arXiv:1508.03859v1 [cs.DC] 16 Aug 2015

The Computational Power of Beeps

Seth Gilbert Calvin Newport
National University of Singapore Georgetown University
set h. gi | bert @onp. nus. edu. sg chewport @s. geor get own. edu

Abstract

In this paper, we study the quantity of computational resesi(state machine states and/or prob-
abilistic transition precision) needed to solve specifichifems in a single hop network where nodes
communicate using only beeps. We begin by focusing on raimmhteader election. We prove a lower
bound on the states required to solve this problem with angéreor bound, probability precision, and
(when relevant) network size lower bound. We then show thealadight with a matching upper bound.
Noting that our optimal upper bound is slow, we describe tastdr algorithms that trade some state
optimality to gain efficiency. We then turn our attention tom@ general classes of problems by proving
that once you have enough states to solve leader electibnangiven error bound, you have (within
constant factors) enough states to simulate correctly this same error bound, a logspace TM with
a constant number of unary input tapes: allowing you to sal@rge and expressive set of problems.
These results identify a key simplicity threshold beyondoltuseful distributed computation is possible
in the beeping model.

*Supported in part by NUS FRC T1-251RES1404
TSupported in part by NSF grant CCF 1320279

http://arxiv.org/abs/1508.03859v1

1 Introduction

The beeping model of network communicatida3,10,14,19] assumes a collection of computatiomaldes
connected in a network, that interactlgepingn synchronous rounds. If a node decides to beep in a given
round, it receives no feedback from the channel. On the dthed, if a node decides to listen, it is able to
differentiate between the following two cases: (1) no nkbagtin the network topology beeped in this round,
and (2) one or more neighbors beeped.

Existing work on this model provide two motivations. Thefficoncerns digital communication net-
works (e.g., 10, 12]). Standard network communication (in which nodes intetsing error-corrected
packets containing many bits of information) requires targal time, energy, and computational overhead
(at multiple stack layers) to handle the necessary packmidémg, modulation, demodulation, and decoding.
Beeps, on the other hand, provide an abstraction capturagimplest possible communication primitive:
a detectable burst of energy. In theory, beep layers couithpemented using a fraction of the complexity
required by standard packet communication, establishiagpbssibility ofmicro-networkstacks for set-
tings where high speed and low cost are crucial. The secortitation for the beeping model concerns a
connection to biological systems (e.®, 18,19]). Network communication in nature is often quite simple;
e.g., noticing a flash of light from nearby fireflies or detegta chemical marker diffused by nearby cells.
Therefore, understanding how to achieve distributed doatidn using such basic primitives can provide
insight into how such coordination arises in nature (4&fpr a recent survey of this approach).

A Key Question. As detailed below, existing work on the beeping model seekslive useful problems as
efficientlyas possible in this primitive network setting. In this pajgrcontrast, we focus on solving useful
problems asimplyas possible (e.g., as measured by factors such as the sheeadfjorithm’s state machine
representation), asking the key question: is it possibkotee problems with both simple communication
and simple algorithms? Notice, the answer is agpriori obvious. It might be the case, for example, that
complexity is conserved, so that simplifying the commuticzamodel requires more complex algorithms.
Or it might be the case that simple algorithms coordinatiiitt) weeps are sufficient for even complex tasks.
Given the above motivations for studying beeps, answehigduestion is crucial, as it will help us probe
the feasibility of useful networked systems—be them cowstd by engineers or evolution—that are truly
simple in both their communication methods and controldogi

Our Answers. We study a collection ofi nodes connected in single hoptopology (i.e., the network
graph is a clique). We model the randomized algorithmic @seexecuting on each node as a probabilistic
state machine. The two parameters describing the complekihese algorithms are: (1) an upper bound
on the number of states (indicated by integee> 1); and (2) an upper bound on the precision of the
probabilistic transitions (indicated by integer> 2, where we allow probabilistic transitions to be labeled
with probability 0, 1, or any value in the interva[%, 1- 5]). We ask how large these values must grow to
solve specific problems. Our motivating premise is that Emahlues imply simpler algorithms. (Notice,
by considering botls andg, we can capture the trade-off between memory and probébifisecision; a
guestion of standalone interest; c.L5]).

We begin by consideringpader electiona fundamental primitive in distributed systems. We prana t
for a given error bound € [0,1/2] and probabilistic precision, any algorithm that guarantees to solve
leader election with probability — ¢ requiress = Q(log, (1/¢)) states. Provided a lower bourd on the
size of the network, this lower boumeducedo s = (2(log, (1/€)/N) states. That is, the more nodes in the
network, the fewer states each node needs to solve the proble

This lower bound leverages a reduction argument. We begitefiping and lower bounding a helper
problem called 1, k)-loneliness detectigrwhich requires an algorithm to differentiate betweer- 1 and

n > k (but has no requirements for intermediate network sizesjs hound uses an indistinguishability
argument regarding how nodes move through a specified siqteesce. We then show how to transform
a solution to leader election for size lower bouiNd to solve (1, NV)-loneliness detection—allowing our
loneliness bound to carry over to leader election.

We then turn our attention to leader election upper boundg. b@gin by proving our lower bound
tight by showing, for every network size lower bound > 1, how to solve leader election with =
O(log, (1/€)/N) states. The key idea behind this algorithm is to have nodek tegether to implement a
distributed timer. The more nodes in the network, the lornerdistributed timer runs, and the longer the
distributed timer runs, the higher the probability that weceed at leader election. In this way, increasing
the network size reduces the states required to hit a specific bound. A shortcoming of this new algo-
rithm, however, is that its expected running time is expdiaém the network size. With this mind, we then
describe two faster algorithms (their time is polylogamib in the relevant parameters) that require only the
minimum precision ofy = 2. The cost for their efficiency, however, is a loss of staténoglity in some
circumstances.

The first algorithm requires = O(log (1/¢)) states and solves leader election with probability at least
1 — ¢, for any network size:. It terminates inO(log (n + 1/¢) log (1/€)) rounds, with probability at least
1 — e. The key idea behind this algorithm is to test a potentiallgcessful election by having the poten-
tial leader(s) broadcast with probability'2 for log (1/€) rounds, looking for evidence of company. It is
straightforward to see that a single such test fails wittbghility no more than(1/2)°2 (1/¢) = ¢. The
problem, however, is that as the network size grows, the eurabsuch tests performed also increases,
making it more likely that one fails. We neutralize this desh in our analysis by showing that the test
failure probabilities fall away as a geometric series intdst count—bounding the cumulative error sum as
the network grows.

The second algorithm requires ondy= O(1) states, and yet, for every network sizeit solves leader
election with high probability im» when run in a network of that size. It requires oiillog? n) rounds,
with high probability. The key idea driving this algorithra fo harness the large amount of total states in
the network to implement a distributed timer that requipgsg n) time to countdown td@, when executed
amongn nodes. This duration is sufficient for the nodes to safelycedccontention down to a single leader.

After studying leader election, we turn our attention to engeneral classes of distributed decision
problems. Leveraging our leader election algorithms agykeitive, we show how to simulate a logspace
decider Turing Machine (TM) with a constant number of unapuits (all defined with respect to the network
sizen). Perhaps surprisingly, this algorithm requires o@lflog (1/¢)) states to complete the simulation
with probability 1 — €, and onlyO(1) states to achieve high probability in (Notice that this is not enough
states for an individual node to store even a single poirdehé¢ tape of the simulated machine.) Our
simulation uses the same general strategy first highligihtéte study of population protocold]f simulate
a counter machine with a constant number of counters thatvales from0 to O(n), and then apply a
transformation due to Minskylp] to simulate a logspace TM with this machine. Due to the diffiees
between the beeping and population protocol models, haweue counter machine simulation strategies
are distinct from 4].

Implications. The results summarized above establish thaldgél/¢) state threshold for leader election
with bounded error is (in some sense) a fundamental simplicreshold for solving useful problems with
beeps. It is striking that if you hava@ightly lessthan this much memory, even the basic symmetry breaking
task of leader election is impossible, but if you insteadehslightly more then suddenly you can solve
large classes of complicated problems (i.e., everythirigabte by a logspace TM). If you are satisfied
with high probability solutions (which is often the caséien this treshhold reduces even more all the way
down toO(1). Given these results, we tentatively claim a positive amswéhe key question posed above:

complexity is not destiny; you can solve hard problems ginmpsimple network models.

Before proceeding into the technical details of our paperwili first take the time to place both our model
and our results in the context of the several different anéaslevant related work. Among other questions,
we want to understand the relationship of our bounds toiagisteep results, and how the beeping model
compares and contrasts to similar settings.

Comparison to Existing Beep Results. The algorithmic study of beeping networks began with Degesy
et al. [L2], who introduced a continuous variant of the beeping modeslired by the pulse-coupled os-
cillator framework. They studied biologically inspiredategies for solving a@esynchronizatiomproblem.
Follow-up work generalized the results to multihop netveojkl, 17]. Cornejo and Kuhn0] introduced
the discrete (i.e., round-based) beeping model studielisnpaper. They motivated this model by noting
the continuous model intfl, 12, 17] was unrealistic and yielded trivial solutions to desymctization, they
then demonstrated how to solve desynchronization withmge assumptions. Around this same time, Afek
et al. [3] described a maximal independent set (MIS) algorithm irrangf version of the discrete beeping
model. They argued that something like this algorithm mighat a role in the proper distribution of sen-
sory organ precursor cells in fruit fly nervous system dgwelent. Follow-up workZ,2,19] removed some
of the stronger assumptions d][and improved the time complexity. In recent work, Forseml. [14]
considered deterministic leader election in a multihopbegnetwork.

To place this paper in this context of the existing work on bleeping model, it is important to note
that the above-cited papers focus primarily on two goalsnimmizing time complexity and minimizing
information provided to nodes (e.g., network size, max eegglobal round counter). They do not, however,
place restrictions on the amount of states used by theirilgts. Accordingly, these existing results require
either: the ability to store values as largeas:) [1-3,10,19], or uniques ids14] (which in our framework
would require a machine with different initial states, or equivalently, different machines). In this paper,
we prove that the algorithmic complexity threshold for siady many useful problems is actually much
lower: O(1) states are sufficient for high probability results andog (1/¢)) states are sufficient for fixed
error bound results.We argue the direction pursued in this paper (how complex @igsrithms become
to solve useful problems with beeps) complements the diregtursued in existing papers (how fast can
algorithms solve useful problems with beeps). Answers tb bges of queries is necessary to continue to
understand the important topic of coordination in conedinetwork environments.

Comparison to the Radio Network Model. The standard radio network model allows nodes to send large
messages, but assumes concurrent transmissions leadgagedsss (that may or may not be detectable).
The key difference between the radio network model and tlepibg model is that in the former you can
recognize the case where exactly one node broadcast (@cguide you receive a message). This capability,
which the beeping model does not offer (a single beeper Ibdsnultiple beepers), is powerful. It allows,
for example, algorithms that can solve leader election detierministic safety using only a constant amount
of state, when run in network of size at le@stlf you assume receiver collision detection, these satistio
require only polylogarithmic expected timMelhese results violate our lower bounds for leader electiith w

INotice, direct comparisons between many of these resuttsiigplicated by the variety of possible assumptions;
e.g., synchronous versus asynchronous starts, multirspssingle hop, small versus large probability precision.

2For example: divide rounds into pairs of even and odd roulmsven rounds, nodes broadcast a simple message
with constant probability. If a node ever succeeds in braatieg alone, all other nodes becoheralds They stop
competing in even rounds and begin competing in odd roundsgerthe winner (who is now the only non-herald in
the network) eventually hears a message in an odd rouneditsatself leader. If we assume collision detection, we
can reduce contention fast in the even rounds with basickomd@rotocols; e.g., if you choose to listen and detect a
collision you are knocked out and just wait to become a herald

beeps (where the state size grows toward infinity as you thiverror bound towar@)—indicating that the
communication limitations in the beeping model matter f@ecomputability perspective.

Comparison to the Stone Age Computing Model. It is also important to place our results in the context
of other simplified communication/computation models. §lder, for example, the stone age distributed
computing model introduced by Emek and Wattenhdf&}.[This model assumes state machines of constant
size connected in a network and executing asynchronoukkynlachines communicate with a constant-size
message alphabet and when transitioning can distinguisteba having received, 1, or > b messages

of each type, for some constant parameéter 1. Forb = 1, this model is essentially an asynchronous
version of the beeping model. To this end, nodes in our maaelsimulate nodes in the stone age model
with b = 1 indefinitely using a constant amount of states. &of 1, however, any such simulation likely
becomes impossible in the beeping model with a constant anodstates. As noted in our discussion of
the radio network model, the ability to safely recognizedhse of exactly one message being sent provides
extra power beyond what is achievable (without error) usinly beeps.

Comparison to the Population Protocol Model. Another relevant simplified communication/computation
setting is the well-studied population protocol model]] . This model describes nodes as state machines
of constant size that interact in a pairwise manner—transf@y both states asymmetrically. In the basic
version of the model, a fair scheduler chooses pairs todoteA version in which the scheduler is random-
ized adds more power. There are similarities in the goalsymat by the beeping and population protocol
models: both seek (among other things) to understand tlits loflimited state in distributed computation.
The core difference between the two settings is the roleeftgorithm in communication scheduling. In
the beeping model, algorithms must reduce contention anedste communication on their own. In the
population protocol model the scheduler ensures fair dimbte interactions. Imagine, for example, a con-
tinuous leader election problem where every node Hasderbit, and the problem requires in an infinite
execution that: (1) every node séemderto 1 an infinite number of times; and (2) there is never a time
at which two nodes both haveaderset tol. This problem is trivial in the population protocol: simply
pass a leader token around the network. In the beeping mmgdebntrast, it is impossible as it essentially
requires nodes to solve leader election correctly an iefimiimber of times—a feat which would require an
unachievable error bound 6f It follows that in some respects these two models are stgdyie impact of
limited state on different aspects of distributed compaoitat

2 Model

We model a collection of, probabilistic computational agents (i.e., “nodes”) tha eonnected in a single
hop network and communicate using a unary primitive; begps They execute in synchronous rounds. In
each round, each node can either beep or receive. Recendteg ican distinguish between the following two
cases: (1) no node beeped; (2) one or more nodes beeped. k&etehiae these agents bya bound on the
number of states in their state machine definition), @@ bound on the precision allowed in probabilistic
transitions, with larger values enabling more accuratestten probabilities). We now formalize these
model definitions and assumptions.

Node Definition. We formalize the algorithm executing on each node as a pilidiatbstate machine
M = (Qr,Qp,qs,01,0T), Where:Q, andQ,, are two disjoint sets of states corresponding to receivitlj a
beeping, respectivelyy, is the start state; anil, andé+ are the probabilistic transition functichapplied

3These transition functions map the current state to a bigtdn over the states to enter next.

in the case where the node detects silence and where the eegs/tietects a beep, respectively.
Some problems have all nodes execute the same state maeshiteepthers include multiple machine
types in the system, each corresponding to a differenalnitilue.

Executions. Executions proceed in synchronous rounds with all nodesamétwork starting in their ma-
chine’s start state. At the beginning of each rounfibr each nodes running a machinéQ,., Qy, gs, 9. ,7),

if its current statey, is in @y, thenu emits a beep, otherwise it receives. If at least one nodeshieep
then it follows thatall nodes either beep or detect a beep in this round. Therefach, reoden applies the
transition functiond to its current state, and selects its next state according to the resulting ligtan,
d1(qy). If no node beeps im, then each node applies the transition functiof, , selecting its next state
from the distributiong | (¢,,).

Parameters. We parameterize the state machines in our model with twoegalT he first, indicated by
s > 1, is an upper bound on the number of states allowed ((E/, + |Qs| < s). The second, indicated
by ¢ > 2, bounds the precision of the probabilistic transitionsvaéid by thed functions. In more detail,
for a giveng, the probabilities assigned to states by distributionfiérange ob must either bé), 1, or in
the interval,[%, — %]. For the minimum value of = 2, for example, probabilistic transitions can only
occur with probabilityl /2. As ¢ increases, smaller probabilities, as well as probalslitieser tol, become
possible. Finally, we parameterize a given execution withthe number of nodes executing in the network.

3 Leader Election

The first computational task we consider is leader electmrentually, one node designates itself leader.
An algorithm state machine that solves leader election imghide a finalleader statey, that is terminal
(once a node enters the state, it never leaves). If a nodesahte state it indicates the node has elected
itself leader. For a given error bourds [0,1/2], we say an algorithnsolvesleader election with respect
to e if when executed in a network of any size, it satisfies theofathg two properties: (1liveness with
probability 1, at least one node eventually enters the leader state; asa@f@dy with probability at least

1 — ¢, there is never more thannode in the leader state. We also consider algorithms folelealection
that are designed for networks of some minimal Sizeln this case, the algorithm must guarantee liveness
in every execution, but it needs to guarantee safety onlyeifrtetwork size is at leastN. Our goal is to
develop algorithms that use a minimum number of states tedehder election for a given error bouad
probability precisiony, and, when relevant, network size minimuvn

Roadmap. In Section3.1, we present a lower bound for leader election. In Sec8dh we present a
universal algorithm template, followed by three specifi&tamtiations in Sectior.3, 3.4, and3.5.

3.1 Leader Election Lower Bound

Here we analyze the number of states required to solve |ledeleion given a fixed, ¢, and network size
lower boundN. Our main result establishes that the number of statespst be irﬂ((%}).

To prove this result, we begin by defining and bounding a gdpeblem called1, k)-loneliness de-
tection which requires an algorithm to safely distinguish betweea 1 andn > k. The bound leverages
a probabilistic indistinguishability argument concemia short execution of the state machine in both the
n = 1 andn = k cases. We then show that loneliness detection captureg @lcallenge of leader election
by demonstrating how to transform a leader election algarithat works forn > N into a solution to
(1, N)-loneliness detection. The bound for the latter then caumieer to leader election by reduction.

5

(1, k)-Loneliness Detection. The (1, k)-loneliness detection problem is defined for some intdger 1
and error bound. It assumes all nodes run the same state machine with twéaspereninal final states
that we labely, (indicating “I am alone”) and. (indicating “I am in a crowd”). Thdivenessproperty of
this problem requires that with probability every node eventually enters a final state. $aketyproperty
requires that with probability at least— ¢, the following holds: ifn = 1, then the single node in the system
eventually enterg,; and if n > k then all nodes eventually enter. Crucial to this problem definition is
that we do not place any restrictions on the final states nedes for the case wheie< n < k.

The following bound formalizes the intuition that it becaneasier to break symmetry, and therefore
easier to solve loneliness detection, as the thresholddtacting a crowd grows. Put another way: the
presence of a big crowd is easier to detect than a small crowd.

Lemma 1. Fix some integek > 1. Let £ be an algorithm that solved, k)-loneliness detection with error
bounde and probability precisiory usings states. It follows that = Q(w).
Proof. Fix some integek > 1, error bound:, and probability precision. Fix some algorithn that solves
(1, k)-loneliness detection with error probability using precisiony. Let (Q.., Qp,qs,91,67) be L’s state
machine description. Lef, andg. be the two terminal final states required by the problem d&fimi We
note that whery > (1/¢), the lower bound claim on the state size reduces to a constasitnaller), which
is trivially true. The remainder of this proof therefore aglkes the more interesting case whete (1/¢).
Our goal is prove the required lower bound on the number ¢ésta, needed forl to solve loneliness
detection given these fixed valuesigfe, andg.

Our first step toward this goal is to introduce the notion ebk reachable patidefined with respect to
L. In more detail, we say a sequene= ¢1, q2, .., g, Of x states fromQ,- U @), is asolo reachable patfor
L’s state machine if and only if; = ¢, and for each consecutive pair of stagesy; 11 in P, the following
hold:

1. if ¢; € Q,, then the probability assigned é@,; in 6, (¢;) is greater tham;

2. if ¢; € Qy, then the probability assigned 4,1 in d1(¢;) is greater tha.

Put another way, a solo reachable path is a sequence oftiatesnode running this machine might feasibly
follow (i.e., it occurs with a non-zero probability) in a metrk with n = 1.

Fix any such solo reachable path= ¢, q2, ..., ¢.. We will now consider the probability that a network
consisting of exactly: nodes follows this path. In more detail, we claim that forrguec {1,2, ..., x}, the
probability that allk nodes are in statg. (from P) afterr rounds is at least(1/¢)*)". We can prove this
claim by induction on the state index

Basis (= 1). By definition, all nodes start in statg, so this occurs with probability > (1/¢)*.

Step.Assume the claim holds for some< x. To show it holds for+ 1, we note that the probability that
any single node transitions frogy to ¢, is greater that (by our definition ofreachablg¢. The smallest
probability greater thaf in our system isl /q. Therefore, we can refine our statement to say this occurs
with probability at leas{1/q). It follows that the probability thaall £ nodes make the same transition is
at least(1/q)*. Multiply this probability by the probability((1/¢)*)" that all nodes followedP up to g,
(provided by the inductive hypothesis), and we get the dddinal probability of((1/¢)*) 1.

We next argue that there exists a useful solo reachable Ipattistnot too long:

(*) There exists a solo reachable path = ¢4, ¢2, ..., ¢, defined with respect tg, such that
41 = qss ¢z = qq, andz < s.

The fact that there exists a solo reachable path that bagiihe istart state; and ends in the final state
qa, follows from the safety property of loneliness detectiaich says that when = 1, with probability

6

at leastl — ¢ > 0, the single node, starting in stajg ends up in final state,. The fact thatr < s follows
from the observation that if there ay such solo reachable path leadifg then we can excise the loops to
get a path that remains reachable, but that never visitsatne state more than once.

Let P be the solo reachable path identified above by claim (*). l&wply our inductive argument 1B,
and leverage the fact that the lengthfofs no more tham (i.e.,z < s), we get that the probability that all
k nodes in a network of nodes follow pathP is at least(1/q)**. Notice, if this occurs, we have violated
safety. It must therefore hold thét/q)** < e. We can set up this requirement as a simple constraint that
will provide the minimum allowable value for:

log (1 1 1
(1/q)** <e=q¢"* > (1/e) = s-klogg >log (1/e) = s > Okglgg/;) N qu’i =

Combining these pieces, we have shown that$blves(1, k)-loneliness detection, than it must be the case

thats > w, as required by the lemma statement.
O

Reducing Loneliness Detection to Leader Election. We now leverage the above result(dnk)-loneliness
detection to prove a lower bound for leader election undeigimrantee that the network size> N. The
proof proceeds by reduction: we show how to transform sudaddr election solution into a loneliness
detection algorithm of similar state size.

Theorem 2. Fix some network size lower bound > 1. Let A be an algorithm that solxes leader election
with error bounde and probability precisiony using s states in any network where > N. It follows that

s € ().

Proof. Fix some algorithmA that solves leader election with error bournahd probability precision using
s states in a network where > N, for some mtegeN > 1. Our first step is to usé to create an algorithm
L 4 that solve(1,) -loneliness detection for the sam@ndq, usingO(s) states. Our new algorithm 4
works as follows:

The algorithm partitions rounds into pairs. During the fr@ind of each pair, it executes.

The second round is used to announce the election of a leddt is, if a node becomes
leader according tod, it beeps in the second round. If any node beeps in a second rthe
algorithm stops its execution of and moves onto the next phase. This next phase consists of
single round. During this round, any node not elected lehdeps. If this round is silent, then
the algorithm enters final staig, otherwise it enters statg.

To analyzel 4, we first note that liveness follows directly from the livesegguarantee aofl: once the
simulation ofA elects the leader; 4 will lead all nodes to the second phase where they will thearexfinal
state after an single additional round. We now considertyaidere are three relevant cases, depending on
the value ofn.

e Casef#l1: n = 1. Inthe case, the liveness guaranteeldivhich holds regardless of the network size)
implies that the single node in the system will eventuallgdree leader. Because there are no other
nodes in the system, the second phase round will be silefulldtvs that the single node will enter
stateq,, as required. It follows that safety is satisfied with praligb1.

e Case#2: n > N. In this case, by assumptiop| correctly solves leader election with probability
at leastl — e. Assume this occurs andis the single leader elected. #f = 1 (which is possible
whenN = 1), the argument for Case #1 applies, andill enter q,, as required. Assume instead that

7

n > 1. In this case, the second phase round ol be silent. It follows that all nodes will enter state
qe, as required. It follows that safety is satisfied with prdbighat least1 — e.

o Case#3: 1 <n< N. In this case, there are no safety requirements. Therefafety is vacuously
satisfied with probabilityl.

We have just shown that given a solution to leader electian shtisfies safety fon > N, we can
solve(1, V)-loneliness detection while growing the state size by attra@®nstant factor. We can now pull
together the pieces. By Lemniaany solution ta(1, V)-loneliness detection for a givenandg, requires

a state size’ = Q(%). It follows that the states used by to solve leader election faN can be
no more than a constant factor larger thdnproving the same asymptotic bound gnwhich matches the

theorem statement. O

3.2 The Universal Leader Election Algorithm

We now turn our attention to leader election up-
per bounds. The three results that follow adopt

a template/subroutine approach. In more detafligorithm 1 Universal Leader Election Algorithm

Figure 3.1 describes what we call theniversal 1:
leader electioralgorithm. This algorithm, in turn, 2:
makes calls to a “termination subroutine.” Differ- 4.
entversions of this subroutine can be plugged intg:
the universal algorithm, yielding different guar- 7.
antees. Notice, this universal algorithm is pa$8:
rameterized with probability precisignand error 1%::
bounde, which it uses to define the useful paranti:
eterg = min{q, (1/€)}. This algorithm (as well %g
as one of our termination subroutines) us¢g, 14-
not1/q, as its smallest transition probability (in-1>:
tuitively, there is little advantage in using a probt7-
ability too much smaller than our error bousd 18:

The basic operation of the algorithm is simsg.
ple. Every node is initially active. Until the21:
termination subroutine determines that it is timgs:
to stop, nodes repeatedly execute the knockaut:
loop (lines 7-25). In each iteration of the Ioop%gf
each active node beeps with probability- 1/ 27:
and listens otherwise. If a node ever hears28:
beep, it is knocked out, settingp = true and %g;
active = false. In any silent iteration where no31:
node beeps, they execute the termination subrg:

active < 1
ko+ 1

3 G+ min{q, (1/€)}

done <+ [Termination Subroutin€](active, ko)
ko <+ 0

while (not done) do
participate < rbit ()
chan < T

> ReturnsD with prob1/4, elsel

> Knock Out Logic
if active A participate then
beep)
else
chan + recv()
end if
if active A not participate A\ (chan = T) then
active < 0
ko<« 1
end if
> Termination Detection Logic
if chan = L then
done < [Termination Subroutin€](active, ko)
ko<+ 0
end if
end while
> Become Leader if Still Active
if active then
leader < 1
else
leader < 0
end if
return (leader)

tine to decide whether to stop. Once termination

is reached, any node that remains active becomes the leader.

Termination Subroutines.

The goal of the termination subroutine is to decide whetbadér election has

been solved: it returnsue if there is a leader anfhlseotherwise.
The termination subroutine is called simultaneously bytla nodes in the system, and it is passed
two parameters: the value attive, which indicates whether or not the calling node is still teoling to

become leader, ankb, which indicates whether or not it has been knocked out imtha loop since the
last call to the subroutine. We fi = 4log,(max(n,1/¢)): a parameter, which as we will later elaborate,
captures a bound on the calls to the subroutine needed bidelgetermination. We consider the following
properties of a termination detection routine, defined wagpect to error parameteand R:

1. AgreementEvery node always returns the same value.

2. Safety Over the firstR invocations, the probability that it returns true in anydoation with more
than1 active node is at most/2.

3. Eventual Terminationlf it is called infinitely often with only one active node,eh eventually (with
probability 1), it returns true.

4. Fast Terminationl|fitis called with only one active node, and with at leaseomde wheréo = true,
then it returns true.

Universal Leader Election Analysis. We now observe that the universal leader election algorithm
correct when combined with a termination subroutine thasfas the relevant properties from above. To
do so, we first determine how many rounds it takes until treeomly one active node, and hence one possible
leader. We say that an iteration of the knockout loop (line255 issilentif no node beeps during it. (Notice
that the termination routine is only executed in silentatems of the knockout loop.) We first bound how
long it takes to reduce the number of active nodes:

Lemma 3. Given probabilitye < 1/2 and parametei? = 4 log,(max(n,1/¢)): after R silent iterations of
the knockout loop (lines 7-25), there remains exactly otigeaaode, with probability at leadt — ¢/2.

Proof. Notice that there is always at least one active node, becausmle becomes inactive only upon
detecting a beep from another active node. Fix two ngdasdq. Forp to remain active, node has
to remain silent whenever listens. Thus, if in some prefix of the execution, ngdkstensr times, the
probability that bothp andq remain active is at modt/q".

Taking a union bound over all pairs of nodes, we can upper dodym? /¢ the probability that there
exist any pair of nodep and ¢ where one of the nodes listerds times and both nodes remain active.
Equivalently, we have shown that the probabilityRsilent iterations of the knockout loop, while at ledst
nodes are active, is bounded h¥/".

Now recall thatR = 4log,(max(n,1/¢)). Consider the two cases:

e If e>1/n,thenk = 4log;n, and thereforen? /¢t < n?/n* < €/2.
o If ¢ < 1/n,thenR = 4log,(1/¢)), and thereforen? /G < n?/(1/e)* < ¢* < ¢/2.
In both cases, withirR silent iterations, there is exactly one leader with prolitghat leastl — €/2. O

Let T be a termination subroutine that satisfies Agreement anatiak Termination. In addition,
assume thaf” satisfies safety in networks of size at least We can now show that the universal leader
election algorithm is correct with termination subroutifie

Theorem 4. If termination subroutiné” usess states and precision, then the universal algorithm solves
leader election with errok, s + O(1) states, and; precision (guaranteeing safety only in networks of size
n > N).

Proof. We consider the two properties of leader election in turn.

Liveness:First, there is always at least one active node, because e lezbmes inactive only upon
receiving a beep from another active node. In every itematiche knockout loop that starts with more than
one active node, there is a non-zero probability that at taassactive node is knocked out, and therefore with
probability one there is eventually only one active nhodeaming. From that point on, in every iteration,
there is a constant probability that the remaining activéenis silent and hence the termination subroutine
is executed by all nodes. By the Termination property, exadht it will return true and all nodes terminate.
Thus with probability one, eventually there is at least aaler.

Safety: Assume the network is of size at least (the only case for which safety must hold). The
probability that the algorithm makes it through silent iterations of the knockout loop with more than
one leader is at most/2, via Lemma3. Notice that the termination routine is only executed irersil
iterations of the knockout loop, and over thégépotentially bad) iterations, there is a probability of aish
¢/2 of improperly terminating and entering the leader staté witltiple active nodes (as provided by the
termination detection safety property). A union bound coreb these errors for a total error probability
less tharr.

O

While the preceding theorem can be used to show the feagibflisolving leader election, it does not
bound the performance. For that, we rely on termination@utires that ensure fast termination:

Theorem 5. If termination subrouting/” satisfies Fast Termination instead of Eventual Terminatiord if

it usess states and; precision, and if it runs in time, then the universal algorithm solves leader election
with error e with s + O(1) states and; precision (guaranteeing safety only in networks of sizeV).
Furthermore, it terminates i0)(t log,(n + 1/¢)) rounds, with probability at least — e.

Proof. Notice that Fast Termination implies Eventual Terminatieventually, there will be only one active
node, since if there is more than one active node, then iryatemation of the knockout loop there is
a positive probability that one node is knocked out; in tlegation immediately after the last knockout
occurs, the conditions for Fast Termination are satisfied. c&h, therefore, apply Theorefrto establish
the algorithm as a correct leader election algorithm. Itai® only to consider the running time. There are
two cases.

Assumen = 1. In this case, in Lines 1-3, the lone node calls the termanagubroutine withko and
active both equal true. By the fast termination property, the loodenterminates before it even enters the
knockout loop.

Assumen > 1. By Lemma3, we know that with probability at least— ¢, there is only one active node
within O(tR) time. Consider the last round that begins with at least twiveoodes. In that round, at least
one node is knocked out, and hence the termination routioallesd with only one active node and at least
one node withko equal to true. By the fast termination property (and the exgent property), all nodes
terminate after this call.

To calculate the final time cost, we note that each iteratfdheknockout loop requires+ O(1) time:
satisfying the claimed time complexity upper bound. O

3.3 Optimal Leader Election

Here we define a termination subroutine that, when combin#dtie universal leader election algorithm,
matches our lower bound from Theoréi In more detail, fix an error boundand probability precision
q. Fix some lower boundVv > 1 on the network size. We describe a termination detectionostiibe that

we call StateOptimalN) that require@([%}) states, and guarantees Agreement, Termination, and
Safety in any network of size > N.

10

There are two important points relevant to this leader mlecitrategy. First, forv = 1, it provides
a general solution that works in every size network. Sectrlstate requirements for this algorithm are
asymptotically optimal according to TheoreéinAs will be clear from its definition below, the cost of this
optimality is inefficiency (its expected time increasesagntially withn). We will subsequently identify
a pair of more efficient solutions that gain efficiency at thstof some optimality under some conditions.

The StateOptimal(]V) Termination Detection Subroutine. TheStateOptima(W) subroutine, unlike the
other subroutines we will consider, ignores th#ive andko parameters. Instead, it runs simple distributed
coin flip logic amongall nodes. In more detail, recall from the definition of the uréat algorithm that

¢ = min{q, (1/€)}. The subroutine consists 6f= {%} rounds, defined for some constant 1

we will bound in the analysis. In each round, each node beé&pgwobability 1 — 1/4. At the end of they
rounds, each node returisf all 6 rounds were silent, otherwise it returfis

Analysis. It is straightforward to determine that all nodes return slaene value from this subroutine
(i.e., if any node beeps or detects a beep, all nodes wiltreéty It is also straightforward to verify that
implementing this subroutine for a givenrequiresO(J) = @([%1) = @([%1) states (we
can replace thé with ¢ in the final step because ongeets beyond sizé/e, the function stabilizes at).
Eventual termination is also easy to verify, as every cathtosubroutine has a probability strictly greater
than0 of terminating.

To show safety, we observe that the routine returns true by » nodes are silent for alf rounds.
The probability of this happening is exponentially smal(dm) and hence it is not hard to show that every
R invocations, the probability that the subroutine retunog in any invocation with more than one active
node is at most/2.

Lemma 6 (Safety) Over the firstR invocations, the probability that the subroutine returmsetin any
invocation with more than one active node is at mgat

Proof. The termination routine returns true only if allnodes are silent for afl rounds. Because each node
beeps with probabilityl /¢, the probability of this occurring is at mo$f¢°”. There are now two cases to
consider. The first case is when> 1/n. We observe here that> ¢ (due to the ceiling) for some constant
¢, and sol /¢ < 1/2"¢. Taking a union bound over the = 4log,(n) invocations, we conclude that
the probability of violating safety ig2/2"¢ < 1/n? < ¢/2 for a proper choice of. The second case is
whene < 1/n. We observe here that= clogq(l/e)/ﬁ, and sol /¢°" < €°. We now take a union bound
over R = 4log,(max(1/¢)) calls to the subroutine, and conclude that the probabifityiaating safety is
Re® < €% < ¢/2, for proper choice of. O

Combined with Theorem, this yields the following conclusion:

Theorem 7. For any network size lower bount, error parametere and precisiong, the universal leader
election algorithm combined with the StateOptifda) subroutine, solves leader election with respect to

these parameters when run in a network of size IV, and requires only = @([%1) states.

3.4 Fast Leader Election with Sub-Optimal State

The leader election algorithm from Secti8B can solve the problem with the optimal amount of states
for any given combination of system parameters. It achi¢hisfeat, however, at the expense of time
complexity: it is straightforward to determine that thig@lithm requires time exponential in the network
size to terminate. Here we consider a termination subretutiat trades some state optimality to achieve a

11

solution that is fast (polylogarthmic ih/e rounds) and simple to define (it uses the minimal probalulist
precision of¢ = 2). Furthermore, its definition is independent of the netwsiden, yet it still works for
every possiblen. For the purpose of this section, we assume that ¢§ = 2. As we show below, this
subroutine use®(log (1/¢)) states. This is suboptimal when high precision (i.e., lagyés available, and
when there is a lower boundl on the size of the network.

The Fixed Error Termination Detection Subroutine. This termination subroutine consists of a fixed
schedule oflog (2/¢€)] + 2 rounds. During the first round, any node that calls the subrewvith parameter
ko equal tol beeps while all other nodes receive. If no node beeps, tleeaubroutine is aborted and all
nodes return false.

Moving forward, assume this event does not occur (i.e.,adtlene node beeps in the first round). For
each of theflog (2/¢€)] rounds that follow, every node with parametetive = 1, will flip a fair two-sided
coin. If it comes up heads, it will beep, otherwise it will ede. Each node withctive = 1 will start these
rounds with a flagsolo initialized to 1. If such a node ever detects a beep during a round that iveset
will resetsolo to 0 (as it just gained evidence that it is not alone).

The final round of the subroutine is used to determine if anydeiected a non-solo execution of the
subroutine. To do so, every node withtive = 1 andsolo = 0 beeps. If no node beeps in this final round,
then all nodes return true. Otherwise, all nodes returefals

Analysis. We proceed as before, observing that all nodes return the galue from this subroutine since
all observe the same channel activity in the first and lastdsult is also straightforward to verify that im-
plementing this subroutine requir€glog (1/¢)) states to count the rounds and recestb. Fast termination
follows directly from a case analysis of the algorithm.

Lemma 8 (Fast Termination) If the Fixed Errorsubroutine is called with only one active node, and with at
least one node where = true, then it returns true.

Proof. In this case, the node witho = true beeps in the first round, ensuring that everyone continues.
During the followinglog (1/¢) rounds, only the single active node beeps, and hence itriates with
solo = 1. Thus, no node beeps in the final round and everyone retwras tr O

Safety requires a little more care, showing that the failpirebabilities overR invocations can be
bounded by /2, since the error probability depends on the number of acibees.

Lemma 9 (Safety) Over the firstR invocations of the subroutine, the probability that it netsi true in any
invocation with more than one active node is at mgat

Proof. First, we note that if there arenodes active, then in order to return true,kafftodes must maintain
solo = 1. If in any round, any two nodes take different actions—o&e beeps and the other is silent—then
one will detect it is not solo and all nodes will subsequendiurn false. Thus, the probability that every
active node maintainsolo = 1 is at mostl /2%, wheres = [log 2/¢].

We now consider thé& invocations of the subroutine. In any invocation where ndanbasio = true,
all the nodes always return false. We can therefore focus@mthe subset of < R invocations where at
least one node hds) = true. Letky, ks, ...,k be the number of active nodes in each invocation. In any
invocation where:o = true, we know that the number of active nodes is reduced bg compared to the
last invocation. We can therefore conclude that> ko > kg > ... > k.

12

By a union bound, the probability that we return true in anyhase invocations, given that there are
more thanl active nodes, is at most:

(1/2)%1° + (1/2)%° + ..+ (1/2)% < (1/2)"1(1/2)° + (1/2)*2(1/2)° + ... + (1/2)*(1/2)°
= (1/2°[(1/2)" + (1/2) + ... 4+ (1/2)"]
< (1/2°[(1/2)" + (1/2) 1 + .+ (1/2)]
< (1/2)° < ¢/2

Combined with Theorerh, these properties yield the following conclusion:

Theorem 10. For error parametere, the universal leader election algorithm combined withFhesd Error
subroutine, solves leader election with respectitoevery size network, using ordy= O(log (1/¢)) states
andq = 2. With probability at leastl — ¢, it terminates inO(log (n + 1/¢) log (1/¢€)) rounds.

3.5 Fast Leader Election withO(1) States and High Probability

The final termination detection subroutine we consider iregonly a constant number of states, and when
executed in a network of size, for anyn > 1, it solves leader election with high probability in At

first glance, this result may seem to violate the lower bounthfSection3.1, which notes that the state
requirement grows with g (1/¢) factor ase decreases. The question is why a constant number of states
is sufficient for our algorithm here even though this termaggavith n. The answer relies on the fact that

is always a function of., such that for any fixed, it is true thatN > n, and therefore théV factor in the
denominator of our lower bound swamps the growth oflthe factor in the numerator.

The Constant State Termination Detection Subroutine. The subroutine here is identical to théed
Error subroutine, except the length of subroutine is not fixed waade (no node has enough states to count
beyond a constant number of rounds—which is not enough fgpanposes). Instead, we dynamically adapt
the length of the subroutine to a sufficiently large functdm using a distributed counting strategy.

In more detail, during the first round, any node that calledghbroutine with parametén equal tol
beeps while all other nodes receive. If no node beeps, thenostine is aborted and all nodes will return
value false (as is true fdfixed Error). Assuming the subroutine has not aborted, the nodes tlveeqd to
the main body. During the main body, we partition rounds awen and odd pairs. During the odd numbered
rounds, we proceed as kixed Error. every node with parametextive = 1, flips a fair coin; if it comes
up heads, it will beep, otherwise it will receive; each nodthwctive = 1 will start these rounds with a
flag solo initialized to 1; if such a node ever detects a beep during a round that itves;at will resetsolo
to 0 (as it just gained evidence that it is not alone).

During the even rounds, the nodes run a repeated knockotatcptdor O(1) iterations, for some fixed
constant bounded in our below analysis. In more detail, eade (regardless of whether or not it hasive
equal to true) begins the subroutine with a ftaguck = 1 and a counterount = 0. In each even round,
each node witluttack = 1 flips a fair coin and beeps if it comes up heads; otherwisstigtis. Any node
that listens in an even round and hears a beepagtisk = 0. If there is an even round in which no node
beeps, then all nodes incrementunt and resetittack = 1. This continues untitount grows larger than
the fixed constant mentioned above, When this occurs, aésawbve the final round, which is defined the
same as the final round Fixed Error. That is: every node withctive = 1 andsolo = 0 beeps. If no node
beeps in this final round, then all nodes return true. Othsyvall nodes return false.

13

Analysis. The Liveness and Fast Termination properties follow from same arguments used in our
analysis ofFixed Error. The main difficulty in analyzing this subroutine is proviSgfety. To do so, we first
bound how long the subroutine is likely to run on any giverooation:

Lemma 11. For any constant, there exists &’ > ¢ and a constant bound farount, such that the
main body of the subroutine runs for at leasbg(n) rounds but no more thad log n rounds, with high
probability.

Proof. We will show that with high probability, each iteration ofetfknockout protocol runs fa®(logn)
rounds. By choosing an appropriate constant bounddonrt (i.e., the number of iterations of the knockout
protocol), we can increase this length by any constant facto

We begin by noting that as long as there @r@og n) nodes withattack = 1, then, with high proba-
bility, the iteration does not end in that round, as it is ljkthat at least one node will beep (this follows
because the probability of silence in this case is uppercti)tmtdn’n)y1/2@(10g n)). Also note that whenever
a node flips a talls, it is eliminated. Thus, we show that witihtprobability, at leas® (log n) nodes flip
©(log(n/loglogn) = O(log n) heads in a row.

One easy way to to see why this is so is as follows. Divide trdeaan©(log n) different groups of
n/©(log n) nodes each. For each group, the probability that no nodesilifficiently many heads in a row

is at most:
. 1 n/O(logn) _ . log n n/©(logn)
™ Slogtn/Togm) s \I-=
< (1/e)°0

Thus each group, independently, has a constant probabilityaving one node survive. Since each group
is independent and there aglog n) groups, by a Chernoff bound there &@¢log n) survivors with high
probability. Thus we conclude that with high probabilityetsubroutine does not terminate @®flog(n/logn)) =
©(logn) rounds.

To show that the subroutine does eventually terminate foresarger term ir®(log n) is more straight-
forward. Fix a specific node. For every even round such thathasattack = 1, there is a probability of
at leastl /2 that it receives a beep (and resetsack) or there is a silence. It follows that with high prob-
ability one of these two things has happened afiéiog n) rounds. A union bound over all nodes shows
that with high probability this is true for all nodes, indicey either a silence has occurred or every node has
attack = 0 so a silence is about to occur. O

Lemma 12(Safety) Over the firstR invocations of the subroutine, the probability that it netsi true in any
invocation with more than one active node is at migst©, for a constant: we can grow with our constant
bound oncount.

Proof. The proof here proceeds much as in Lem®naAs before, we can conclude that the probability of
returning true when there is more than one active node isd®xliby1/2%, wheres is the number of round
of the main body of the subroutine. We have shown in Lenifthats = (log n) with high probability,
and so overall we conclude that the lemma holds with highadvoiby. O

We can then show that the subroutine guarantees safety. i@ednbith the Theorerd, these properties
yields the following conclusion:

Theorem 13. For any network size,, the universal leader election algorithm combined with @anstant
State termination detection subroutine, solves leadectiele with high probability inn usings = O(1)
states and; = 2. Also with high probability im, it terminates inO(log? n) rounds.

14

4 Solving General Distributed Decision Problems

In the previous section, we studied upper and lower boundsoleing leader election in the beeping model.
Here we establish these leader election bounds to be (in semse) fundamental for useful distributed
computation in this setting. In more detail, we use a contlinaof our leader election algorithms as a key
primitive in constructing an algorithm that can simulateogdpace (im) decider Turing Machine (TM)
with a constant number of unary input tapes (of gi2@:) each). The simulation has error probability at
moste, requires only the minimum probabilistic precisian=€ 2), and uses = O(log (1/¢)) states. If high
probability inn is sufficient, then the state size can be reduced=+oO(1). Formally:

Theorem 14. For any problem solvable by a logspace TM with a constant ramolb unary input tapes,
there exist constants d > 1, such that for any error probability € [0,1/2] and network sizex > 1,
we can solve the problem in the beeping model in a networkzethsivith probability at leastl — € using
s = clog (1/¢) states, precision = 2, and an expected running time @{n? log? (n + 1/¢)) rounds. For
high probability correctness; = O(1) states are sufficient.

We now highlight some important observations about the alvesult. First, we should not expect to sim-
ulate amore powerful class of TM. This follows from a configuration coungt argument. Fos = O(1),

for example, thex nodes in our model can collectively encode at m@6&t®) unique configurations (there
is no explicit ordering of nodes, so a given configurationwf eystem is described by the number of nodes
out of n in each of thes possible states). A TM with more than log space, by contragiht have many
more possible configurations that need to be simulated. \ighagrhaps more surprising is that we can
successfully simulate a logspace machine even though rdmlest have enough states for unique ids or
even to store a single pointer to the simulated TM’s tape.omessense, our algorithm is making full use
(asymptotically) of the available memory in our distrilkditgystem.

Second, notice that the size of this algorithm is independéthe network size. The same number of
states successfully simulates the TM even aand therefore the potential length of the simulated TM com-
putation, grows to arbitrarily large values. Third, thisuklts establishelg (1/¢) as a key state complexity
threshold in the beeping model. If you have fewer than thieynsdates, you cannot even safely solve basic
symmetry breaking tasks (e.g., leader election). Once gadalr this threshold, however, suddenly you can
solve a rich set of expressive problems (e.g., anythingabtdvby a logspace TM).

Finally, we emphasize that we do not present this simula®a practical algorithm for solving prob-
lems in limited communication scenarios (simulating a Tidi¢ally adds many more layers of indirection
than is necessary). We instead use this result to idengfyitteshold beyond which beeping nodes can start
to solve interesting problems. Finding elegant soluti@nsdividual problems in this class is a separate and
useful endeavor.

Before proceeding to the proof details, we first summarizentain ideas. Our result depends on a
TM simulation strategy that follows the outline originallgentified in §], where it was used to simulate
a TM using a population protocol in the randomized intemactinodel. In more detail, we first simulate
a simple counter machine with a constant number of counti@tscain take values of size(n). We then
apply a classical computability result due to Minskg|which shows how to simulate a logspace TM (with
unary input tapes) using a counter machine of this type. Tumter machine simulation in the beeping
model, combined with Minsky’s TM simulation in the counteodel, yields a TM simulation in the beeping
model. Though we follow the same outline as4h the details of our counter simulation of course differ as
we are implementing this simulation in the beeping modelreas B] implements their simulation in the
population protocol model. What our two approaches do sfaomg with many network simulations of
TMSs) is the use of leaders to coordinate the simulation.

The core concept in our counter machine simulation is ta elézader to play the role of the simulation
coordinator. This coordinator can announce the countaatipas that need to be simulated by the network.

15

We show for every operation required of a counter machineretis a way to simulate its operation with
at most a constant number of leader election instances. €bb leladers, we use our universal algorithm
combined with theconjunctionof both our fast termination detection subroutines (iermination requires
both to return true). We show that the error probability @ tombination is bounded kyn“—allowing us

to safely solve leader election for the needed polynomiailver of instances before the simulated logspace
TM reaches its final decision. We now tackle these elementsoire detail.

Simulating a Counter Machine. The counter machine we simulate has access to a constanenamb
counters that can hold values frainto O(n). Control is captured by a finite state machine. Each state
transition can increment, decrement, or resétamy of the counter values. The transition function can also
integrate the outcome of a comparison operator that coraplaeevalue stored in a given counteroto

Our simulation leverages leader election as a key submutin particular, we use the primitive that
results when we combine the universal leader election itgorwith the the conjunctive combination of
boththe Fixed ErrorandConstant Statéermination detection subroutines. That is, every timeuthngersal
algorithm calls a termination subroutine, it will now catith of these subroutines, one after the other, and
then return the valueut, A outs, Whereout; andouts are the outcomes of the first and second subroutine
called, respectively. For the remainder of this discussimncall this instantiation of the universal algorithm
thedouble-safe fast leader electiafgorithm. Because the back-to-back executions of thds®stines are
independent, and they offer error bounds ahdn ¢ (for some constant > 1 that grows with the available
state), respectively, we get the following claim about gigorithm:

Claim 15. The probability that a given call to the termination subioet fails in the double-safe leader
election algorithm is no more tha'n°.

Returning to our simulation description, the first step isuio the double-safe protocol to elect a leader
to play the role otoordinator. This node is responsible for simulating the state tramsstiof the finite-state
control of the counter machine. Itis also responsible forcamcing to the other nodes (using predetermined,
constant length beep patterns) which operation will be Eited next.

We make use of the states distributed amongralbdes in the network to store the counter values in
a distributed fashion. To so so, we assume for each coupteach node has a local bit labelled] in its
state. Our simulation will store counter values in unanngghese bits. That is, we represept= x at a
given point in our simulation by having exactlynodes in our beep model with theifi] bit set tol. (To
handle counter values larger thanbut still in O(n), we can expand the size of thegd local counters to
larger constant sizes as needed).

Two of these counters (let us call themandc,) are needed to run the TM simulation, and we assume
are initialized to zero. Accordingly, we assume all nodegitbeavith c[1] = ¢[2] = 0. The simulation
also assumes the values stored in unary on the input tagefs simulated TM are also initially stored in
counters. We can capture this in a similar manner; e.gs, ¢orresponds to an input tape storing vaiuie
unary, we assume exactlynodes begin with[3] = 1.

We now describe each of the operations that may need to bdasgduand show how the nodes can
successfully simulate each of these operations using@fily correct calls to double-safe leader election.
The coordinator, true to its name, coordinates these aperaimulations. That is, it announces the next
operation to be simulated with a fixed beep pattern. It thes tise results of operation simulation to advance
its local copy of the counter machine control, which deteesiwhich operation to simulate next.

e Increment.To increment a counter;, the set of nodes (if any) with(i] = 0 run leader election. The

winner sets itg[i] bit to 1. (If all nodes have|i] = 1 then no election is necessary as the counter does
not grow beyond its maximum value.)

16

e DecrementTo decrement a countey, we follow the same strategy as the increment operatiorexc
now nodes withe[i] = 1 compete, and the leader resefg to 0. (If all nodes have:[:] = 0, then no
election is necessary as the counter cannot reduce lieJow

e Zero. To zero a countet;, all nodes withe[i] = 1 resetc]:] to 0.

e Compare to ZeroTo compare a counter g to 0, it is sufficient to assign a round for all nodes with
cli] = 1 to beep. If the coordinator detects silent then it knows theed counter value 8, otherwise
it is greater thar.

The TM Simulation Though the counter machine described above is quite sirjitesky [16] shows it

is sufficiently powerful to simulate a logspace TM with a dam number of unary input tapes. Minsky'’s
simulation requires up to a polynomial number of steps ofcihenter machine for each simulated step of
the TM2 Therefore, our TM simulation will require up to a polynomiimber of successful leader election
calls per simulated TM step. The total number of simulatedsi®éps can also be bounded by a polynomial,
as the machine has only logarithmic space and it is a detesticidecider. Therefore, our simulation must
correctly implement leader election a (larger) polynomiamnber of times to correctly simulate the TM until
its decision.

Analysis. We note that a sufficiently large constant number of statem@igh for the coordinator to
simulate the finite control of the counter machine. We alde tiwat an additional constant number of states
is enough for the nodes to store their constant-sized piEfdée constant number of counter values used in
the simulation.

More interesting is the question of how many states are mkdensure that the leader elections calls in
the simulation are all correct. To answer this questiormfefor some constant > 1 dependent on the TM
definition and Minsky simulation details, be the maximum hemof leader election calls our simulation
might make. We note that our double-safe algorithm uses éwnihation detection subroutines. The first
requiress = O(log (1/¢)) states to reduce the error probability to no more thafhe second requires
s = O(1) states to reduce the error probabilityrto®, for somec we can grow by increasing the constant in
the state size. If we fix > a, we see the probability that a particular call to leadertedadails is no more
thane/n®. A union bound over the no more thari leader elections needed by the simulation tells us that
the probability at least one fails is less than

Finally, we turn our attention to time complexity. Becauaeleof the fast termination detection subrou-
tines terminate in tim@® (log? (n + 1/¢)), we getO(n®log? (n + 1/¢)) as an expected time bound. These
results combine to establish Theoréeh

References

[1] Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro CgmeBernhard Haeupler, and Fabian Kuhn.
Beeping a maximal independent set. Rroceedings of the Symposium on Distributed Computing
(DISC), 2011.

[2] Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro CgmeéBernhard Haeupler, and Fabian Kuhn.
Beeping a maximal independent sBistributed Computing26(4):195-208, 2013.

4Minsky’s simulation stores the working tape of the simuta®éM has a basé-value (whereb is tape alphabet
size) stored in unary in the counters. In particular, thei@as split between two counters. Step simulations require
multiplication and division operations, which, to implemesing the increment and decrement operations available
in the counter machine, can require steps linear in the eogizes.

17

[3] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Nadarkai, and Ziv Bar-Joseph. A bio-

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

logical solution to a fundamental distributed computinglppem. Science331(6014):183-185, 2011.

Dana Angluin, James Aspnes, Zoé Diamadi, Michael JkHés and René Peralta. Computation in
networks of passively mobile finite-state sens@sstributed Computingl8(4):235-253, 2006.

Dana Angluin, James Aspnes, and David Eisenstat. Staityputable predicates are semilinear. In
Proceedings of the Symposium on Principles of Distributech@uting (PODC)

Dana Angluin, James Aspnes, and David Eisenstat. Faspuatation by population protocols with a
leader.Distributed Computing21(3):183-199, 2008.

Dana Angluin, James Aspnes, and David Eisenstat. A @npolpulation protocol for fast robust
approximate majorityDistributed Computing21(2):87-102, 2008.

Dana Angluin, James Aspnes, David Eisenstat, and ErjgpRd. The computational power of popu-
lation protocols.Distributed Computing20(4):279-304, 2007.

loannis Chatzigiannakis and Paul G. Spirakis. The dyinarof probabilistic population protocols. In
Proceedings of the Symposium on Distributed Computing@RI3008.

Alejandro Cornejo and Fabian Kuhn. Deploying wireles$works with beeps. IRroceedings of the
Symposium on Distributed Computing (DI$S@)10.

Julius Degesys and Radhika Nagpal. Towards desynidatbon of multi-hop topologies. |#Pro-
ceedings of the International Conference on Self-AdagtinceSelf-Organizing Systems, 2008 (SASO)
2008.

Julius Degesys, lan Rose, Ankit Patel, and Radhika Biag@esync: self-organizing desynchro-
nization and tdma on wireless sensor networks.Piaceedings of the International Conference on
Information Processing in Sensor NetwqrkR807.

Yuval Emek and Roger Wattenhofer. Stone age distribatamputing. InProceedings of the Sympo-
sium on Principles of Distributed Computing (PODQD13.

Klaus-Tycho Forster, Jochen Seidel, and Roger Whtar. Deterministic leader election in multi-hop
beeping networks - (extended abstract).Ploceedings of the Symposium on Distributed Computing
(DISC), 2014.

Christoph Lenzen, Nancy Lynch, Calvin Newport, and dtswmira Radeva. Trade-offs between selec-
tion complexity and performance when searching the plartieowt communication. IfProceedings
of the Symposium on Principles of Distributed Computing D) 2014.

Marvin L Minsky. Computation: finite and infinite machineBrentice-Hall, 1967.

Arik Motskin, Tim Roughgarden, Primoz Skraba, and Liéas J. Guibas. Lightweight coloring and
desynchronization for networks. Rroceedings of the of the Conference on Computer Commigricat
(INFOCOM), 2009.

Saket Navlakha and Ziv Bar-Joseph. Distributed infation processing in biological and computa-
tional systemsCommunications of the ACN88(1):94-102, 2014.

[19] Alex Scott, Peter Jeavons, and Lei Xu. Feedback fromreatan optimal distributed algorithm for

maximal independent set selection. Rmoceedings of the Symposium on Principles of Distributed
Computing (PODC)2013.

18

	1 Introduction
	2 Model
	3 Leader Election
	3.1 Leader Election Lower Bound
	3.2 The Universal Leader Election Algorithm
	3.3 Optimal Leader Election
	3.4 Fast Leader Election with Sub-Optimal State
	3.5 Fast Leader Election with O(1) States and High Probability

	4 Solving General Distributed Decision Problems

