinguish between having received0, 1, or ≥ b messages
of each type, for some constant parameterb ≥ 1. For b = 1, this model is essentially an asynchronous
version of the beeping model. To this end, nodes in our model can simulate nodes in the stone age model
with b = 1 indefinitely using a constant amount of states. Forb > 1, however, any such simulation likely
becomes impossible in the beeping model with a constant amount of states. As noted in our discussion of
the radio network model, the ability to safely recognize thecase of exactly one message being sent provides
extra power beyond what is achievable (without error) usingonly beeps.

Comparison to the Population Protocol Model. Another relevant simplified communication/computation
setting is the well-studied population protocol model [4–9] . This model describes nodes as state machines
of constant size that interact in a pairwise manner—transforming both states asymmetrically. In the basic
version of the model, a fair scheduler chooses pairs to interact. A version in which the scheduler is random-
ized adds more power. There are similarities in the goals pursued by the beeping and population protocol
models: both seek (among other things) to understand the limits of limited state in distributed computation.
The core difference between the two settings is the role of the algorithm in communication scheduling. In
the beeping model, algorithms must reduce contention and schedule communication on their own. In the
population protocol model the scheduler ensures fair and reliable interactions. Imagine, for example, a con-
tinuous leader election problem where every node has aleaderbit, and the problem requires in an infinite
execution that: (1) every node setsleader to 1 an infinite number of times; and (2) there is never a time
at which two nodes both haveleaderset to1. This problem is trivial in the population protocol: simply
pass a leader token around the network. In the beeping model,by contrast, it is impossible as it essentially
requires nodes to solve leader election correctly an infinite number of times—a feat which would require an
unachievable error bound of0. It follows that in some respects these two models are studying the impact of
limited state on different aspects of distributed computation.

2 Model

We model a collection ofn probabilistic computational agents (i.e., “nodes”) that are connected in a single
hop network and communicate using a unary primitive; i.e.,beeps. They execute in synchronous rounds. In
each round, each node can either beep or receive. Receiving nodes can distinguish between the following two
cases: (1) no node beeped; (2) one or more nodes beeped. We characterize these agents bys (a bound on the
number of states in their state machine definition), andq (a bound on the precision allowed in probabilistic
transitions, with larger values enabling more accurate transition probabilities). We now formalize these
model definitions and assumptions.

Node Definition. We formalize the algorithm executing on each node as a probabilistic state machine
M = (Qr, Qb, qs, δ⊥, δ⊤), where:Qr andQb are two disjoint sets of states corresponding to receiving and
beeping, respectively;qs is the start state; andδ⊥ andδ⊤ are the probabilistic transition functions3 applied

3These transition functions map the current state to a distribution over the states to enter next.
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in the case where the node detects silence and where the node beeps/detects a beep, respectively.
Some problems have all nodes execute the same state machine,while others include multiple machine

types in the system, each corresponding to a different initial value.

Executions. Executions proceed in synchronous rounds with all nodes in the network starting in their ma-
chine’s start state. At the beginning of each roundr, for each nodeu running a machine(Qr, Qb, qs, δ⊥, δ⊤),
if its current statequ is in Qb, thenu emits a beep, otherwise it receives. If at least one node beeps in r,
then it follows thatall nodes either beep or detect a beep in this round. Therefore, each nodeu applies the
transition functionδ⊤ to its current statequ and selects its next state according to the resulting distribution,
δ⊤(qu). If no node beeps inr, then each nodeu applies the transition functionδ⊥, selecting its next state
from the distribution,δ⊥(qu).

Parameters. We parameterize the state machines in our model with two values. The first, indicated by
s ≥ 1, is an upper bound on the number of states allowed (i.e.,|Qr| + |Qb| ≤ s). The second, indicated
by q ≥ 2, bounds the precision of the probabilistic transitions allowed by theδ functions. In more detail,
for a givenq, the probabilities assigned to states by distributions in the range ofδ must either be0, 1, or in
the interval,[1q , 1 − 1

q ]. For the minimum value ofq = 2, for example, probabilistic transitions can only
occur with probability1/2. As q increases, smaller probabilities, as well as probabilities closer to1, become
possible. Finally, we parameterize a given execution withn—the number of nodes executing in the network.

3 Leader Election

The first computational task we consider is leader election:eventually, one node designates itself leader.
An algorithm state machine that solves leader election mustinclude a finalleader stateqℓ that is terminal
(once a node enters the state, it never leaves). If a node enters this state it indicates the node has elected
itself leader. For a given error boundǫ ∈ [0, 1/2], we say an algorithmsolvesleader election with respect
to ǫ if when executed in a network of any size, it satisfies the following two properties: (1)liveness: with
probability 1, at least one node eventually enters the leader state; and (2) safety: with probability at least
1 − ǫ, there is never more than1 node in the leader state. We also consider algorithms for leader election
that are designed for networks of some minimal sizeÑ . In this case, the algorithm must guarantee liveness
in every execution, but it needs to guarantee safety only if the network sizen is at leastÑ . Our goal is to
develop algorithms that use a minimum number of states to solve leader election for a given error boundǫ,
probability precisionq, and, when relevant, network size minimum̃N .

Roadmap. In Section3.1, we present a lower bound for leader election. In Section3.2, we present a
universal algorithm template, followed by three specific instantiations in Sections3.3, 3.4, and3.5.

3.1 Leader Election Lower Bound

Here we analyze the number of states required to solve leaderelection given a fixedǫ, q, and network size

lower boundÑ . Our main result establishes that the number of states,s, must be inΩ(⌈
logq (1/ǫ)

Ñ
⌉).

To prove this result, we begin by defining and bounding a helper problem called(1, k)-loneliness de-
tection, which requires an algorithm to safely distinguish betweenn = 1 andn ≥ k. The bound leverages
a probabilistic indistinguishability argument concerning a short execution of the state machine in both the
n = 1 andn = k cases. We then show that loneliness detection captures a core challenge of leader election
by demonstrating how to transform a leader election algorithm that works forn ≥ Ñ into a solution to
(1, Ñ )-loneliness detection. The bound for the latter then carries over to leader election by reduction.
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(1, k)-Loneliness Detection. The (1, k)-loneliness detection problem is defined for some integerk > 1
and error boundǫ. It assumes all nodes run the same state machine with two special terminal final states
that we labelqa (indicating “I am alone”) andqc (indicating “I am in a crowd”). Thelivenessproperty of
this problem requires that with probability1, every node eventually enters a final state. Thesafetyproperty
requires that with probability at least1− ǫ, the following holds: ifn = 1, then the single node in the system
eventually entersqa; and if n ≥ k then all nodes eventually enterqc. Crucial to this problem definition is
that we do not place any restrictions on the final states nodesenter for the case where1 < n < k.

The following bound formalizes the intuition that it becomes easier to break symmetry, and therefore
easier to solve loneliness detection, as the threshold for detecting a crowd grows. Put another way: the
presence of a big crowd is easier to detect than a small crowd.

Lemma 1. Fix some integerk > 1. LetL be an algorithm that solves(1, k)-loneliness detection with error

boundǫ and probability precisionq usings states. It follows thats = Ω(
logq (1/ǫ)

k ).

Proof. Fix some integerk > 1, error boundǫ, and probability precisionq. Fix some algorithmL that solves
(1, k)-loneliness detection with error probabilityǫ, using precisionq. Let (Qr, Qb, qs, δ⊥, δ⊤) beL’s state
machine description. Letqa andqc be the two terminal final states required by the problem definition. We
note that whenq ≥ (1/ǫ), the lower bound claim on the state size reduces to a constant(or smaller), which
is trivially true. The remainder of this proof therefore addresses the more interesting case whereq < (1/ǫ).
Our goal is prove the required lower bound on the number of states,s, needed forL to solve loneliness
detection given these fixed values ofk, ǫ, andq.

Our first step toward this goal is to introduce the notion of asolo reachable path, defined with respect to
L. In more detail, we say a sequenceP = q1, q2, ..., qx of x states fromQr ∪Qb is asolo reachable pathfor
L’s state machine if and only ifq1 = qs, and for each consecutive pair of statesqi, qi+1 in P , the following
hold:

1. if qi ∈ Qr, then the probability assigned toqi+1 in δ⊥(qi) is greater than0;

2. if qi ∈ Qb, then the probability assigned toqi+1 in δ⊤(qi) is greater than0.

Put another way, a solo reachable path is a sequence of statesthat a node running this machine might feasibly
follow (i.e., it occurs with a non-zero probability) in a network with n = 1.

Fix any such solo reachable pathP = q1, q2, ..., qx. We will now consider the probability that a network
consisting of exactlyk nodes follows this path. In more detail, we claim that for every r ∈ {1, 2, ..., x}, the
probability that allk nodes are in stateqr (from P ) after r rounds is at least((1/q)k)r. We can prove this
claim by induction on the state indexr.

Basis (r = 1). By definition, all nodes start in stateqs, so this occurs with probability1 > (1/q)k.
Step.Assume the claim holds for somer < x. To show it holds forr+1, we note that the probability that

any single node transitions fromqr to qr+1 is greater than0 (by our definition ofreachable). The smallest
probability greater than0 in our system is1/q. Therefore, we can refine our statement to say this occurs
with probability at least(1/q). It follows that the probability thatall k nodes make the same transition is
at least(1/q)k. Multiply this probability by the probability((1/q)k)r that all nodes followedP up to qr
(provided by the inductive hypothesis), and we get the desired final probability of((1/q)k)r+1.

We next argue that there exists a useful solo reachable path that is not too long:

(*) There exists a solo reachable pathP = q1, q2, ..., qx, defined with respect toL, such that
q1 = qs, qx = qa, andx ≤ s.

The fact that there exists a solo reachable path that begins in the start stateqs and ends in the final state
qa, follows from the safety property of loneliness detection,which says that whenn = 1, with probability
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at least1 − ǫ > 0, the single node, starting in stateqs, ends up in final stateqa. The fact thatx ≤ s follows
from the observation that if there isanysuch solo reachable path leadingqa, then we can excise the loops to
get a path that remains reachable, but that never visits the same state more than once.

LetP be the solo reachable path identified above by claim (*). If weapply our inductive argument toP ,
and leverage the fact that the length ofP is no more thans (i.e.,x ≤ s), we get that the probability that all
k nodes in a network ofk nodes follow pathP is at least(1/q)k·s. Notice, if this occurs, we have violated
safety. It must therefore hold that(1/q)k·s ≤ ǫ. We can set up this requirement as a simple constraint that
will provide the minimum allowable value fors:

(1/q)k·s ≤ ǫ ⇒ qk·s ≥ (1/ǫ) ⇒ s · k log q ≥ log (1/ǫ) ⇒ s ≥
log (1/ǫ)

k log q
=

logq (1/ǫ)

k
.

Combining these pieces, we have shown that ifL solves(1, k)-loneliness detection, than it must be the case

thats ≥
logq (1/ǫ)

k , as required by the lemma statement.

Reducing Loneliness Detection to Leader Election. We now leverage the above result on(1, k)-loneliness
detection to prove a lower bound for leader election under the guarantee that the network sizen ≥ Ñ . The
proof proceeds by reduction: we show how to transform such a leader election solution into a loneliness
detection algorithm of similar state size.

Theorem 2. Fix some network size lower bound̃N ≥ 1. LetA be an algorithm that solves leader election
with error boundǫ and probability precisionq usings states in any network wheren ≥ Ñ . It follows that

s ∈ Ω(
logq (1/ǫ)

Ñ
).

Proof. Fix some algorithmA that solves leader election with error boundǫ and probability precisionq using
s states in a network wheren ≥ Ñ , for some integer̃N ≥ 1. Our first step is to useA to create an algorithm
LA that solve(1, Ñ )-loneliness detection for the sameǫ andq, usingO(s) states. Our new algorithmLA
works as follows:

The algorithm partitions rounds into pairs. During the firstround of each pair, it executesA.
The second round is used to announce the election of a leader.That is, if a node becomes
leader according toA, it beeps in the second round. If any node beeps in a second round, the
algorithm stops its execution ofA and moves onto the next phase. This next phase consists of
single round. During this round, any node not elected leaderbeeps. If this round is silent, then
the algorithm enters final stateqa, otherwise it enters stateqc.

To analyzeLA, we first note that liveness follows directly from the liveness guarantee ofA: once the
simulation ofA elects the leader,LA will lead all nodes to the second phase where they will then enter a final
state after an single additional round. We now consider safety. There are three relevant cases, depending on
the value ofn.

• Case#1: n = 1. In the case, the liveness guarantee ofA (which holds regardless of the network size)
implies that the single node in the system will eventually become leader. Because there are no other
nodes in the system, the second phase round will be silent. Itfollows that the single node will enter
stateqa, as required. It follows that safety is satisfied with probability 1.

• Case#2: n ≥ Ñ . In this case, by assumption,A correctly solves leader election with probability
at least1 − ǫ. Assume this occurs andu is the single leader elected. Ifn = 1 (which is possible
whenÑ = 1), the argument for Case #1 applies, andu will enter qa, as required. Assume instead that
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n > 1. In this case, the second phase round willnot be silent. It follows that all nodes will enter state
qc, as required. It follows that safety is satisfied with probability at least1− ǫ.

• Case#3: 1 < n < Ñ . In this case, there are no safety requirements. Therefore,safety is vacuously
satisfied with probability1.

We have just shown that given a solution to leader election that satisfies safety forn ≥ Ñ , we can
solve(1, Ñ )-loneliness detection while growing the state size by at most a constant factor. We can now pull
together the pieces. By Lemma1, any solution to(1, Ñ )-loneliness detection for a givenǫ andq, requires

a state sizes′ = Ω(
logq (1/ǫ)

Ñ
). It follows that the states used byA to solve leader election for̃N can be

no more than a constant factor larger thans′, proving the same asymptotic bound ons, which matches the
theorem statement.

3.2 The Universal Leader Election Algorithm

Algorithm 1 Universal Leader Election Algorithm
1: active← 1
2: ko← 1
3: q̂ ← min{q, (1/ǫ)}
4: done← [Termination Subroutine](active, ko)
5: ko← 0
6:
7: while (not done) do
8: participate← rbit () ⊲ Returns0 with prob1/q̂, else1
9: chan← ⊤

10: ⊲ Knock Out Logic
11: if active ∧ participate then
12: beep()
13: else
14: chan← recv()
15: end if
16: if active ∧ not participate ∧ (chan = ⊤) then
17: active← 0
18: ko← 1
19: end if
20: ⊲ Termination Detection Logic
21: if chan = ⊥ then
22: done← [Termination Subroutine](active, ko)
23: ko← 0
24: end if
25: end while
26: ⊲ Become Leader if Still Active
27: if active then
28: leader ← 1
29: else
30: leader ← 0
31: end if
32: return (leader)

We now turn our attention to leader election up-
per bounds. The three results that follow adopt
a template/subroutine approach. In more detail,
Figure 3.1 describes what we call theuniversal
leader electionalgorithm. This algorithm, in turn,
makes calls to a “termination subroutine.” Differ-
ent versions of this subroutine can be plugged into
the universal algorithm, yielding different guar-
antees. Notice, this universal algorithm is pa-
rameterized with probability precisionq and error
boundǫ, which it uses to define the useful param-
eter q̂ = min{q, (1/ǫ)}. This algorithm (as well
as one of our termination subroutines) uses1/q̂,
not 1/q, as its smallest transition probability (in-
tuitively, there is little advantage in using a prob-
ability too much smaller than our error boundǫ).

The basic operation of the algorithm is sim-
ple. Every node is initially active. Until the
termination subroutine determines that it is time
to stop, nodes repeatedly execute the knockout
loop (lines 7–25). In each iteration of the loop,
each active node beeps with probability1 − 1/q̂
and listens otherwise. If a node ever hears a
beep, it is knocked out, settingko = true and
active = false. In any silent iteration where no
node beeps, they execute the termination subrou-
tine to decide whether to stop. Once termination
is reached, any node that remains active becomes the leader.

Termination Subroutines. The goal of the termination subroutine is to decide whether leader election has
been solved: it returnstrue if there is a leader andfalseotherwise.

The termination subroutine is called simultaneously by allthe nodes in the system, and it is passed
two parameters: the value ofactive, which indicates whether or not the calling node is still contending to
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become leader, andko, which indicates whether or not it has been knocked out in themain loop since the
last call to the subroutine. We fixR = 4 logq̂(max(n, 1/ǫ)): a parameter, which as we will later elaborate,
captures a bound on the calls to the subroutine needed beforelikely termination. We consider the following
properties of a termination detection routine, defined withrespect to error parameterǫ andR:

1. Agreement: Every node always returns the same value.

2. Safety: Over the firstR invocations, the probability that it returns true in any invocation with more
than1 active node is at mostǫ/2.

3. Eventual Termination: If it is called infinitely often with only one active node, then eventually (with
probability 1), it returns true.

4. Fast Termination: If it is called with only one active node, and with at least one node whereko = true,
then it returns true.

Universal Leader Election Analysis. We now observe that the universal leader election algorithmis
correct when combined with a termination subroutine that satisfies the relevant properties from above. To
do so, we first determine how many rounds it takes until there is only one active node, and hence one possible
leader. We say that an iteration of the knockout loop (lines 7–25) issilent if no node beeps during it. (Notice
that the termination routine is only executed in silent iterations of the knockout loop.) We first bound how
long it takes to reduce the number of active nodes:

Lemma 3. Given probabilityǫ ≤ 1/2 and parameterR = 4 logq̂(max(n, 1/ǫ)): afterR silent iterations of
the knockout loop (lines 7–25), there remains exactly one active node, with probability at least1− ǫ/2.

Proof. Notice that there is always at least one active node, becausea node becomes inactive only upon
detecting a beep from another active node. Fix two nodesp and q. For p to remain active, nodeq has
to remain silent wheneverp listens. Thus, if in some prefix of the execution, nodep listensr times, the
probability that bothp andq remain active is at most1/q̂r.

Taking a union bound over all pairs of nodes, we can upper bound byn2/q̂R the probability that there
exist any pair of nodesp and q where one of the nodes listensR times and both nodes remain active.
Equivalently, we have shown that the probability ofR silent iterations of the knockout loop, while at least2
nodes are active, is bounded byn2/q̂R.

Now recall thatR = 4 logq̂(max(n, 1/ǫ)). Consider the two cases:

• If ǫ ≥ 1/n, thenR = 4 logq̂ n, and therefore:n2/q̂R ≤ n2/n4 ≤ ǫ/2.

• If ǫ < 1/n, thenR = 4 logq̂(1/ǫ)), and therefore:n2/q̂R ≤ n2/(1/ǫ)4 ≤ ǫ2 ≤ ǫ/2.

In both cases, withinR silent iterations, there is exactly one leader with probability at least1− ǫ/2.

Let T be a termination subroutine that satisfies Agreement and Eventual Termination. In addition,
assume thatT satisfies safety in networks of size at leastÑ . We can now show that the universal leader
election algorithm is correct with termination subroutineT :

Theorem 4. If termination subroutineT usess states and precisionq, then the universal algorithm solves
leader election with errorǫ, s + O(1) states, andq precision (guaranteeing safety only in networks of size
n ≥ Ñ ).
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Proof. We consider the two properties of leader election in turn.

Liveness:First, there is always at least one active node, because a node becomes inactive only upon
receiving a beep from another active node. In every iteration of the knockout loop that starts with more than
one active node, there is a non-zero probability that at least one active node is knocked out, and therefore with
probability one there is eventually only one active node remaining. From that point on, in every iteration,
there is a constant probability that the remaining active node is silent and hence the termination subroutine
is executed by all nodes. By the Termination property, eventually it will return true and all nodes terminate.
Thus with probability one, eventually there is at least one leader.

Safety: Assume the network is of size at least̃N (the only case for which safety must hold). The
probability that the algorithm makes it throughR silent iterations of the knockout loop with more than
one leader is at mostǫ/2, via Lemma3. Notice that the termination routine is only executed in silent
iterations of the knockout loop, and over theseR (potentially bad) iterations, there is a probability of at most
ǫ/2 of improperly terminating and entering the leader state with multiple active nodes (as provided by the
termination detection safety property). A union bound combines these errors for a total error probability
less thanǫ.

While the preceding theorem can be used to show the feasibility of solving leader election, it does not
bound the performance. For that, we rely on termination subroutines that ensure fast termination:

Theorem 5. If termination subroutineT satisfies Fast Termination instead of Eventual Termination, and if
it usess states andq precision, and if it runs in timet, then the universal algorithm solves leader election
with error ǫ with s + O(1) states andq precision (guaranteeing safety only in networks of size≥ Ñ ).
Furthermore, it terminates inO(t logq̂(n+ 1/ǫ)) rounds, with probability at least1− ǫ.

Proof. Notice that Fast Termination implies Eventual Termination: eventually, there will be only one active
node, since if there is more than one active node, then in every iteration of the knockout loop there is
a positive probability that one node is knocked out; in the iteration immediately after the last knockout
occurs, the conditions for Fast Termination are satisfied. We can, therefore, apply Theorem4 to establish
the algorithm as a correct leader election algorithm. It remains only to consider the running time. There are
two cases.

Assumen = 1. In this case, in Lines 1–3, the lone node calls the termination subroutine withko and
active both equal true. By the fast termination property, the lone node terminates before it even enters the
knockout loop.

Assumen > 1. By Lemma3, we know that with probability at least1− ǫ, there is only one active node
within O(tR) time. Consider the last round that begins with at least two active nodes. In that round, at least
one node is knocked out, and hence the termination routine iscalled with only one active node and at least
one node withko equal to true. By the fast termination property (and the agreement property), all nodes
terminate after this call.

To calculate the final time cost, we note that each iteration of the knockout loop requirest+O(1) time:
satisfying the claimed time complexity upper bound.

3.3 Optimal Leader Election

Here we define a termination subroutine that, when combined with the universal leader election algorithm,
matches our lower bound from Theorem2. In more detail, fix an error boundǫ and probability precision
q. Fix some lower bound̃N ≥ 1 on the network size. We describe a termination detection subroutine that

we callStateOptimal(Ñ ) that requiresO(⌈
logq (1/ǫ)

Ñ
⌉) states, and guarantees Agreement, Termination, and

Safety in any network of sizen ≥ Ñ .
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There are two important points relevant to this leader election strategy. First, forÑ = 1, it provides
a general solution that works in every size network. Second,the state requirements for this algorithm are
asymptotically optimal according to Theorem2. As will be clear from its definition below, the cost of this
optimality is inefficiency (its expected time increases exponentially withn). We will subsequently identify
a pair of more efficient solutions that gain efficiency at the cost of some optimality under some conditions.

The StateOptimal(Ñ ) Termination Detection Subroutine. TheStateOptimal(Ñ ) subroutine, unlike the
other subroutines we will consider, ignores theactive andko parameters. Instead, it runs simple distributed
coin flip logic amongall nodes. In more detail, recall from the definition of the universal algorithm that

q̂ = min{q, (1/ǫ)}. The subroutine consists ofδ = ⌈
c logq̂ (1/ǫ)

Ñ
⌉ rounds, defined for some constantc ≥ 1

we will bound in the analysis. In each round, each node beeps with probability1− 1/q̂. At the end of theδ
rounds, each node returns1 if all δ rounds were silent, otherwise it returns0.

Analysis. It is straightforward to determine that all nodes return thesame value from this subroutine
(i.e., if any node beeps or detects a beep, all nodes will return 0). It is also straightforward to verify that

implementing this subroutine for a givenδ requiresΘ(δ) = Θ(⌈
logq̂ (1/ǫ)

Ñ
⌉) = Θ(⌈

logq (1/ǫ)

Ñ
⌉) states (we

can replace thêq with q in the final step because onceq gets beyond size1/ǫ, the function stabilizes at1).
Eventual termination is also easy to verify, as every call tothe subroutine has a probability strictly greater
than0 of terminating.

To show safety, we observe that the routine returns true onlyif all n nodes are silent for allδ rounds.
The probability of this happening is exponentially small in(δn) and hence it is not hard to show that every
R invocations, the probability that the subroutine returns true in any invocation with more than one active
node is at mostǫ/2.

Lemma 6 (Safety). Over the firstR invocations, the probability that the subroutine returns true in any
invocation with more than one active node is at mostǫ/2.

Proof. The termination routine returns true only if alln nodes are silent for allδ rounds. Because each node
beeps with probability1/q̂, the probability of this occurring is at most1/q̂δn. There are now two cases to
consider. The first case is whenǫ > 1/n. We observe here thatδ ≥ c (due to the ceiling) for some constant
c, and so1/q̂δn ≤ 1/2nc. Taking a union bound over theR = 4 logq̂(n) invocations, we conclude that
the probability of violating safety isR/2nc ≤ 1/n2 ≤ ǫ/2 for a proper choice ofc. The second case is
whenǫ ≤ 1/n. We observe here thatδ = c logq̂(1/ǫ)/Ñ , and so1/q̂δn ≤ ǫc. We now take a union bound
overR = 4 logq̂(max(1/ǫ)) calls to the subroutine, and conclude that the probability of violating safety is
Rǫc ≤ ǫ2 ≤ ǫ/2, for proper choice ofc.

Combined with Theorem4, this yields the following conclusion:

Theorem 7. For any network size lower bound̃N , error parameterǫ and precisionq, the universal leader
election algorithm combined with the StateOptimal(Ñ ) subroutine, solves leader election with respect to

these parameters when run in a network of sizen ≥ Ñ , and requires onlys = Θ(⌈
logq (1/ǫ)

Ñ
⌉) states.

3.4 Fast Leader Election with Sub-Optimal State

The leader election algorithm from Section3.3 can solve the problem with the optimal amount of states
for any given combination of system parameters. It achievesthis feat, however, at the expense of time
complexity: it is straightforward to determine that this algorithm requires time exponential in the network
size to terminate. Here we consider a termination subroutine that trades some state optimality to achieve a
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solution that is fast (polylogarthmic in1/ǫ rounds) and simple to define (it uses the minimal probabilistic
precision ofq = 2). Furthermore, its definition is independent of the networksizen, yet it still works for
every possiblen. For the purpose of this section, we assume thatq = q̂ = 2. As we show below, this
subroutine usesΘ(log (1/ǫ)) states. This is suboptimal when high precision (i.e., larger q) is available, and
when there is a lower bound̃N on the size of the network.

The Fixed Error Termination Detection Subroutine. This termination subroutine consists of a fixed
schedule of⌈log (2/ǫ)⌉+2 rounds. During the first round, any node that calls the subroutine with parameter
ko equal to1 beeps while all other nodes receive. If no node beeps, then the subroutine is aborted and all
nodes return false.

Moving forward, assume this event does not occur (i.e., at least one node beeps in the first round). For
each of the⌈log (2/ǫ)⌉ rounds that follow, every node with parameteractive = 1, will flip a fair two-sided
coin. If it comes up heads, it will beep, otherwise it will receive. Each node withactive = 1 will start these
rounds with a flagsolo initialized to1. If such a node ever detects a beep during a round that it receives, it
will resetsolo to 0 (as it just gained evidence that it is not alone).

The final round of the subroutine is used to determine if anyone detected a non-solo execution of the
subroutine. To do so, every node withactive = 1 andsolo = 0 beeps. If no node beeps in this final round,
then all nodes return true. Otherwise, all nodes return false.

Analysis. We proceed as before, observing that all nodes return the same value from this subroutine since
all observe the same channel activity in the first and last rounds. It is also straightforward to verify that im-
plementing this subroutine requiresO(log (1/ǫ)) states to count the rounds and recordsolo. Fast termination
follows directly from a case analysis of the algorithm.

Lemma 8 (Fast Termination). If theFixed Errorsubroutine is called with only one active node, and with at
least one node whereko = true, then it returns true.

Proof. In this case, the node withko = true beeps in the first round, ensuring that everyone continues.
During the following log (1/ǫ) rounds, only the single active node beeps, and hence it terminates with
solo = 1. Thus, no node beeps in the final round and everyone returns true.

Safety requires a little more care, showing that the failureprobabilities overR invocations can be
bounded byǫ/2, since the error probability depends on the number of activenodes.

Lemma 9 (Safety). Over the firstR invocations of the subroutine, the probability that it returns true in any
invocation with more than one active node is at mostǫ/2.

Proof. First, we note that if there arek nodes active, then in order to return true, allk nodes must maintain
solo = 1. If in any round, any two nodes take different actions—i.e.,one beeps and the other is silent—then
one will detect it is not solo and all nodes will subsequentlyreturn false. Thus, the probability that every
active node maintainssolo = 1 is at most1/2sk, wheres = ⌈log 2/ǫ⌉.

We now consider theR invocations of the subroutine. In any invocation where no node hasko = true,
all the nodes always return false. We can therefore focus only on the subset oft ≤ R invocations where at
least one node hasko = true. Let k1, k2, . . . , kt be the number of active nodes in each invocation. In any
invocation whereko = true, we know that the number of active nodes is reduced by1 as compared to the
last invocation. We can therefore conclude thatk1 > k2 > k3 > . . . > kt.
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By a union bound, the probability that we return true in any ofthese invocations, given that there are
more than1 active nodes, is at most:

(1/2)k1s + (1/2)k2s + ...+ (1/2)kts < (1/2)k1(1/2)s + (1/2)k2(1/2)s + ...+ (1/2)kt(1/2)s

= (1/2)s
[
(1/2)k1 + (1/2)k2 + ...+ (1/2)kt

]

≤ (1/2)s
[
(1/2)t + (1/2)t−1 + ...+ (1/2)

]

< (1/2)s ≤ ǫ/2

Combined with Theorem5, these properties yield the following conclusion:

Theorem 10. For error parameterǫ, the universal leader election algorithm combined with theFixed Error
subroutine, solves leader election with respect toǫ in every size network, using onlys = Θ(log (1/ǫ)) states
andq = 2. With probability at least1− ǫ, it terminates inO(log (n+ 1/ǫ) log (1/ǫ)) rounds.

3.5 Fast Leader Election withO(1) States and High Probability

The final termination detection subroutine we consider requires only a constant number of states, and when
executed in a network of sizen, for anyn > 1, it solves leader election with high probability inn. At
first glance, this result may seem to violate the lower bound from Section3.1, which notes that the state
requirement grows with alog (1/ǫ) factor asǫ decreases. The question is why a constant number of states
is sufficient for our algorithm here even though this term grows withn. The answer relies on the fact thatǫ
is always a function ofn, such that for any fixedn, it is true thatÑ ≥ n, and therefore thẽN factor in the
denominator of our lower bound swamps the growth of thelog n factor in the numerator.

The Constant State Termination Detection Subroutine. The subroutine here is identical to theFixed
Error subroutine, except the length of subroutine is not fixed in advance (no node has enough states to count
beyond a constant number of rounds—which is not enough for our purposes). Instead, we dynamically adapt
the length of the subroutine to a sufficiently large functionof n using a distributed counting strategy.

In more detail, during the first round, any node that called the subroutine with parameterko equal to1
beeps while all other nodes receive. If no node beeps, then subroutine is aborted and all nodes will return
value false (as is true forFixed Error). Assuming the subroutine has not aborted, the nodes then proceed to
the main body. During the main body, we partition rounds intoeven and odd pairs. During the odd numbered
rounds, we proceed as inFixed Error: every node with parameteractive = 1, flips a fair coin; if it comes
up heads, it will beep, otherwise it will receive; each node with active = 1 will start these rounds with a
flag solo initialized to1; if such a node ever detects a beep during a round that it receives, it will resetsolo
to 0 (as it just gained evidence that it is not alone).

During the even rounds, the nodes run a repeated knockout protocol forO(1) iterations, for some fixed
constant bounded in our below analysis. In more detail, eachnode (regardless of whether or not it hasactive
equal to true) begins the subroutine with a flagattack = 1 and a countercount = 0. In each even round,
each node withattack = 1 flips a fair coin and beeps if it comes up heads; otherwise it listens. Any node
that listens in an even round and hears a beep setsattack = 0. If there is an even round in which no node
beeps, then all nodes incrementcount and resetattack = 1. This continues untilcount grows larger than
the fixed constant mentioned above, When this occurs, all nodes move the final round, which is defined the
same as the final round inFixed Error. That is: every node withactive = 1 andsolo = 0 beeps. If no node
beeps in this final round, then all nodes return true. Otherwise, all nodes return false.

13



Analysis. The Liveness and Fast Termination properties follow from the same arguments used in our
analysis ofFixed Error. The main difficulty in analyzing this subroutine is provingSafety. To do so, we first
bound how long the subroutine is likely to run on any given invocation:

Lemma 11. For any constantc, there exists ac′ > c and a constant bound forcount, such that the
main body of the subroutine runs for at leastc log(n) rounds but no more thanc′ log n rounds, with high
probability.

Proof. We will show that with high probability, each iteration of the knockout protocol runs forΘ(log n)
rounds. By choosing an appropriate constant bound forcount (i.e., the number of iterations of the knockout
protocol), we can increase this length by any constant factor.

We begin by noting that as long as there areΘ(log n) nodes withattack = 1, then, with high proba-
bility, the iteration does not end in that round, as it is likely that at least one node will beep (this follows
because the probability of silence in this case is upper bounded by1/2Θ(log n)). Also note that whenever
a node flips a tails, it is eliminated. Thus, we show that with high probability, at leastΘ(log n) nodes flip
Θ(log(n/ log log n) = Θ(log n) heads in a row.

One easy way to to see why this is so is as follows. Divide the nodes inΘ(log n) different groups of
n/Θ(log n) nodes each. For each group, the probability that no node flipssufficiently many heads in a row
is at most:

(
1−

1

2log(n/ logn)

)n/Θ(log n)

≤

(
1−

log n

n

)n/Θ(log n)

≤ (1/e)Θ(1)

Thus each group, independently, has a constant probabilityof having one node survive. Since each group
is independent and there areΘ(log n) groups, by a Chernoff bound there areΘ(log n) survivors with high
probability. Thus we conclude that with high probability, the subroutine does not terminate forΘ(log(n/ log n)) =
Θ(log n) rounds.

To show that the subroutine does eventually terminate for some larger term inΘ(log n) is more straight-
forward. Fix a specific nodeu. For every even round such thatu hasattack = 1, there is a probability of
at least1/2 that it receives a beep (and resetsattack) or there is a silence. It follows that with high prob-
ability one of these two things has happened afterΘ(log n) rounds. A union bound over all nodes shows
that with high probability this is true for all nodes, indicating either a silence has occurred or every node has
attack = 0 so a silence is about to occur.

Lemma 12(Safety). Over the firstR invocations of the subroutine, the probability that it returns true in any
invocation with more than one active node is at most1/nc, for a constantc we can grow with our constant
bound oncount.

Proof. The proof here proceeds much as in Lemma9. As before, we can conclude that the probability of
returning true when there is more than one active node is bounded by1/2s, wheres is the number of round
of the main body of the subroutine. We have shown in Lemma11 thats = Ω(log n) with high probability,
and so overall we conclude that the lemma holds with high probability.

We can then show that the subroutine guarantees safety. Combined with the Theorem5, these properties
yields the following conclusion:

Theorem 13. For any network sizen, the universal leader election algorithm combined with theConstant
State termination detection subroutine, solves leader election with high probability inn usings = O(1)
states andq = 2. Also with high probability inn, it terminates inO(log2 n) rounds.
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4 Solving General Distributed Decision Problems

In the previous section, we studied upper and lower bounds for solving leader election in the beeping model.
Here we establish these leader election bounds to be (in somesense) fundamental for useful distributed
computation in this setting. In more detail, we use a combination of our leader election algorithms as a key
primitive in constructing an algorithm that can simulate a logspace (inn) decider Turing Machine (TM)
with a constant number of unary input tapes (of sizeO(n) each). The simulation has error probability at
mostǫ, requires only the minimum probabilistic precision (q = 2), and usess = O(log (1/ǫ)) states. If high
probability inn is sufficient, then the state size can be reduced tos = O(1). Formally:

Theorem 14. For any problem solvable by a logspace TM with a constant number of unary input tapes,
there exist constantsc, d ≥ 1, such that for any error probabilityǫ ∈ [0, 1/2] and network sizen ≥ 1,
we can solve the problem in the beeping model in a network of sizen with probability at least1 − ǫ using
s = c log (1/ǫ) states, precisionq = 2, and an expected running time ofO(nd log2 (n+ 1/ǫ)) rounds. For
high probability correctness,s = O(1) states are sufficient.

We now highlight some important observations about the above result. First, we should not expect to sim-
ulate amorepowerful class of TM. This follows from a configuration counting argument. Fors = O(1),
for example, then nodes in our model can collectively encode at mostO(ns) unique configurations (there
is no explicit ordering of nodes, so a given configuration of our system is described by the number of nodes
out of n in each of thes possible states). A TM with more than log space, by contrast,might have many
more possible configurations that need to be simulated. Whatis perhaps more surprising is that we can
successfully simulate a logspace machine even though nodesdo not have enough states for unique ids or
even to store a single pointer to the simulated TM’s tape. In some sense, our algorithm is making full use
(asymptotically) of the available memory in our distributed system.

Second, notice that the size of this algorithm is independent of the network size. The same number of
states successfully simulates the TM even asn, and therefore the potential length of the simulated TM com-
putation, grows to arbitrarily large values. Third, this results establisheslog (1/ǫ) as a key state complexity
threshold in the beeping model. If you have fewer than this many states, you cannot even safely solve basic
symmetry breaking tasks (e.g., leader election). Once you reach this threshold, however, suddenly you can
solve a rich set of expressive problems (e.g., anything solvable by a logspace TM).

Finally, we emphasize that we do not present this simulationas a practical algorithm for solving prob-
lems in limited communication scenarios (simulating a TM typically adds many more layers of indirection
than is necessary). We instead use this result to identify the threshold beyond which beeping nodes can start
to solve interesting problems. Finding elegant solutions to individual problems in this class is a separate and
useful endeavor.

Before proceeding to the proof details, we first summarize the main ideas. Our result depends on a
TM simulation strategy that follows the outline originallyidentified in [4], where it was used to simulate
a TM using a population protocol in the randomized interaction model. In more detail, we first simulate
a simple counter machine with a constant number of counters that can take values of sizeO(n). We then
apply a classical computability result due to Minsky [16] which shows how to simulate a logspace TM (with
unary input tapes) using a counter machine of this type. The counter machine simulation in the beeping
model, combined with Minsky’s TM simulation in the counter model, yields a TM simulation in the beeping
model. Though we follow the same outline as in [4], the details of our counter simulation of course differ as
we are implementing this simulation in the beeping model whereas [4] implements their simulation in the
population protocol model. What our two approaches do share(along with many network simulations of
TMs) is the use of leaders to coordinate the simulation.

The core concept in our counter machine simulation is to elect a leader to play the role of the simulation
coordinator. This coordinator can announce the counter operations that need to be simulated by the network.

15



We show for every operation required of a counter machine, there is a way to simulate its operation with
at most a constant number of leader election instances. To elect leaders, we use our universal algorithm
combined with theconjunctionof both our fast termination detection subroutines (i.e., termination requires
both to return true). We show that the error probability of this combination is bounded byǫ/nc—allowing us
to safely solve leader election for the needed polynomial number of instances before the simulated logspace
TM reaches its final decision. We now tackle these elements inmore detail.

Simulating a Counter Machine. The counter machine we simulate has access to a constant number of
counters that can hold values from0 to O(n). Control is captured by a finite state machine. Each state
transition can increment, decrement, or reset to0 any of the counter values. The transition function can also
integrate the outcome of a comparison operator that compares the value stored in a given counter to0.

Our simulation leverages leader election as a key subroutine. In particular, we use the primitive that
results when we combine the universal leader election algorithm with the the conjunctive combination of
both theFixed ErrorandConstant Statetermination detection subroutines. That is, every time theuniversal
algorithm calls a termination subroutine, it will now call both of these subroutines, one after the other, and
then return the valueout1 ∧ out2, whereout1 andout2 are the outcomes of the first and second subroutine
called, respectively. For the remainder of this discussion, we call this instantiation of the universal algorithm
thedouble-safe fast leader electionalgorithm. Because the back-to-back executions of these subroutines are
independent, and they offer error bounds ofǫ andn−c (for some constantc > 1 that grows with the available
state), respectively, we get the following claim about thisalgorithm:

Claim 15. The probability that a given call to the termination subroutine fails in the double-safe leader
election algorithm is no more thanǫ/nc.

Returning to our simulation description, the first step is torun the double-safe protocol to elect a leader
to play the role ofcoordinator. This node is responsible for simulating the state transitions of the finite-state
control of the counter machine. It is also responsible for announcing to the other nodes (using predetermined,
constant length beep patterns) which operation will be simulated next.

We make use of the states distributed among alln nodes in the network to store the counter values in
a distributed fashion. To so so, we assume for each counterci, each node has a local bit labelledc[i] in its
state. Our simulation will store counter values in unary using these bits. That is, we representci = x at a
given point in our simulation by having exactlyx nodes in our beep model with theirc[i] bit set to1. (To
handle counter values larger thann, but still inO(n), we can expand the size of thesec[i] local counters to
larger constant sizes as needed).

Two of these counters (let us call themc1 andc2) are needed to run the TM simulation, and we assume
are initialized to zero. Accordingly, we assume all nodes begin with c[1] = c[2] = 0. The simulation
also assumes the values stored in unary on the input tape(s) of the simulated TM are also initially stored in
counters. We can capture this in a similar manner; e.g., ifc3 corresponds to an input tape storing valuex in
unary, we assume exactlyx nodes begin withc[3] = 1.

We now describe each of the operations that may need to be simulated, and show how the nodes can
successfully simulate each of these operations using onlyO(1) correct calls to double-safe leader election.
The coordinator, true to its name, coordinates these operation simulations. That is, it announces the next
operation to be simulated with a fixed beep pattern. It then uses the results of operation simulation to advance
its local copy of the counter machine control, which determines which operation to simulate next.

• Increment.To increment a counterci, the set of nodes (if any) withc[i] = 0 run leader election. The
winner sets itsc[i] bit to 1. (If all nodes havec[i] = 1 then no election is necessary as the counter does
not grow beyond its maximum value.)
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• Decrement. To decrement a counterci, we follow the same strategy as the increment operation, except
now nodes withc[i] = 1 compete, and the leader resetsc[i] to 0. (If all nodes havec[i] = 0, then no
election is necessary as the counter cannot reduce below0.)

• Zero. To zero a counterci, all nodes withc[i] = 1 resetc[i] to 0.

• Compare to Zero. To compare a counter toci to 0, it is sufficient to assign a round for all nodes with
c[i] = 1 to beep. If the coordinator detects silent then it knows the stored counter value is0, otherwise
it is greater than0.

The TM Simulation Though the counter machine described above is quite simple,Minsky [16] shows it
is sufficiently powerful to simulate a logspace TM with a constant number of unary input tapes. Minsky’s
simulation requires up to a polynomial number of steps of thecounter machine for each simulated step of
the TM.4 Therefore, our TM simulation will require up to a polynomialnumber of successful leader election
calls per simulated TM step. The total number of simulated TMsteps can also be bounded by a polynomial,
as the machine has only logarithmic space and it is a deterministic decider. Therefore, our simulation must
correctly implement leader election a (larger) polynomialnumber of times to correctly simulate the TM until
its decision.

Analysis. We note that a sufficiently large constant number of states isenough for the coordinator to
simulate the finite control of the counter machine. We also note that an additional constant number of states
is enough for the nodes to store their constant-sized piecesof the constant number of counter values used in
the simulation.

More interesting is the question of how many states are needed to ensure that the leader elections calls in
the simulation are all correct. To answer this question, letna, for some constanta ≥ 1 dependent on the TM
definition and Minsky simulation details, be the maximum number of leader election calls our simulation
might make. We note that our double-safe algorithm uses two termination detection subroutines. The first
requiress = O(log (1/ǫ)) states to reduce the error probability to no more thanǫ. The second requires
s = O(1) states to reduce the error probability ton−c, for somec we can grow by increasing the constant in
the state size. If we fixc ≥ a, we see the probability that a particular call to leader election fails is no more
thanǫ/na. A union bound over the no more thanna leader elections needed by the simulation tells us that
the probability at least one fails is less thanǫ.

Finally, we turn our attention to time complexity. Because each of the fast termination detection subrou-
tines terminate in timeO(log2 (n+ 1/ǫ)), we getO(na log2 (n + 1/ǫ)) as an expected time bound. These
results combine to establish Theorem14.
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