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Abstract

For the last few decades modern biology has focused on quantifying, understanding and mapping
the genetic characteristics of cells. This genotype–driven perspective has led to significant ad-
vances in our understanding and treatment of diseases such as cancer e.g. the discovery of driver
mutations and the development of molecularly–targeted therapeutics. However, this perspective
has largely ignored the functional outcome of genetic changes: the cellular phenotype. In part,
this is simply because phenotypes are neither easy to define or measure as they critically depend
on both genotype and context. Heterogeneity at the gene scale has been known for sometime,
and there has been significant effort invested in trying to find patterns within it, but much
less is understood about how this heterogeneity manifests itself in phenotypic change, i.e. the
genotype-phenotype map (GP–map). This mapping is not one-to-one but many-to-many and is
fundamentally the junction at which both genes and environment meet to produce phenotypes.
Many genotypes produce similar phenotypes, and multiple phenotypes can emerge from a single
genotype. To further complicate matters, genetically identical cells in uniform environments
still exhibit phenotypic heterogeneity. Therefore a central open question in biology today is how
can we connect the abundance of genomic data with cell phenotypic behaviour, this is especially
pertinent to the issue of treatment resistance as many therapies act on cellular phenotypes.

Our focus here is to tackle the GP–map question through the use of the simplest functional
mapping we can define that also captures phenotypic heterogeneity: a molecular switch. Molecu-
lar switches are ubiquitous in biology, observed in many organisms and naturally map molecular
components to decisions (i.e. phenotypes). Often stochastic in nature, such switches can be the
difference between life or death in environments that fluctuate unpredictably, since they will
ensure that at least some offspring are adapted to future environments. For convenience we use
Chemical Reaction Networks (CRNs) to define the map of gene products to phenotypes, allow-
ing us to investigate the impact of distinct mappings (CRNs) and perturbations to them. We
observe that key biological properties naturally emerge, including both robustness and persis-
tence. Robustness may explain why such bet hedging strategies are common in biology, and not
readily destroyed through mutation. Whereas persistence may explain the apparent paradox of
bet–hedging – why does phenotypic hedging exist in environments beneficial to only one of the
phenotypes, when selection necessarily acts against it? The structure of the molecular switch,
itself subject to selection, can slow the loss of hedging to ensure a survival mechanism even
against environmental catastrophes which are very rare. Critically, these properties when taken
together have profound and significant implications for the emergence of treatment resistance,
since the timescale of extinction depends heavily on the underlying GP–map.
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Introduction

Treatment resistance in many diseases is be driven by the pre–existence of resistant phenotypes
within the population. Why such phenotypes co-exist (with sensitive phenotypes) and persist
in environments never exposed to drug treatment remains a significant unanswered question.
Phenotypic heterogeneity has been observed even within isogenic populations of a number of
organisms and at many scales [1], from the unicellular – bacteria [2], fungi [3] or cancer cells [4] –
through insects [5, 6], plants [7] and even aspects of human development [8]. This inter–cellular
variation has been observed even in homogeneous and constant environments, suggesting that as-
pects of organismal phenotype may be stochastically determined. In environments that fluctuate
unpredictably this phenomenon can serve as a survival mechanism by increasing the likelihood
that at least some offspring are well–adapted to future environments. Thus, stochastic pheno-
type determination has been termed bet–hedging as a species diversifies the phenotypes within
the population in order to “hedge its bets” against future environmental change (see [9] for jus-
tification of this naming). Oscillatory environments are common in a range of ecological settings
including fluctuating climates, immune–pathogen interactions or cyclic hypoxia within tumours,
and the range of phenotypic traits which are thought to display stochastic determination is just
as broad.

An important clinical example is that of persister cells which arise stochastically within
isogenic populations of infectious bacteria such as Escherichia coli [10, 11, 2]. These cells, which
constitute a small fraction of the population (< 1%[11]), have reduced metabolism and shut
down all non–essential cellular functions. In this dormant state the persister cells are tolerant to
the cytotoxic effects of a number of antibiotic agents. Although dormant, these cells can retain
the ability to proliferate (although at a drastically reduced rate) and when antibiotic treatment
ceases persisters will begin to proliferate, producing non–persisters and driving the re–emergence
of the bacterial population. Hence bet–hedging, by creating a small sub–population impervious
to those therapies that act on proliferating cells, proves to be an effective survival mechanism
against antibiotic treatment. Indeed, bacterial persisters are thought to be a contributing factor
to multidrug resistance in a number of diseases [11, 12, 13] and are implicated in the dormancy
of chronic diseases, such as Tuberculosis, which can be suppressed but not eradicated [14]. Novel
treatment strategies capable of effectively killing persister cells are desperately needed and this
need will continue to grow with the increasing incidence of resistance to our presently most
effective antibiotics.

Bet–hedging in cancer has been minimally studied; however, a number of aspects of disease
course suggest that bet-hedging mechanisms may be important for understanding how tumours
evade therapy. In cancer, significant regression of tumours post-therapy leads to a period of
remission, followed by the regrowth of aggressive, therapy-resistant lesions. These dynamics can
be explained by the classical clonal view of cancer [15], wherein recurring resistant cells are those
that happened to acquire the resistance mechanisms through mutation prior to the treatment.
However, the high frequency of tumour recurrence in many cancers suggests that therapeutic
escape cannot be solely based on mutational luck. Experimental results have shown evidence of
transitory resistance [16, 17] indicative of the existence of a small drug–resistant subpopulation
that re–establishes a drug–sensitive cancer cell population. Recent experiments have identified
the existence such populations of ‘cancer persister cells’ in a cell line of EGFR+ non–small cell

3

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/042424doi: bioRxiv preprint first posted online Mar. 4, 2016; 

http://dx.doi.org/10.1101/042424


lung cancer [18] indicating that bet–hedging may play a role in the emergence of cancer drug
resistance [19, 20]. Thus, an understanding of bet-hedging in normal and abnormal (e.g. cancer)
cell function may help us understand why certain types of therapies fail while others succeed.

The Causes of Bet–Hedging

A number of causes of bet–hedging have been identified across different species, but in many
cases the precise cause remains an open question. Many bacterial species (see [21] for a review)
generate stochastic phenotypic variation by means of contingency loci [22] in their genome – short
repetitive DNA sequences prone to localised hypermutation and which epigenetically modify
the expression of other vital genes. Through hypermutation these loci endow a species with the
ability to rapidly generate genetic and phenotypic heterogeneity, forming a quasispecies [23],
and implementing a hedging–like strategy.

However, true bet–hedging is characterised by the generation of phenotypic variation with-
out heritable genetic alterations. Beaumont et. al. demonstrated the de novo evolution of
bet–hedging in the phenotypic trait of colony morphology of the bacterium Pseudomonas fluo-
rescens by imposing stochastically fluctuating environments through replating [24]. The molec-
ular mechanism underpinning this switching behaviour was partially elucidated by Gaillie et.
al. who identified a single nucleotide change in the gene carB as responsible for the emergence
of phenotype switching [25]. The precise mechanisms through which this mutation induces
phenotype switching remains an open question. Owing to the difficulty in identifying and iso-
lating persister cells, initial attempts to identify similar genetic drivers for bacterial persistence
have proved unsuccessful. Following the recent development of persister isolation techniques, a
number of contributing genetic factors have been identified (see Lewis [11] for a review). How-
ever, whilst over–expression or deletion of these genes were shown to impact the proportion of
bacterial persisters within a population, none was found to completely inhibit the persister phe-
notype, suggesting that gene networks and redundancy may be an important part of bet-hedging
strategies.

The identification of mutations responsible for the de novo emergence of bet–hedging, or for
alteration to the proportions of phenotypes in existing hedging populations, offers little insight
into the mechanisms responsible for generating the phenotypic heterogeneity. Specifically, what
molecular mechanisms allow an isogenic population to produce multiple phenotypically–distinct
subpopulations? Current biological thought is that stochasticity or noise in the levels of specific
intracellular proteins may drive phenotypic differentiation. Intra–cellular noise can be generated
through the stochasticity of gene–expression [26, 27]. For example, variability in gene–expression
can be caused by intrinsic random fluctuations in the rates of transcription and translation,
by varying abundances of transcription related molecules within the cell, or by the inevitable
change in gene copy–number throughout the cell cycle [28]. Further noise is then introduced
as molecules undergo Brownian motion within the cell cytoplasm, randomly interacting and
introducing asymmetries in their number. These asymmetries can be amplified by feedback
motifs within the intra–cellular molecular interaction network. Thus, bet–hedging is thought to
arise as the result of noise–driven stochastic switching behaviour in the biochemical processes
that underlie the translation of genes to phenotype – the so–called genotype–phenotype (GP)
map. The nature of these molecular switches, and how they interact with intra–cellular noise to
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produce consistent phenotypic variation, is poorly understood.

Mathematical Models of Bet–Hedging

Müller et al. [29] as well as others [30, 31, 32] have used mathematical techniques to demonstrate
that bet–hedging constitutes an evolutionary stable strategy (ESS) in stochastically fluctuating
environments – offering strictly greater expected fitness than a deterministic one–phenotype
strategy under certain constraints on the environmental fluctuations. Further theoretical work
by Botero et al. [33] considers when bet–hedging can offer a greater fitness advantage than phe-
notypic plasticity, where phenotypes are modulated via the individual’s ability to sense environ-
mental changes [34]. This previous work derives constraints on the cost of sensing, predictability
of environmental fluctuations and the fitness effects of environmental change to determine when
bet–hedging, plasticity or determinism is an ESS. These mathematical results are in agreement
with the experimental results of Beaumont et al. [24] that demonstrate the de novo evolution of
bet–hedging, as well as other experiments that empirically demonstrate that bet–hedging offers
a fitness advantage in fluctuating environments [35, 36]. There is, however, a disconnect between
the mathematical theory of bet–hedging, showing that it is selected for in fluctuating environ-
ments, and biological reality, where bet–hedges exist in homogeneous environments. Consider
the case of bacterial persisters in E. coli in a hospitable environment. Those cells that take on a
dormant phenotype reproduce very slowly and hence reduce the average fitness for the popula-
tion. Thus, there is selection against populations that produce persisters. Despite this selective
pressure, persisters remain present in the population and provide a survival mechanism when
antibiotics are eventually introduced into the environment. In this paper we propose that this
disconnect can be explained by the structure of the GP–map, the complex network of chemical
interactions that integrates genetic and environmental factors to produce cellular phenotypes
and which lies at the heart of the modern evolutionary synthesis [37].

In previous theoretical work, abstract models of GP–mappings have provided valuable insight
into the evolutionary process. Models using computational solutions to predict RNA secondary
structure folding have been used to explore the effects of neutral mutations on evolutionary
trajectories [38, 39] as well as the evolution of evolvability [40]. Gene regulatory network models
have also provided insight into the evolution of evolvability [41]. Gerlee and Anderson [42]
used neural networks to study the environmental modulation of phenotypes within a hybrid
cellular automaton model of a growing tumour [43, 44]. This model has since found further
uses in bridging between the genetic and phenotypic scales [45]. To study the emergence of
non–genetic heterogeneity in cancer Huang [46] introduced a conceptual framework in which to
understand how complex intracellular regulatory networks shape gene expression profiles and the
corresponding cellular phenotypes [47, 48]. In this model gene expression profiles are assigned
a “potential” corresponding to the stability of the expression profile to stochastic molecular
interactions. This assignment creates an epigenetic landscape (in the sense of Waddington [49] –
arising not from single genes but the interaction of many). The local minima of potential in this
landscape correspond to stable expression profiles (or equivalently in their model, phenotypes)
and those gene expression profiles with higher potential will move down–hill through regulatory
feedback mechanisms until a stable expression profile is found. Huang argues that non–genetic
heterogeneity can then be explained by the existence of multiple accessible stable expression
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Figure 1: Schematic representation of the chemical reaction network model for the
genotype–phenotype mapping. To reduce the complexity of our model the genotypes are
abstracted away from biological reality (dashed lines).

profiles and that phenotypic switching is due to stochastic fluctuations causing jumps between
stable states, where the rates of switching depend on the stability or ‘depth’ of the potential
wells and external stimuli that can change the magnitude of fluctuations.

Here we develop a model of the GP–map which uses stochastic simulation of simple chemical
reactions to mimic the intra–cellular molecular interactions responsible for determining phe-
notype. Specifically, we stochastically simulate the dynamics of simple multistable reaction
networks and assign to each stable configuration a phenotype. These stable configurations are
analogous to Huang’s local minima in an epigenetic landscape, but our model differs in that we
explicitly build the networks and stochastically simulate their dynamics, as opposed to consid-
ering average case deterministic behaviour of a gene–regulatory network. The benefit of this
technique is that we are able to directly study the implications of alterations to the network
with regard to phenotypic bet–hedging. We demonstrate that the structure of the chemical re-
action network directly leads to bet–hedging that is robust to major alterations to the network
— offering a possible explanation for the difficulty in identifying single genetic drivers of bet–
hedging in many cases. Further, we demonstrate that the network structure can alter the rate
of evolutionary convergence to fitness optima and can reduce evolvability, preventing the loss of
bet–hedging in homogeneous environments. These findings suggest that natural selection may
favour certain chemical reaction network architectures within the GP–map, specifically, those
that are robust to alteration or which preserve hedging as a survival mechanism. Finally, we
discuss the implications of this result for the evolutionary history of bet–hedging and for the
design of treatments for diseases which display non–genetic phenotypic heterogeneity.

Results

Chemical Reaction Networks as a Model GP–Map

To investigate the impact of the GP–map on the evolution of bet–hedging we implemented a
model mapping with a genetically determined bet–hedge. At the heart of our GP–map is an
abstract model of chemical reaction networks (CRNs) that are simulated computationally. CRNs
are defined by a collection of labelled chemical species and a list of reactions, with associated
rates, between these species. As CRNs explicitly represent biological mechanisms they provide
a powerful tool for studying the GP–map with the potential to be closely tied to empirical data.
There exist a range of mathematical models of CRNs including continuous models of the mass

6

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/042424doi: bioRxiv preprint first posted online Mar. 4, 2016; 

http://dx.doi.org/10.1101/042424


action kinetics [50], simulation of the stochastic process [51, 52] and analysis using stochastic
differential equations [53]. It is entirely infeasible to explicitly model the full array of chemical
interactions comprising the translation from genes to phenotypes. We can however investigate
smaller CRNs in order to understand what properties the full mapping may possess. This is the
approach taken by Cardelli [54] who studied emulation between CRNs – the phenomenon where
one network is capable of reproducing the exact mass–action kinetics of another. Cardelli derives
algebraic criteria for the existence of emulations from structural properties alone, providing a
method to extend studies of simple CRN motifs to larger networks.

A well studied class of chemical reaction networks are those which encode bistable (or mul-
tistable) switches [55] in which the series of reactions must eventually terminate in a stable
configuration from which no more reactions can occur. The different final configurations of a
bistable CRN can be considered different states of a stochastic switch. The probability that
the CRN progresses to a specific switch state is dependent on the initial conditions for the net-
work. Here, we assume that cells take one of two phenotypes, A or B, corresponding to the two
stable configurations of a bistable CRN (S,R). The phenotype is determined by stochastically
simulating the CRN from an initial configuration determined by the genotype according to,

g
GP→

{
A, if the simulation starting config. g progresses to stable state 1

B, if the simulation starting config. g progresses to stable state 2.
(1)

A schematic representation of this model is shown in Figure 1. Depending on the biological
system in question these phenotypes could, for example, represent normal/persister cells in E.
coli, the Cap+/Cap− cells in colonies of P. fluorescens or the lysis/lysogeny decision switch
in bacteriophage lambda. We assume that convergence time to an equilibrium state in the
CRN is sufficiently fast (in comparison to the cell cycle timescale) that we may take it to be
instantaneous.

We define the genotypes, g, in our model to be the initial numbers of the chemical species
within the chemical reaction network. This definition of genotype is an abstraction in which
we choose to ignore the physical mechanisms of inheritance and expression and instead consider
genotypes from the perspective of the expressed gene products. We choose not to model the
inherent stochasticity in gene expression, a phenomenon previously associated with bet–hedging,
in order to explore the implications of the stochasticity of interactions induced by Brownian
motion of molecules within the cell cytoplasm. For simplicity we model genotypes as the initial
and instantaneous expression of two gene products x and y, denoted by x0 and y0 respectively,
and we assume all other species within a CRN are initially 0. Mutations are modelled as changes
to the initial abundance of x0 and y0 and we assume that there exists a maximum abundance
that x0 or y0 can attain. In particular, for an individual with genotype g = (x0, y0) the possible
mutants are given by

µ((x0, y0)) = {(x0 ± 1, y0 ± 1) provided x0 and y0 remain in {0, . . . , gmax} } (2)

We assume that mutations occur at replication with some probability µ and that where more
than one mutation is possible each is equally likely. Finally, for our long–term evolutionary
simulations (the section entitled “Evolutionary Loss of Bet–Hedging”) we will further impose
the simplifying restriction that x0 + y0 = gmax.
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Figure 2: The CRN from which our example switches are derived. Our example switches
are created by modifying the rates of each of the six reaction that build this CRN.

There are numerous examples of bistable switches that can serve as genotype–phenotype
mappings within this framework. Examples include the Approximate Majority, Direct Compe-
tition and Great Wall Kinase switches studied by Cardelli and Csikász-Nagy [55] and Cardelli
[54]. Here, we utilize a number simple bistable CRNs to serve as examples demonstrating the
impact of the GP–map on the evolution of bet–hedging. Each of our model switches is derived
from the CRN shown in Figure 2 by modification to the rates of the individual reactions. Figure 3
shows the relationship between the model genotype and the probability of stochastic determi-
nation to phenotype A for four such molecular switches – the Direct Competition (DC) switch,
a version of this switch biased by a preference to produce the species x (DCx), a version biased
to produce the species y (DCy) and the Approximate Majority (AM) switch studied by Angluin
et al. [56] and later Cardelli and Csikász-Nagy [55]. By picking appropriate initial conditions
(i.e., the values of the gene products inherited by cells) for the chemical reaction networks, we
can approximate any switching probability and equivalently any proportion of either phenotype
arbitrarily closely (Figure 3 Row 3). It follows that bet–hedging is an extremely simple bio-
logical mechanism, one that can be produced by the stochastic interactions between as few as
two or three molecules. This simplicity could help explain the ubiquitous nature of stochastic
phenotype determination and why a large number of genetic factors have been implicated in
this process across species; as simple molecular switches suffice they are more likely to emerge
through mutation and are an effective long–term survival strategy.

Robustness and Redundancy in Molecular Switches

The CRN can demonstrate how redundancy in the network can implement robust molecular
switches that maintain bet–hedging even when individual components are removed. Figure 4
shows a version of the simple DC switch from Figure 3 in which the species x and y are duplicated.
In this network, which we call DCdup, the set of stable configurations are determined by x+x′ =
0 or y+y′ = 0. If we associate the phenotypes A and B with these two configurations respectively
then the switching probability on initial conditions (x0, x

′
0, y0, y

′
0) is identical to the switching

probability of DC with initial conditions (x0 + x′0, y0 + y′0) (a simple mathematical argument to
establish this proceeds by symmetry and re–labelling the species). The advantage of DCdup is
that it maintains its switching properties even if chemical species are removed. Figure 4 shows
numerical solutions for the CRN switching probability when the species x is deleted (middle
network) and then when both x and y are deleted (right hand network). These induced CRNs
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Figure 3: Example molecular switches as GP–Maps. Each column shows the character-
istics of one of the four switches (Direct Competition, x–Biased Direct Competition, y–Biased
Direct Competition and Approximate Majority) introduced in the main text. The first row
shows the name, chemical reaction network structure and precise definition of each switch. The
second row shows stochastic trajectories of the number of molecule x in the system for four
different simulations of each switch. The starting condition in all simulations is x = y = 30,
(b = 0 for the AM network). Note that all of the switches are able to resolve to either of the
stable conditions, x = 60 or x = 0, which correspond to the phenotypes A and B respectively.
Row three shows contour plots displaying the probability of switching to phenotype A for each
possible initial condition with 0 < x0, y0 ≤ 60 and x0 + y0 6= 0 (b = 0 for the AM switch).
Contour lines show subspaces of genotype space of equal hedging probability for hedges equal
to 0.1, 0.2, . . . , 0.9.
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Figure 4: Redundancy in the chemical reaction network implementing the DC switch
maintains molecular switching when chemical species are deleted. Marked in red
is the switching probability for initial conditions (20, 30, 30, 20) before deletion (0), after the
deletion of x (1) and after the deletion of x and y (2). Note that these deletions maintain the
stochastic switch but alter the switching probability. Contour lines show initial conditions of
equal switching behaviour.

maintain switching behaviour similar to the original CRN DCdup. The network induced by
deleting x (or by symmetry y) behaves precisely as DCdup with initial condition (x0, 0, y0, y

′
0)

(by symmetry (x0, x
′
0, 0, y

′
0)). Further, removing both x and y from DCdup creates a version

of the DC switch in the species x′ and y′ which behaves precisely as the DCdup switch on
initial conditions (0, x′0, 0, y

′
0). This means that deletion of a single chemical species will change

the switching if the numbers of all other species (in our evolutionary model, the genotype) are
held constant. An example is shown by the red circles in Figure 4 where deletion of chemical
species shifts the switching probability whilst maintaining a hedge. The resulting switch has
the potential, after adjustment to the initial conditions, to precisely replicate the switching
behaviour of the larger network. It follows that the DCdup is robust to the removal of chemical
species – a mutational event that in our model can be interpreted as a gene deletion or mutation
that down–regulates the expression of a gene. Reversing our previous argument, the switching
behaviour of the CRNs in Figure 4 show how the DC switch is robust to gene duplications or
upregulating mutations. The duplication of x or y (or both) produces a CRN which is still a
molecular switch, although with a possibly altered switching probability depending on the initial
numbers of the species.

A similar implementation of the AM molecular switch is shown in Figure 5 and is robust
to the removal of species, x, y and b in any order. As with the DCdup network, the removal
of any chemical species will change the switching probability, shifting the proportion of each
phenotype in the population, but will not entirely prevent switching. Finally, we note that
molecular switches can also be robust to the alteration of reaction rates, including the entire
removal of reactions. Specifically, we note that each of the example switches presented in
Figure 3 are modifications of the larger CRN shown in Figure 2. The observation that we
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Figure 5: Redundancy in the chemical reaction network implementing the AM molec-
ular switch. Switching is maintained if the species x, y and b are removed in any order. We
omit the case where y is removed before x due to symmetry.

can build molecular switches that are robust to the deletion or duplication of species, and to
the alteration of reaction rates, provides insight into the long standing failure to identify single
genetic factors responsible for bet–hedging. It may be that bet–hedging arises not from a single
factor but from the interactions of many, none of which are individually necessary to maintain
the switching behaviour.

Evolutionary Loss of Bet–Hedging

Each molecular switch we study has the ability to (approximately) produce any arbitrary switch-
ing probability between phenotype A and B. Thus, for a given population genotype, the specific
switching mechanism responsible for stochastic phenotype determination is irrelevant. However,
over longer timescales the structure of the CRN responsible for switching has a significant effect
on the evolution of bet–hedging. In our model the probability that a genetic mutation (modelled
as a change to the initial conditions of the CRN) fixes within an existing population is deter-
mined by the new switching probability, and the associated expected fitness, of that new mutant
genotype. Here we consider the rate at which evolutionary loss of the bet–hedging occurs in a
fixed environment strongly favouring one phenotype (A) over a second (B) to demonstrate the
importance of the GP–mapping on predicting the evolutionary fate of bet–hedging.

We simulate evolution by assuming a large asexually reproducing bet–hedging population ex-
ists under Strong Selection Weak Mutation (SSWM) dynamics. The population is assumed to be
isogenic and the population genotype is periodically replaced by a fitter mutant. For simplicity,
and to avoid issues regarding the phenotypic/fitness implications of switching on fewer molecules,
we enforce that x0 + y0 remains constant (x0 + y0 = gmax = 60 for computational efficiency)
throughout our simulations. Thus, mutations consist of simultaneously incrementing x (or y)
and decrementing y (resp. x). The genotype is then entirely determined by x0 ∈ {0, . . . , 60}.
Our simulation proceeds by repeatedly generating a mutant of the current population genotype
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Figure 6: Relationships between the genotype and the associated average population
fitness.

and computing the probability (using the theory of multi–type branching processes, see the Ma-
terials and Methods) that this mutant fixes as the new population genotype. Throughout the
remainder of this work we take the two phenotypes A and B in our model to correspond to a
high fitness, proliferative phenotype and a low fitness, slow proliferating phenotype respectively,
to mirror the phenomenon of bacterial persistence. We parameterise our model by assigning
to phenotype A (respectively B) a fitness value wA (resp. wB) encoding the expected number
of offspring an individual of that phenotype will have over a single timestep in our population
dynamics model (see Materials and Methods).

The invasion probability is computed independently of the (assumed to be large) population
size and is dependent only on the (stable) distribution of phenotypes in the population at
equilibrium. For this reason we need only know the relative fitness values of the phenotypes.
Hence we may take the timesteps of population dynamics to be equal to the expected division
time of a cell of phenotype A. Mirroring the scenario of persistence in E. coli we take this
timestep to be t = 60mins and wA = 2.0. The reproductive rate of persister–type cells is
unknown and thus, in order to match their behaviour qualitatively, we take our persister–like
phenotype cells to reproduce at a rate 10 times slower than the proliferative phenotype and set
wB = 1.01. Although this parameterisation is only an approximation to the genuine population
dynamics of persister cells it is sufficient as an illustrative model demonstrating the importance
of the genotype–phenotype mapping on the evolutionary dynamics of bet–hedging.

Figure 6 shows how changes in the population genotype manifest themselves as changes
in the average population fitness. The expected population fitness increase associated with the
mutation of the current genotype x0 to x0+1 is not equal for all x0 and is dependent on the GP–
map. Thus, the invasion probabilities for mutations differ depending on the current population
genotype and the form of the GP–map. Figure 7 shows the probability of a single mutant
genotype x′0 invading a resident population of genotype x0 in a hospitable environment. This
probability is dependent on the associated increase in average population fitness, as shown in
Figure 6. Note that, in the hospitable environment, only mutations which increase the proportion
of phenotype A are beneficial and hence, as our invasion probabilities are determined from the
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Figure 7: Invasion probabilities for resident and invader genotypes The invasion prob-
ability of an individual of genotype x′0 into a resident population of genotype x0 for each of the
molecular switches. The probabilities are computed using the theory of branching processes (see
Materials and Methods) for fitness values wA = 2.0, wB = 1.01.

theory of branching processes, are the only mutations that can fix. Figure 8 shows the probability
of successive beneficial mutations, x0 + 1, invading a resident population of genotype x0. In this
figure we see the impact of the genotype–phenotype map on the evolutionary dynamics. For the
DC, DCx and AM switches the probability of the next beneficial mutation fixing reduces for
each successive mutation. The magnitude of this decrease is dependent on the switch and in the
case of DCx and AM approaches 0. Conversely, for the DCy switch each successive mutation is
more likely to fix.

We next consider the evolutionary trajectories of bet-hedging populations endowed with each
of our sample GP–maps, DC, DCx, DCy and AM from an initial genotype corresponding closely
to a 50% hedging probability, in the hospitable environment which strongly favours phenotype
A. As the DC and AM switches are symmetric the genotype corresponding to a 0.5 hedging
probability is x0 = 30. For DCx the closest genotype to a 50% hedge is x0 = 7 which corresponds
to a probability of 0.49. For DCy the closest genotype to a 0.5 hedging probability is x0 = 53
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Figure 8: The fixation probability of subsequent mutations differs for each GP–map.
For each of the three CRN networks we study the invasion probability of a beneficial mutant
x0 + 1 into a population with genotype x0 is highly dependent on the GP–map. For the DC
switch this mutation always offers a significant fitness advantage and has non–zero invasion
probability. For the AM switch this mutation offers a large fitness increase for intermediate
values of x0 but it essentially neutral for extremal values. As we assume a large population the
invasion probability is thus approximately 0.

and corresponds to a probability of 0.51. As deleterious and neutral mutations cannot fix under
our model of population dynamics, the population genotype will be periodically incremented
until x0 = 60 and the bet–hedge is lost. Figure 9 shows the evolutionary trajectories towards
the loss of bet–hedging for populations endowed with each of the candidate GP–maps (Figure 3).
The convergence dynamics for these populations is very different. For the DC, DCx and DCy,
switches the expected convergence times can be determined as the expectation of a sum of
non–identical independent geometric distributions and is given by the sum of the reciprocals
of the fixation probabilities of the successive mutations. We find that the expected number of
mutational events required for a complete loss of bet–hedging are given by

E[time to loss of bet–hedge DC switch, x0 = 30] = 3382.8 (3)

E[time to loss of bet–hedge DCx switch, x0 = 7] = 68000.1 (4)

E[time to loss of bet–hedge DCy switch, x0 = 53] = 195.8 (5)

E[time to loss of bet–hedge AM switch, x0 = 30] =∞ (6)

In the case of the AM network, each subsequent mutation provides a diminishing increase in
fitness until mutations are approximately neutral. The probability of neutral mutations fixing
within our model of invasion dynamics, which models the population size as tending to infinity,
is 0. In reality, the actual convergence times in the AM will depend on the population size. For
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A B

C D

Figure 9: Convergence dynamics through genotype and probability space for the GP–
maps defined by DC, DCx, DCy and AM. 30 stochastic realisations of the evolutionary
simulation through both genotype and probability space are shown for A) The DCy switch. B)
The DC switch. C) The DCx switch. D) The AM switch. Due to the rapid initial change in
hedging probability for the DCx switch, the convergence dynamics are also shown on a restricted
scale. As the probability of phenotype B rapidly approaches 0 in the AM switch simulation but
never converges, the dynamics are shown on a logarithmic scale. The expected convergence time
for the DCy switch is marked in green, for the DC switch in marked in red and for the DCx
switch is marked in blue.
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large populations, as is our assumption, the timescales will be sufficiently long that we take it
as equivalent to the evolutionary trajectory never converging 1.

Simulation of Therapeutic Intervention

To demonstrate the importance of the underlying molecular switch in determining an effective
treatment strategy for diseases with bet–hedging driven resistance, we implemented a non–
spatial, individual–based model simulating the effects of drug treatment on a bet–hedging pop-
ulation. As above, we assume the existence of two phenotypes: one proliferative, but drug
sensitive, phenotype A; and one drug–resistant, slowly–proliferating, phenotype B. Our model
takes the form of a discrete time–step death–birth process in which population dynamics are
simulated in either of two environments – a hospitable environment (as in our long–term sim-
ulation of evolutionary loss of bet–hedging) and a drug–treated environment. The details are
provided in the Materials & Methods. We associate both a death rate and a birth rate with
each phenotype in order to simulate stochastic extinction dynamics under drug treatment and
assume a single discrete timestep corresponds to 1 hour. In the hospitable environment we
assign a reproductive rate fhospA = 1.0 (resp. fhospB = 0.02) to individuals of phenotype A (resp.

B) and assume the death rate dhospA = dhospB = 0.01 is equal for both types. These parameters

ensure that the overall fitness of each phenotype, [whosp
A , whosp

B ] = [2.0, 1.01] , matches the fitness
values used above. Finally, for the drug–treated environment we assume the parameters remain
unchanged except for an increased death rate for individuals of phenotype A, ddrugA = 0.75.

For each of the molecular switches presented in Figure 3 we performed a simulation of therapy
following a treatment holiday. For different timescales, measured in the number of mutational
events varying from 0 to 100000, we used our evolutionary simulation to determine the expected
population genotype after a holiday from treatment over that timescale. In each case the initial
genotype was chosen to correspond as closely as possible to a 50% hedge. We then simulated
continuous drug treatment on a population of 1010 bet–hedging cells with the hedging probability
determined by this pre–calculated expected population genotype. For each treatment holiday
length and each molecular switch we performed 2000 simulations of treatment and recorded the
time until extinction. Mutations were not permitted during these simulations. The extinction
times are presented as histograms in Figure 10. The timescale of holiday required to reduce
the extinction time to correspond to a viable treatment length (marked in the figure by a star)
varies by orders of magnitude dependent on the form of the molecular switch and associated
GP–map.

These simulations demonstrate the importance of understanding the underlying molecular
mechanisms that drive phenotypic bet–hedging. Specifically, we see that the length of treatment
required to drive a population to extinction is dependent on the proportion of each phenotype in
the population, which is in turn determined by the population genotype and molecular switch.
The length of treatment holiday required to steer the evolving population into a more rapidly
treatable configuration, a sufficiently small proportion of persister–like individuals to permit

1This assumption can be justified by the observation that over these timescales either unmodelled mutations
(such as mutations to the GP–map itself, to other genes governing the phenotypes A and B, or to other aspects of
the phenotype) or unmodelled changes in the environment or ecosystem will occur, rendering our model unsuited
to the situation.
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Figure 10: Extinction dynamics for populations endowed with different molecular
switches over different timescales of treatment holidays. Each histogram shows the
distribution of extinction times over 2000 simulations of treatment in an individual–based model.
The molecular switch used as the GP–map is shown as the column heading. The genotype and
associated probability of phenotype A (shown inset to each subfigure) are determined by an
evolutionary simulation of a treatment holiday for a timescale determined by the row. A blue
background indicates extinction times longer than a timeframe viable for an antibiotic treatment,
a green background (or inset star) indicates extinction times within this timeframe.
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rapid extinction, is dependent on the underlying molecular mechanism. Thus, to understand
and predict the efficacy of treatment holidays as a potential therapeutic intervention for a
disease with bet–hedging driven resistance it is imperative that we understand the underlying
GP–mapping.

Discussion

We have introduced a model for the genotype–phenotype map which uses stochastic simulation
of chemical reaction networks to determine phenotypes. Whilst other models of the GP–map
have modelled the emergence of non–genetic phenotypic heterogeneity using network models,
namely those of Gerlee and Anderson [42] and Huang [46, 48], ours is the first to explicitly model
the stochastic aspect of phenotypic determination at the level of the molecular mechanism. Us-
ing this model we have demonstrated how remarkably simple chemical reaction networks can
implement complex switching behaviour and produce populations in which different propor-
tions of cells, determined by the initial conditions of the network, take on different phenotypes.
Our model, whilst abstract in its representation of chemical reactions, is closely related to the
mechanisms of gene translation and the subsequent reactions that govern intracellular regula-
tory networks and, as such, has the potential to provide valuable insight into the mechanisms
responsible for the stochastic determination of phenotypes. Further, through this mechanistic
understanding we are able to gain insight to how the phenomenon of bet–hedging evolves under
Darwinian selective pressures.

We have demonstrated how introducing redundancy, a common feature of many biologi-
cal systems, into the chemical reaction networks governing the GP–map can create molecular
switches that are robust to the addition or removal of chemical species. Assuming that the
chemical species of our CRN correspond to expressed gene products, this finding shows how
redundancy, which can arise through neutral or nearly–neutral mutation events, can ensure that
the phenomenon of bet–hedging is not lost through gene deletions or duplications. Critically,
this observation may explain the failure to identify genes responsible for bacterial persistence.
For example, in the review by Lewis [11] mutations to the genes hipA, rmf, sulA, and toxi-
nantitoxin (TA) loci relBE, dinJ and mazEF were highlighted as possible drivers of bacterial
persistence. However, deletion of rmf, relBE or mazEF has been demonstrated to have no effect
on the phenomenon of persistence, owing possibly to redundancy in TA modules, whilst deletion
or over expression of hipA can change the proportion of bacterial persisters but not eradicate
them. This is consistent with our predictions, since deleting any single species in the CRN will
not prevent bet–hedging or non–genetic heterogeneity, instead it will only alter the switching
probability, or at the population scale, the proportions of each phenotype. In the context of
bacterial persistence, the conclusion taken from the experiments reviewed in Lewis [11] need
not be that none of the potential genetic factors identified are the ones driving bacterial persis-
ters, instead it may be that the search for a single genetic factor responsible for bet–hedging is
doomed to fail. Indeed, it may be that bet–hedging emerges from the interactions of a collec-
tion of genetic factors in the sense of the epigenetic landscape introduced by Brock et al. [47]
and Huang [46]. If this is the case, then to identify the biological mechanisms responsible for
hedging we will need to move beyond the gene–centric perspective and begin to identify those
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interactions responsible for stochastic determination of phenotypes.
Mutations in cancer have often been associated with their direct effect on phenotypes; the

concept of a driver mutation is that it creates a new phenotype that is distinctly more fit
than the non-mutated variant, leading to clonal expansion [57]. However, the results presented
here suggest another phenomenon, in that mutation of one or more genes that feed a CRN–
based bet–hedging mechanism need not induce novel phenotypes, but simply alter frequencies
of pre–existing phenotypes within the population. This change in phenotypic ratio could have
implications for cancer progression, even in the absence of any novel phenotypes. Consider
the phenomenon of tumourigenic cells, where it is thought that only tumour cells of a certain
phenotype can form a growing mass [58, 59, 60]. Clonal genetic heterogeneity can explain the
existence of a tumourigenic subpopulation if certain driver mutations were responsible for the
tumourigenic phenotype. However, an alternative mechanism is that stem or stem-like tumour
cells in the population give rise to a population of heterogeneous phenotypes. In the traditional
stem-cell model, a phenotypic hierarchy exists where the stem cell produces the range of tumour
cell phenotypes [61]. Under this model, cancer stem cells divide to produce either more cancer
stem cells (self–renewal) or cells with non–stem phenotypes down the hierarchy. This cellular
decision is often taken to be stochastic (an example of bet–hedging) and thus our results highlight
the potential for mutations to alter the probabilities of self–renewal or differentiation, which have
been shown to have signficant impact on many aspects of tumour progression [62].

An alternative bet–hedging mechanism for tumourigenicity is that the tumourigenic pheno-
type is transient and stochastically determined (and potentially influenced by the microenvi-
ronment). Evidence for this phenomenon is highlighted in recent work by Quintana et al. [63]
that shows that the tumourigenic potential of individual melanoma cells is similar despite high
heterogeneity of many markers on the initialising cell. No driver or stem population was found,
and indeed, the heterogeneity of marker expression was recapitulated by most tumourigenic
cells, regardless of the starting pattern of expression. Such a mechanism would have different
implications from those presented above, because targetable cells would be much more difficult
to define, but the predictions of our model remain the same: that genetic mutations can shift
the frequency of tumourigenic phenotypes and profoundly impact cancer progression.

We have further demonstrated that the structure of the chemical reaction network govern-
ing the GP–map has important implications for the evolutionary loss or gain of bet–hedging.
By considering mutations that shift the mean expression levels of genes, we find that the time
taken for a 2–phenotype bet–hedge to be lost in an environment favourable to only one of the
phenotypes can vary by orders of magnitude depending on the GP–map. Thus, if bet–hedging
is a survival mechanism in the event of rare catastrophic environmental change (e.g., bacterial
persistence in the event of antibiotic exposure or treatment resistance in cancer as a result of
targeted therapy) then the GP–mapping can prevent loss of this survival mechanism over the
long timescales in which catastrophe does not occur. Specifically, the mapping from an ab-
stracted genotype (modelling the gene expression profile) to the probability of an individual
taking each of the two phenotypes is determined by the structure of the molecular switch un-
derlying the GP–mapping and can change the rate at which evolution converges to a fitness
optimum. If a bet-hedge is implemented by a switch such as the Approximate Majority (AM)
network (Figure 3) then each successive mutation towards a one phenotype strategy induces
a diminishing increase in the probability of generating that phenotype. Thus, in a constant
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environment favouring one phenotype over another, each subsequent mutation induces a dimin-
ishing increase in average fitness until it is essentially neutral. As neutral mutations fix with
likelihood inversely proportional to population size, the structure of this molecular switch sub-
stantially slows convergence to a one–phenotype strategy. Alternatively, if a different switch
determines the GP–map, for example the DCy switch presented here, the convergence can be
orders of magnitude faster as the fitness benefit of each subsequent mutation increases. This
result provides a possible solution to the apparent paradox of bet–hedging – why does hedging
exist in environments beneficial to only one of the phenotypes when selection acts against it?
The structure of the molecular switch, itself subject to selection, can slow the loss of hedging to
ensure a survival mechanism even against environmental catastrophes that are very rare.

These results have important implications for previously suggested theoretical treatment
strategies for diseases that display bet–hedging–driven drug resistance. Theoretical strate-
gies suggested to combat bet–hedging–induced multi–drug resistance focus on identifying novel
agents capable of killing persister cells and identifying genetic (or downstream) mechanisms that
can be targeted to prevent the persister phenotype from emerging. This latter strategy bears a
striking resemblance to the targeted therapy revolution in the treatment of many cancers. The
identification of molecular targets which when inhibited induce cell death led to the discovery of
a number of targeted therapies for melanoma, non–small cell lung cancer and colorectal cancers.
These drugs are, in the short term, remarkably effective, however the effects are rarely durable.
Mutations that abrogate the effects of targeted therapies quickly emerge during treatment, driv-
ing resistance and ultimately mortality. To improve the efficacy of targeted therapies (as well
as traditional chemotherapeutics) we must consider how selective pressures induced by ther-
apy drive Darwinian adaptation. The results of our chemical reaction model shed light on this
Darwinian adaptation and suggest that targeted therapies to prevent bet–hedging may either
be impossible, or where they do exist, prone to fail due to the re–emergence of bet–hedging
through evolution. More precisely, the discovery of a single “silver bullet” genetic factor which
when targeted can switch off multi–drug resistant dormant phenotypes is unlikely, owing to re-
dundancy in the network architecture. As bet–hedging offers an effective survival mechanism, a
fact supported by its ubiquitous role in survival across many species, and as the mechanisms re-
sponsible are predicted by our modelling to be remarkably simple, it should be unsurprising that
robustness has evolved to maintain it. Of course, this does not rule out the potential of targeted
therapies entirely. It may be possible to identify multiple targets which when simultaneously
targeted prevent hedging. Alternatively, targets may be identified that shift the proportion of
resistant or dormant individuals within a population to a manageable level, either permitting
treatment with other cytotoxic agents or allowing us to drive disease into a dormant or even
extinct state.

A second theoretical treatment strategy suggested in the design of multi–drug therapies
for cancers, as well as those for highly resistant infections [64], is the introduction of treat-
ment holidays. The traditional doctrine for therapy is that we should treat diseases using the
most potent drug with the highest tolerable dose until the disease is cured. Mathematical
evolutionary models of disease progression suggest that this approach may actually drive the
emergence of resistance. Here we implemented an individual–based model of the dynamics of a
bet–hedging population under treatment to explore the efficacy of treatment holidays. Coupled
with a long–term evolutionary simulation to model treatment holidays we explored the impact
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of the molecular mechanism driving bet–hedging on the efficacy of treatment holidays. Our
model suggests that it is the GP–map, and in particular how it hinders or promotes the rate
of evolutionary convergence, that holds the answer to whether treatment breaks can undo the
emergence of drug resistance. If evolutionary loss of bet–hedging is fast, as it would be if the
molecular mechanism responsible resembled the DC or DCy explored in this paper, then short
to medium term treatment holidays could be expected to steer evolution such that bet–hedging
is lost from the population. However, if instead the underlying mechanism resembles the AM
switch then we would know that a treatment break is unlikely to undo multidrug resistance in-
duced by bet–hedging within a timeframe relevant to disease progression. Finally, we note that
interfering with the underlying switching mechanism, for example through the use of targeted
therapies, could alter the switch properties sufficiently that the targeted therapy administered
alone (in the absence of cytotoxic agents) could drive evolution to remove hedging from the
population. An example of such a switch is presented in Figure 2 where removal of the species
b induces a switch equivalent to the DC switch, which is susceptible to a treatment holiday in a
short period of time.

In this paper we take the initial conditions of our chemical reaction networks to be genetically
determined, allowing us to explore the implications of the structure of the GP–map on the
evolution of bet–hedging. The chemical reaction model could also be used to study additional
aspects of the evolution and effects of non–genetic heterogeneity other than those presented here.
For example, we could instead have taken the initial conditions in the CRN to be environmentally
determined, through the concentration of some diffusible factors in a spatial domain, and the
network itself to be genetically determined. In this case the CRN model would give a GP–map
similar to the neural network model used by Gerlee et. al. [42, 45] to study phenotypic plasticity.
However, the CRN model would differ in that the determination of phenotypes could still be
stochastic, permitting the study of environment–dependent bet–hedging strategies. The model
of Gerlee et. al. [42, 45] is an extension of the classical concept of the reaction norm [34] to non–
linear and higher dimensional functions (the output of which is then discretised to determine cell
behaviour). The CRN model offers the natural next extension, breaking down the assumption
of functionality within the reaction norm by introducing stochasticity, and brings the reaction
norm concept more closely in line with biological reality. Thus, the theoretical extension of the
genotype–phenotype mapping to a stochastic non–functional process can be further extended
to account for environmental factors. Such an extension will bring the model more closely
in line with the maxim of developmental biology, that both environment and genotype are
equally important determining the phenotype ( “g + e = p” ). Pigliucci [37] suggests, in his
review of theoretical models of the genotype–phenotype mapping that we must build models
which take both environment and genotype as equal partners in determining the phenotype and
attempt to bridge the divide between developmental biology and the modern synthesis. The
model introduced in this work represents a first step towards this goal but importantly offers
something more than previous models that have set along this path — an attempt to account
for the role of chance.
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Materials and Methods

Stochastic Simulation of the CRNs

The chemical reaction networks are stochastically simulated using the Gillespie algorithm with
tau–leaping [51, 52]. This algorithm determines a stochastic progression of the network and
returns the sequence of reactions that occur and the times taken between them. As our model
assumes that the molecular switch resolves sufficiently fast (in comparison to cell cycle times)
that we may take it to be instantaneous, we ignore this timing information. As such, the
abscissas of all figures showing stochastic simulations of chemical reaction networks presented
in this work measure time discretely, in terms of the number of reactions that have occurred,
instead of continuously. Probability distributions associating switching probability with initial
conditions, such as those in row three of Figure 3 and Figure 4, are calculated by constructing
the (absorbing) Markov chain on the state space of possible configurations.

Population Dynamics

Consider an isogenic bet–hedging population with fixed GP–map and fixed genotype g cor-
responding to a probability p of giving rise to phenotype A. Note that as we wish to study
evolutionary convergence to a one–phenotype strategy we may assume p ∈ (0, 1), as when p = 1
we will end our simulations. We use a discrete time difference equation model to simulate the
population dynamics. The number of individuals of phenotype A and B in the population at
discrete timestep t is denoted by x(t) = (xA(t), xB(t)) . An individual of phenotype A (re-
spectively B) survives and produces fA (resp. fB) offspring on average over a single discrete
timestep. Further, individuals of type A (resp. B) die with probability dA (resp. dB) each time
step. Note that we separate the death and birth parameters in order to more easily simulate
the increase in death rate associated with a harsh environment (e.g. a drug treatment). The
expected number of offspring individuals of either phenotype produce over a single timestep is
given by w = (wA, wB), where we assume wA, wB > 0. Each new offspring takes phenotype A
with probability p (and B with probability 1 − p). We assume an unbounded population size.
Thus, the projection matrix for the population dynamics is given by,

P =

[
wAp wBp

wA(1− p) wB(1− p)

]

and the population distribution after one discrete time step is given by x(t + 1) = Px(t). As
p ∈ (0, 1) the matrix P is positive and the Perron-Frobenius theorem, as applied to structured
populations (see [65]), tells us that the dominant eigenvalue of the matrix P is in fact the net
reproductive rate r for the hedging population. As we have only two phenotypes we can easily
determine this dominant eigenvalue by solving,
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0 = |P− Iλ| =

∣∣∣∣∣ wAp wBp
wA(1− p) wB(1− p)

∣∣∣∣∣
= (wAp− λ)(wB(1− p)− λ)− wAwAp(1− p)
= λ(λ− wAp+ wB(1− p)).

Hence the net reproductive rate, and equivalently the average fitness, of the population governed
by P is given by r = wAp+ wB(1− p) and we know

lim
t→∞

∣∣x(t)
∣∣ =

{
∞ if r > 1

0 if r < 1.

In the case r = 1, the population size remains constant and is dependent on the initial conditions
of the system. This identity reveals the conditions in which a bet–hedging population will go
extinct in terms of the probability p and the phenotype fitnesses w. The fundamental theorem
of demography [66] tells us that if v is the l1–normalised left–eigenvector corresponding to
eigenvalue r then,

lim
t→∞

x(t)∣∣x(t)
∣∣ =

v

|v|
.

It is easy to verify then that x∗ = (p, 1 − p) is the eigenvector satisfying this identity and is
thus the equilibrium population distribution of phenotype A and phenotype B. Of course, this
identity follows immediately from the definition of the bet–hedge – if every individual ever born
has probability p of taking phenotype A, then the proportion with phenotype A must eventually
(after any transient asymmetry introduced by the initial conditions has disappeared) be p.
However, if we extend our model to allow the hedge to be dependent on the parent phenotype,
to vary epigenetically or to be environmentally determined, then this identity will prove useful.

It is worth noting that for a genotype g which gives a hedge p(g) the population dynamics
are determined entirely by p(g) and are independent of the shape of the GP–mapping. It is only
when we consider the difference in dynamics between populations of two different genotypes
that the form of the GP–map begins to reveal itself.

Invasion Dynamics

Our aim is to determine the long–term evolutionary trajectories of a population of cells endowed
with different GP–maps. It is intractable to determine these trajectories through explicit sim-
ulation of the population alone. Instead we derive an analytic solution for the probability of
a mutant genotype invading an existing isogenic population. Consider a large fixed–size pop-
ulation and assume that mutation is sufficiently rare (explicitly that the mutation rate µ and
population size N satisfy Nµ logN << 1) that we may consider strong–selection weak mutation
(SSWM) evolutionary dynamics. Under these assumptions we can assume that the population
is isogenic and that each time a new mutant appears in the population that mutant either fixes
as the new population genotype or becomes extinct. We assume, as we did for our model of pop-
ulation dynamics, that reproduction occurs at discrete synchronized time steps and that each
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new individual first inherits the genotype g, with a small probability µ of mutation according
to equation 2, and then the phenotype is determined according to a stochastic run of the CRN
GP–map as discussed above.

Suppose a single mutant of genotype g′ arises in an isogenic population of genotype g and
denote by π(g′) the probability that this mutant reaches fixation at the population genotype.
This probability is dependent on the phenotype of this initial mutant and is given by,

π(g′) = P(g′
GP→ A)π(g′|A) + P(g′

GP→ B)π(g′|B).

Denote π = (p(g′|A), p(g′|B)) and suppose that the population size, N , is sufficiently large that
we may approximate it by the limit N →∞. Assuming Wright–Fisher sampling for reproduction
in our population, the value of π can be determined from the theory of branching processes. In
particular, π can be calculated numerically as the solution to the equation 1−π = e−Mπ where,
denoting the average fitness of the population by < w >,

M =

[
wAP[A]
<w>

wBP[A]
<w>

wAP[B]
<w>

wBP[B]
<w>

]
=

1

< w >
PT .

A proof of this identity, modified from the theory of viral quasispecies [67], is as follows. Under
Wright–Fisher sampling the probability that a randomly chosen individual in the next generation
is the offspring of a given individual of phenotype i in the current generation is w(i)

<w>N . Thus,
the probability that an individual is the offspring of a particular parent of phenotype i and
genotype g and also has phenotype r is

ξr =
wiP(g

GP→ r)

< w > N

as not all offspring will have phenotype r. It follows that the probability that a given individual
of phenotype i has precisely kr offspring of phenotype r in the next generation is given by

p(kr|i) =

(
N

kr

)
ξkrr (1− ξr)N−kr

We can extend this argument to both phenotypes. The probability that an inidividual of phe-
notype i has kA offspring of phenotype A and kB offspring of phenotype B is

p(kA, kB|i) =
N !

kA!kB!(N − kA − kB)!
ξkAA ξkBB (1− ξA − ξB)N−kA−kB (7)

=
N !

kA!kB!(N − kA − kB)!

Mi1

N

kAMi2

N

kB
(

1− Mi1

N
− Mi2

N

)N−kA−kB
(8)

where the second equality follows from the definition of M. Assume now that the population
size, N , is sufficiently large that we may approximate p(kA, kB|i) by taking the limit as N →∞.
This limit is a bivariate Poisson distribution

p(kA, kB|i) =
MkA
i1

kA!
×
MkB
i2

kB!
× e−Mi1−Mi2 (9)
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In the following derivation we will use the theory of branching processes [68]. This method,
along with the assumption of infinite population size, restrict the resulting theory to fixation
events of mutations which increase the average fitness of the population. Denote by χi the
probability that the lineage of a single mutant individual with phenotype i in a population of
average fitness < w > becomes extinct after finitely many generations. From the theory of
branching processes we know that the vector of extinction probabilities χ = (χA, χB) satisfies
χ = f(χ) where f(z) = (fA(z), fB(z)) is the probability generating function of the offspring
probabilities p(kA, kB|i) given by,

fi(z) =
∑
kA

∑
kB

p(kA, kB|i)zkA1 zkB2 . (10)

Substituting equation 9 into equation 10 we have

fi(χ) =
∑
kA

∑
kB

(
MkA
i1

kA!
×
MkB
i2

kB!
× e−Mi1−Mi2

)
χkA1 χkB2 (11)

= e−Mi1−Mi2
∑
kA

∑
kB

(
MkA
i1

kA!
χkA1

)(
MkB
i2

kB!
χkB2

)
(12)

= e−Mi1−Mi2
∑
kA

(
(Mi1χ1)

kA

kA!

)∑
kB

(
(Mi2χ2)

kB

kB!

)
(13)

= e−Mi1−Mi2 × eMi1χ1 × eMi2χ2 (Taylor series) (14)

= eMi1(χ1−1)+Mi2(χ2−1). (15)

Taking the convention that ex = (ex1 , . . . , exn) this gives

f(χ) = eM(χ−1). (16)

Now note that the probability of fixation of the mutant individual with phenotype i is precisely
the probability that its lineage does not go extinct in finitely many generations, π = 1 − χ.
Hence

1− π = f(1− π) = e−Mπ. (17)

As the average fitness < w > can be determined by the population dynamics presented above,
this equation can solved numerically. Figure 11 shows heatmaps of the likelihood that a single
invader of with probability p1 of phenotype A invades a resident population with probability p2.
Heatmaps of invasion probability in terms of population genotypes are presented in Figure 7.

25

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/042424doi: bioRxiv preprint first posted online Mar. 4, 2016; 

http://dx.doi.org/10.1101/042424


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Invader Hedge, p2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
si

d
e
n
t 

H
e
d
g
e
, 

p
1

0.1

0.2

0.3

0.4

0.5

0.6

0.
7

0.
8

0.
9

Probability of Invasion

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 11: Invasion probabilities for a mutant with bet–hedging probability p1 into a
resident population of phenotype p2 The parameters are those presented in Figure 3. Note
that deleterious and neutral mutations cannot fix under our model of invasion dynamics, hence
invasion in the case p1 ≤ p2 (above the antidiagonal of the plot) is impossible.
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switching environments. Journal of theoretical biology, 336:144–157, 2013.

[30] Denise M Wolf, Vijay V Vazirani, and Adam P Arkin. Diversity in times of adversity:
probabilistic strategies in microbial survival games. Journal of theoretical biology, 234(2):
227–253, 2005.

[31] Mukund Thattai and Alexander Van Oudenaarden. Stochastic gene expression in fluctuat-
ing environments. Genetics, 167(1):523–530, 2004.

[32] Edo Kussell and Stanislas Leibler. Phenotypic diversity, population growth, and information
in fluctuating environments. Science, 309(5743):2075–2078, 2005.

[33] Carlos A Botero, Franz J Weissing, Jonathan Wright, and Dustin R Rubenstein. Evolu-
tionary tipping points in the capacity to adapt to environmental change. Proceedings of the
National Academy of Sciences, 112(1):184–189, 2015.

[34] Sara Via and Russell Lande. Genotype-environment interaction and the evolution of phe-
notypic plasticity. Evolution, pages 505–522, 1985.

[35] Murat Acar, Jerome T Mettetal, and Alexander van Oudenaarden. Stochastic switching as
a survival strategy in fluctuating environments. Nature genetics, 40(4):471–475, 2008.
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