
Appl. Math. L&t. Vol. 4, No. 6, pp. 77-80, 1991
Printed in Great Britain. All rights reserved

08939659191 $3.00 + 0.00
Copyright@ 1991 Pergamon Press plc

Turing Computability with Neural Nets

~HAVA T. SIEGELMANN AND ‘EDUARDO D. SONTAG

‘Department of Computer Science, Rutgers University
2Department of Mathematics, Rutgers University

(Received June 1991)

Abstract. This paper shows the existence of a finite neural network, made up of sigmoidal nen-
rons, which simulates a nniversal Turing machine. It is composed of less then lo5 synchronously
evolving processors, interconnected linearly. High-order connections are not required.

1. INTR~BuCTION

This paper addresses the question: What ultimate limitations, if any, are imposed by the
use of neural nets as computing devices ? In particular, and ignoring issues of training and
practicality of implementation, one would like to know if every problem that can be solved
by a digital computer is also solvable-in principle-using a net. This question has been
asked before in the literature. Indeed, Jordan Pollack [l] showed that a certain recurrent
net model-which he called a “neuring machine,” for “neural Turing”-is universal. In his
model, all neurons synchronously update their states according to a quadratic combination
of past activation values. In general, one calls high-order nets those in which activations
are combined using multiplications; see [2] for related work and many other references to
such nets. Pollack left open the question of establishing if high-order connections are really
necessary in order to achive universality; the feeling among people working in the area has
been that they are. In contrast, we point out here that standard linear connections are
indeed enough to construct networks that are computationally as powerful as any Turing
machine.

Note that at least since the classical work of McCulloch and Pitts in the 194Os, it has
been clear how to simulate logic gates by networks of threshold (binary-valued) neurons, and
hence how to obtain finite automata using such nets (see e.g., [3] for more recent work on that
problem). One can simulate Turing machines if one allows a potentially unbounded number
of neurons; see e.g., [4] for variations on this theme and relations to cellular automata. Since
we insist on a fixed number of neurons, which does not increase during the computation,
our problem is different.

2. STATEMENT OF RESULT

A (recursive) net is an arbitrary interconnection of N synchronously evolving processors.
One of the processors, say the first, is singled out as the “output node” of the net, and there
is an external input signal that feeds into every processor. Since finitely many threshold
neurons cannot simulate more than finite automata behavior, continuous-valued neurons are
required.

We model such a net as a dynamical system (with scalar inputs). At each instant, the
state of this system is a vector r(t) E QN of rational numbers, where the ith coordinate

Supported in part by US Air Force Grant AFOSR-880235 end by Siemens Corporate Research.

Typeset by A,@-QX

77
AML 4:6-F

78 H.T. SIEGELMANN, E.D. SONTAG

keeps track of the activation value of the ith processor. More precisely, we define a processor
net N as having equations of the form

x(t , t = 0,1,2.. . (1)

(or simply t+ = a’(Aa: + bu + c) in shorthand notation). Here N is some positive integer,

A E QNxN, and b,c E eN, while a’ : BN + BN : (ql,. . . ,qN) H (u(ql),. . . ,b(qN)),
where d is a simple “sigmoid,” namely the saturated-linear function U(Z) := 0 if 2 < 0,
a(r) := I if 0 5 2 2 1, and U(Z) := 1 if 2 > 1.

Processor nets as above appear frequently in neural network studies, and their dynamic
properties are of interest (see for instance [5]); the continuous-time analogue is also studied
in the literature (see some comments in the concluding section below).

Given any infinite sequence of rational numbers w = u(O), u(l), u(2), . . . (thought of as
external inputs), one defines the state at time t, for each integer t 2 0, as the value obtained
by recursively solving the equations (1) with initial condition ~(0) := 0.

It is obvious that one can simulate a processor net with a Turing machine, as we took
all values to be rational. Our main remark is that, conversely, any function computable
by a Turing machine can be computed by a processor net. To state the precise result, we

need to introduce the notion of a unay input signal: this is by definition any sequence
u(O), u(l), u(2), . . . w 1c consists of a string of n l’s (where 0 5 n < oo) followed by an h’ h
infinite string of O’s:

w[n] = woo... .

n
THEOREM. Let q5 : N - N be any recursively computable partial function. Then there exists
a processor net N so that the following property holds. Pick any n E N, and consider the
unary input signal w[n]. Starting from the zero (inactive) initial state, the first coordinates

~(o)l,~(l)l,z(2)1,... of the resulting states form a sequence of the following form:

O...O~OO...

m

where m may be zero or positive. Iff d() n is undefined, m = 0; otherwise 4(n) = m - 1.

We next describe the main ideas of the proof; details can be found in the technical
report [6]. As in the textbook approach of “counter machines,” one can encode an infinite
tape into real-valued activations; the only problem is how to do this while preserving a
purely linear-interconnection architecture.

First of all, one starts with a realization of C$ through a push-down automaton with
three unary stacks; these are known to be sufficient to simulate all Turing machines. (It is
equally possible to start with binary stacks, which is more satisfactory from a computational
complexity point of view, but the construction becomes slightly more involved in that case.)

The control unit can be easily simulated by a net; this is basically the old automata
result, but care must be taken in seeing that it is possible to let inputs enter additively
rather than multiplicatively. The contents of each stack can be summarized by a natural
number s, which can in turn be represented by the rational number with binary expansion
qs = O.l... 1 (use s one’s to represent the integer s). In this last representation, affine

operations are sufficient: The stack “push” operation (increment counter) corresponds to
qS H +qS + i, while “pop” (decrement) corresponds to q3 I+ 2q, - 1. Heading a stack is
straightforward: if qs encodes the stack value, then u(2q,) = 0 if and only if the stack is
empty, and u(2q,) = 1 otherwise. (A different encoding of a stack, as in [l], cannot be read
in this simple manner.)

The critical point is to show that the whole design can be integrated (stack operations
and state transitions gated by states of control unit and symbols at tops of stacks) without
introducing high-order connections, that is, products. This is achieved basically by using
negative values that act as “inhibitors” when fed into the activation function u. As a
preliminary step, one proves the following easy fact, which allows the expression of any
function of the control-unit binary state variables 2, the Boolean functions p obtained by
reading stacks, and the actual stack values q, in terms only of sigmoids:

Turing computability with neural nets 79

LEMMA. For each function ,8 : {O,l} x {O,l} x {O,l} + (0, l}, there exist eight vectors

Vl, 212, .f., vg E Q5 and scalars cl,c2, . . . , cs E Q such that, for each (a, b, d, z) E (0, l}*
and each q E [0, 11,

where p = (1, a, b, d, x) and ‘0’ = dot product in Q5.

As an illustration, consider just the “no-op” and “pop” actions, and assume that there is
given a binary control signal c (which is computed from the current states and stacks) so
that the required effect is, on a stack having value q8:

+_ qs
43 -

{
ifc=O

2q,-1 ifc=l

(and it is guaranteed that qs # 0 in the second case, that is, one doesn’t attempt to pop an
empty stack). Then one may use the update:

q+ := u (a(qs) + a(qs + c - 1) - g(c)> S

(some of the u’s are redundant, but are needed in order to obtain the desired form).
Note that in particular it follows that one can obtain the behavior of a universal mring

machine via some net. A rough bound from the constructions shows that N = lo5 processors
are (far more than) sufficient for computing such a function.

3. REMARKS

Note that the simulation result has many interesting consequences regarding the decid-
ability, or more generally the complexity, of questions about recursive nets of the type we
consider. For instance, determining if a given neuron ever assumes the value “1” is effectively
undecidable (as the halting problem can be easily reduced to it; details are given in the full
paper); on the other hand, the problem appears to become decidable if a linear activation
is used (halting in that case is equivalent to a fact that is widely conjectured to follow from
classical results due to Skolem and others on rational functions; see[7, page 751, and is also
decidable in the pure threshold case (there are only finitely many states). As our function
u is in a sense a combination of thresholds and linear functions, this gap in decidability is
perhaps remarkable.

One obvious question deals with the use of other activation functions. Using the “standard
sigmoid” l/(l+e-“) presents some technical difficulties, because rational numbers are harder
to deal with. For instance, requiring an ouput sequence of exact “l’s” is too stringent, but
there are obvious modifications that can be done. On the other hand, an equation of the
type x+ = ~(Ax+bu+c), where T is a hard threshold (Heaviside) function, can only simulate
a finite automaton, as all states are essentially binary.

Many other types of “machines” may be used for universality (see [8], especially Chapter 2,
for general definitions of continuous machines). For instance, with a similar proof we can
show that systems evolving according to equations x+ = x + T(AX + bu + c), where 7 takes
the sign in each coordinate, again are universal in a precise sense. It is interesting to note
also that such equations represent an Euler approximation of a differential equation; this
suggests the existence of continuous-time simulations of firing machines.

In closing, we note that the idea of using continuous-valued neurons in order to attain
gains in computational capabilities compared with threshold gates had been explored in
other work, for the special case of feedforward nets-see for instance [9] for questions of ap-

proximation and function interpolation, and [lo] for questions of Boolean circuit complexity.
See also [ll] for other work on continuous-valued models of computation.

80 H.T. SIEGELMANN, E.D. SONTAG

REFERENCES

1. J.B. Pollack, On connectionist models of natural language processing, Ph.D. Dissertation, Computer
Science Dept, University of Illinois, Urbana, (1987); (Available as MCCS-87-100, Computing Research
Laboratory, NMSU, Las Cruces, NM).

2. G.Z. Sun, H.-H. Chen, Y.-C. Lee and C.L. Giles, Turing equivalence of neural networks with second
order connection weights, In Proc. Znt. Joint Conj. Neural Networks, Seattle, (1991).

3. N. Alon, A.K. Dewdney and T.J. Ott, Efficient simulation of finite automata by neural nets, J.A.C.M.
(to appear).

4. S. Franklin and M. Garzon, Neural computability, In Progress In Neural Networks, Vol. 1 (Edited by
O.M. Omidvar), pp. 128-144, Ablex, Norwood, NJ, (1999).

5. C.M. Marcus and R.M. Westervelt, Dynamics of iterated-map neural networks, Phys. Rev. Ser. A 40,
3355-3364 (1989).

6. H.T. Siegehnann and E.D. Sontag, Neural nets are universal computing devices, Report SYCON-91-08,
Rutgers Center for Systems and Control, Rutgers University, (1991).

7. J. Berstel and C. Reutenauer, Rational Systems and Their Languages, Springer-Verlag, Berlin, (1988).
8. E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, New

York, (1990).
9. E.D. Sontag, Remarks on interpolation and recognition using neural nets, In Advances in Neural Znjor-

malion Processing Systems 3, (Edited by R.P. Lippmann, J. Moody and D.S. Touretzky), pp. 939-945,
Morgan Kaufmann, San Mateo, CA, (1991).

10. W. Maass, G. Schnitger and E.D. Sontag, On the computational power of sigmoid versus Boolean
threshold circuits, Proc. of the 32nd Annual Symp. on Foundations of Computer Science (1991).

11. L. Blum, M. Shub and S. Smale, On a theory of computation and complexity over the real numbers:
NP completeness, recursive functions, and universal machines, Bull. A.M.S. 21 (l), l-46 (1989).

‘Department of Computer Science, Rutgers University, New B-wick, NJ 08903.
zDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08903.

