
Atomic Cross-Chain Swaps
Maurice Herlihy

Computer Science Department

Brown University

Providence, Rhode Island 02912

maurice.herlihy@gmail.com

ABSTRACT
An atomic cross-chain swap is a distributed coordination task where

multiple parties exchange assets across multiple blockchains, for

example, trading bitcoin for ether.

An atomic swap protocol guarantees (1) if all parties conform to

the protocol, then all swaps take place, (2) if some coalition deviates

from the protocol, then no conforming party ends up worse o�,

and (3) no coalition has an incentive to deviate from the protocol.

A cross-chain swap is modeled as a directed graph D, whose

vertexes are parties and whose arcs are proposed asset transfers. For

any pair (D,L), whereD = (V ,A) is a strongly-connected directed
graph and L ⊂ V a feedback vertex set for D, we give an atomic

cross-chain swap protocol for D, using a form of hashed timelock

contracts, where the vertexes in L generate the hashlocked secrets.

We show that no such protocol is possible if D is not strongly

connected, or if D is strongly connected but L is not a feedback

vertex set. �e protocol has time complexityO(diam(D)) and space
complexity (bits stored on all blockchains) O(|A|2).

1 MOTIVATION
Carol wants to sell her Cadillac for bitcoins. Alice is willing to buy

Carol’s Cadillac, but she wants to pay in an “alt-coin” cryptocur-

rency. Fortunately, Bob is willing to trade alt-coins for bitcoins.

Alice, Bob, and Carol need to arrange a three-way swap: Alice will

transfer her alt-coins to Bob, Bob will transfer his bitcoins to Carol,

and Carol will transfer title of her Cadillac to Alice
1
. Of course, no

one trusts anyone else. How can we devise a protocol that ensures

that if all parties behave rationally, in his or her own self-interest,

then all assets are exchanged, but if some parties behave irrationally,

then no rational party will end up worse o�?

In many blockchains, assets are transferred under the control

of so-called smart contracts (or just contracts), scripts published

on the blockchain that establish and enforce conditions necessary

to transfer an asset from one party to another. For example, let

H (·) be a cryptographic hash function. Alice might place her alt-

coins in escrow by publishing on the alt-coin blockchain a smart

contract with hashlock h and timelock t . Hashlock h means that if

Bob sends the contract a value s , called a secret, such that h = H (s),
then the contract irrevocably transfers ownership of those alt-coins

1
Naturally, they live in a state that records automobile titles in a blockchain.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PODC’18, Egham, United Kingdom

© 2018 Copyright held by the owner/author(s). 978-1-4503-5795-1/18/07. . .$15.00

DOI: 10.1145/3212734.3212736

from Alice to Bob. Timelock t means that if Bob fails to produce

that secret before time t elapses, then the escrowed alt-coins are

refunded to Alice.

Here is a simple protocol for Alice, Bob, and Carol’s three-way

swap, illustrated in Figures 1 and 2. Let ∆ be enough time for one

party to publish a smart contract on any of the blockchains, or

to change a contract’s state, and for the other party to detect the

change.

• Alice creates a secret s , h = H (s), and publishes a contract

on the alt-coin blockchain with hashlock h and timelock

6∆ in the future, to transfer her alt-coins to Bob.

• When Bob con�rms that Alice’s contract has been pub-

lished on the alt-coin blockchain, he publishes a contract

on the Bitcoin blockchain with the same hashlock h but

with timelock 5∆ in the future, to transfer his bitcoins to

Carol.

• When Carol con�rms that Bob’s contract has been pub-

lished on the Bitcoin blockchain, she publishes a contract

on the automobile title blockchain with the same hashlock

h, but with timeout 4∆ in the future, to transfer her Cadil-

lac’s title to Alice.

• When Alice con�rms that Carol’s contract has been pub-

lished on the title blockchain, she sends s to Carol’s con-

tract, acquiring the title and revealing s to Carol.

• Carol then sends s to Bob’s contract, acquiring the bitcoins
and revealing s to Bob.

• Bob sends s to Alice’s contract, acquiring the alt-coins and

completing the swap.

What could go wrong? If any party halts while contracts are being

deployed, then all contracts eventually time out and trigger refunds.

If any party halts while contracts are being triggered, then only

that party ends up worse o�. For example, if Carol halts without

triggering her contract, then Alice gets the Cadillac and Bob gets a

refund, so Carol’s misbehavior harms only herself.

�e order in which contracts are deployed ma�ers. If Carol were

to post her contract with Alice before Bob posts his contract with

Carol, then Alice could take ownership of the Cadillac without

paying Carol.

Timelock values ma�er. If Carol’s contract with Bob were to

expire at the same time as Bob’s contract with Alice, then Carol

could reveal s to collect Bob’s bitcoins at the very last moment,

leaving Bob no time to collect his alt-coins from Alice.

What if parties behave irrationally? If Alice (irrationally) reveals

s before the �rst phase completes, then Bob can take Alice’s alt-

coins, and perhaps Carol can take Bob’s bitcoins, but Alice will not

get her Cadillac, so only she is worse o�.

ar
X

iv
:1

80
1.

09
51

5v
4

 [
cs

.D
C

]
 1

8
M

ay
 2

01
8

A

BC

A

BC

A

BC

secret	ݏ,
݄ ൌ ሻݏሺܪ

hashlock
݄, 6

hashlock
݄, 5

hashlock
݄, 4

Elapsed: + Elapsed: +2 Elapsed: +3

Figure 1: Atomic cross-chain swap: deploying contracts

A

BC

A

BC

A

BC

reveal	ݏ

transfer car
transfer
bitcoin

reveal	ݏ
reveal	ݏ

transfer
alt‐coin

Elapsed: 4 Elapsed: 5 Elapsed: 6

learn	ݏ learn	ݏ

Figure 2: Atomic cross-chain swap: triggering arcs

A atomic swap protocol guarantees (1) if all parties conform to the

protocol, then all swaps take place, (2) if some parties deviate from

the protocol, then no conforming party ends up worse o�
2
, and (3)

no coalition has an incentive to deviate from the protocol. Alice,

Bob, and Carol’s swapping adventure suggests broader questions:

when are atomic cross-chain swaps possible, how canwe implement

them, and what do they cost?

While swapping digital assets is the immediate motivation for

this study, atomic cross-chain swap protocols have other possi-

ble applications. Sharding [7] splits one blockchain into many for

be�er load-balancing and scalability. Most of the time, activities

on di�erent shards proceed independently. When they cannot, an

atomic swap protocol can coordinate needed cross-chain updates.

2
Other than the inconvenience of having assets temporarily locked up.

In a decentralized distributed system, upgrades from one so�ware

version to another, or from one data schema to another, could bene-

�t from atomic cross-chain swaps. An atomic swap protocol can be

thought of as a trust-free, Byzantine-hardened form of distributed

commitment [26]. An atomic cross-chain swap is a special case

of a distributed atomic transaction [25], although not all atomic

transactions can be expressed as cross-chain swaps.

Cross-chain swaps are well-known to the blockchain commu-

nity [4, 6, 9, 20, 21, 27], but to our knowledge, this is the �rst

systematic analysis of the theory underlying such protocols. We

make the following contributions. A cross-chain swap is modeled

as a directed graph (digraph) D, whose vertexes are parties and

whose arcs are proposed asset transfers. For any pair (D,L), where
D = (V ,A) is a strongly-connected digraph and L ⊂ V a feedback

vertex set forD, we give an atomic cross-chain swap protocol using

a form of hashed timelock contracts, where the vertexes in L, called
leaders, generate the hashlocked secrets. (Vertexes that are not lead-

ers are followers.) We also show that no such protocol is possible

if D is not strongly connected, or if D is strongly connected but

the set of leaders L is not a feedback vertex set. �e protocol has

time complexity O(diam(D)) and communication complexity (bits

published on blockchains) O(|A| · |L|).

2 MODEL
2.1 Digraphs
A directed graph (or digraph)D is a pair (V ,A), whereV is a �nite set

of vertexes, and A is a �nite set of ordered pairs of distinct vertexes

called arcs. We use V (D) for D’s set of vertexes, and A(D) for its
set of arcs. An arc (u,v) has head u and tail v . An arc leaves its

head and enters its tail. An arc (u,v) enters a set of vertexesW ⊆ V
if u <W and v ∈W , and similarly for leaving.

A digraph C is a subdigraph ofD ifV (C) ⊆ V (D),A(C) ⊆ A(D)
and every arc in A(C) has both its head and tail in V (C).

A path p in D is a sequence of vertexes (u0, . . . ,u`) such that

u0, . . . ,u`−1 are distinct. Path p has length `, denoted by |p |. If v
is a vertex, and (u0, . . . ,u`) a path that does not include the arc

(v,u0), thenv +p denotes the path (v,u0, . . . ,u`). For vertexesu,v ,
D(u,v) is the length of the longest path from u to v in D.

A path (u0, . . . ,u`) is a cycle if u0 = u` . A digraph is acyclic if

it has no cycles. Vertex v is reachable from vertex u if there is a

path fromu tov . D’s diameter diam(D) is the length of the longest

path from any vertex to any other. D is connected if its underlying

graph is connected, and strongly connected if, for every pair u,v
of distinct vertexes in D, u is reachable from v and v is reachable

from u. A feedback vertex set is a subset of V whose deletion leaves

D acyclic.

�e transpose DT
is the digraph obtained from D by reversing

all arcs. If D is strongly connected, so is DT
, and any feedback

vertex set for D is also a feedback vertex set for DT
.

2.2 Blockchains and Smart Contracts
For our purposes, a blockchain is a distributed service that allows

clients to publish transactions to a publicly-readable, tamper-proof

distributed ledger. Our analysis is independent of the particular

blockchain algorithm. We assume a timing model where there is a

known duration ∆ long enough for one party to publish a contract

to a blockchain, and for a second party to con�rm that the contract

has been published.

�e owner of an asset (such as a unit of cryptocurrency or an

automobile title) can create a smart contract to transfer ownership

of that asset to a counterparty if speci�ed conditions are met. A

contract is published when its creator places it on a blockchain

ledger. Once a contract is published, it is irrevocable: neither the

contract’s creator nor any other party can remove the contract nor

tamper with its terms.

A rational party acts in its own self-interest, deviating from a

protocol only if it is pro�table to do so. Rational parties can collude

with one another to disadvantage other parties. An irrational party

may deviate from a protocol even if it is not pro�table to do so.

Parties may behave irrationally out of spite, because they were

hacked, or because they pro�t in ways not foreseen by the protocol

designers.

Blockchain protocols typically require parties to have public and

private keys. We use sig(x ,v) to denote the result of v using its

private key to sign x .

3 SWAP DIGRAPHS AND GAMES
A cross-chain swap is given by a digraph D = (V ,A), where each
vertex in V represents a party, and each arc in A represents a pro-

posed asset transfer from the arc’s head to its tail via a shared

blockchain. (We assume without loss of generality that D is con-

nected, because a disconnected digraph can be treated as multiple

swaps.) Henceforth, we use party and vertex, blockchain and arc,

interchangeably, depending on whether we emphasize roles or

digraph structure.

In the terminology of game theory, a swap D is a cooperative

game, organized so that if all parties follow the protocol, each

transfer on each arc happens. Each possible outcome is given by

a subdigraph E = (V ,A′) of D. If a proposed transfer (u,v) ∈ A is

also in (u,v) ∈ A′, then that transfer happened. For short, we say

arc (u,v) was triggered.
A protocol is a strategy for playing a game: a set of rules that

determines which step a party takes at any stage of a game. To

model real-world situations where multiple parties are secretly

controlled by a single adversary, the swap game is cooperative:

parties can form coalitions where coalition members commit to a

common strategy.

Deal

NoDeal

Underwater

Discount

FreeRide

unacceptable

betterworse
acceptable

Figure 3: Partial order of protocol outcomes

Here are the outcomes for a party v , organized into classes, For

brevity, each class has a shorthand name.

• �e party acquires assets without paying: at least one arc

entering v is triggered, but no arc leaving v is triggered

(FreeRide).

• �e party acquires assets while paying less than expected:

all arcs enteringv are triggered, but at least one arc leaving

v is not triggered (Discount).

• �e party swaps assets as expected: all arcs entering and

leaving v are triggered (Deal).

• No assets change hands: no arc entering or leaving v is

triggered (NoDeal).

• �e party pays without acquiring all expected assets: at

least one arc entering v is not triggered, and at least one

arc leaving v is triggered (Underwater).

Payo�s for a coalition C ⊂ V are de�ned by replacing v with C in

the de�nitions above.

�e protocol design incorporates certain conservative assump-

tions about parties’ preferences. �e protocol’s preferred outcome

is for all conforming parties to end with outcome Deal. In the pres-

ence of failures or deviation, however, it is acceptable for conform-

ing parties to end with outcome NoDeal, the status quo, rendering

them no worse o�. Furthermore, each party is assumed to prefer

Deal to NoDeal, because otherwise it would not have agreed to

the swap in the �rst place. It follows that each party prefers any

FreeRide outcome to NoDeal, because it acquires additional assets

“for free”, without relinquishing any assets of its own. Similarly,

each party prefers any Discount outcome to Deal, since that party

acquires the same assets in both outcomes, but relinquishes fewer

in Discount outcomes. For these reasons, Deal, NoDeal, Dis-

count, and FreeRide are all considered acceptable outcomes for

conforming parties if the protocol execution is unable to complete

because of failures or adversarial behavior.

We consider the remaining Underwater outcomes to be unac-

ceptable to conforming parties. It is possible that in some idiosyn-

cratic cases, a party may actually prefer particular Underwater

outcomes to NoDeal. For example, a party with three entering arcs

and one leaving arc may be be willing to relinquish its asset in re-

turn for acquiring only two out of three of the entering arcs’ assets.

We leave the design of protocols that make such �ne distinctions

to future work.

De�nition 3.1. A swap protocol P is uniform if it satis�es:

• If all parties follow P, they all �nish with payo� Deal.

• If any coalition cooperatively deviates from P, no conform-

ing party �nishes with payo� Underwater.

A uniform protocol is not useful if rational parties will not follow

it. A swap protocol is a strong Nash equilibrium strategy if no coali-

tion improves its payo� when its members cooperatively deviate

from that protocol.

De�nition 3.2. A swap protocol P is atomic if it is both uniform

and a strong Nash equilibrium strategy.

�is de�nition formalizes the notion that if all parties are rational,

all swaps happen, but if some parties are irrational, the rational

parties will never end up worse o�. Recall that a conforming party

follows the protocol, while a deviating party does not.

Lemma 3.3. If D is strongly connected, then any uniform swap

protocol P is atomic.

Proof. If a deviating coalition C ⊂ V achieves a be�er payo�

than Deal, then that payo� is either in FreeRide or Discount.

It follows that some arc that enters C is triggered, and some arc

that leaves C is untriggered. Moreover, if any arc that enters C is

untriggered, then all arcs that leave C are untriggered.

A conforming party v < C cannot end up Underwater, so if

an arc entering v is untriggered, then every arc leaving v must be

untriggered, and if an arc leaving v is triggered, then every arc

entering v must be triggered.

Let (c,v) be an untriggered arc leavingC . Since v is conforming,

every arc leavingv is untriggered. BecauseD is strongly connected,

there is a path (v,v0), (v1,v2), . . . , (vk , c0) where each vi < C , and
c0 ∈ C . By a simple inductive argument, each arc in this path is

untriggered, so the arc (vk , c0) that entersC is untriggered, so every

arc leaving C must be untriggered, and some arc entering C must

be triggered.

Let (v, c) be a triggered arc entering C . Since v is conforming,

every arc entering v is triggered. Because D is strongly connected,

there is a path (c1,v0), (v0,v1), . . . , (vk , c) where each vi < C , and
c1 ∈ C . By a simple inductive argument, each arc in this path is

triggered, so the arc (c1,v0) leaving C is triggered, contradicting

the fact that every arc leaving C is untriggered. �

Lemma 3.4. If D is not strongly connected, then no uniform swap

protocol is atomic.

Proof. Because D is not strongly connected, it contains ver-

texes x ,y such that y is reachable from x , but not vice-versa. Let Y
be the set of vertexes reachable from y, and X the rest: X = V \ Y .
X is non-empty because it contains x . Because y is reachable from

x , there is at least one arc from X to Y , but no arcs from Y to X .

CoalitionX can improve its payo� by triggering all arcs between

vertexes inX , but no arcs fromX toY , yielding payo� FreeRide for

X , since it triggers strictly fewer arcs leaving X , without a�ecting

any arcs entering X . In fact, the payo� for each individual vertex

in X is either the same or be�er than Deal. �

We have just proved:

Theorem 3.5. A uniform swap protocol for D is atomic if and

only if D is strongly connected.

Informally, if D is not strongly connected, then rational parties

will deviate from any uniform protocol. In practice, such a swap

would never be proposed, because the parties in X would never

agree to a swap with the free riders in Y . Henceforth,D is assumed

strongly connected.

We remark that �eorem 3.5 relies on the implicit technical

assumption that all value transfers are explicitly represented on

some blockchain. �is theorem would be falsi�ed, for example, if

Carol responds to learning Alice’s secret by sending a large drone

to drop her Cadillac in the middle of Alice’s driveway, without ever

recording that transfer in a shared blockchain. We will assume that

if swaps have o�-chain consequences, as they typically do, that

those consequences are explicitly recorded in the form of blockchain

updates.

4 AN ATOMIC SWAP PROTOCOL
4.1 Hashlocks and Hashkeys
In a simple two-party swap, each party publishes a contract that

assumes temporary control of that party’s asset. �is hashed time-

lock contract [5] stores a pair (h, t), and ensures that if the contract

receives the matching secret s , h = H (s), before time t has elapsed,
then the contract is triggered, irrevocably transferring ownership

of the asset to the counterparty. If the contract does not receive the

matching secret before time t has elapsed, then the asset is refunded

to the original owner. For multi-party cross-chain swaps, we will

need to extend these notions in several ways.

1 contract Swap {
2 Asset asset ; /∗ asset to be transferred or refunded ∗/
3 Digraph digraph; /∗ swap digraph ∗/
4 address[] leaders ; /∗ leaders ∗/
5 address party ; /∗ transfer asset from ∗/
6 address counterparty ; /∗ transfer asset to ∗/
7 uint [] timelock ; /∗ vector of timelocks ∗/
8 uint [] hashlock; /∗ vector of hashlocks ∗/
9 bool[] unlocked; /∗ which hashlocks unlocked? ∗/
10 uint start ; /∗ protocol starting time ∗/
11 /∗ constructor ∗/
12 function Swap (Asset asset ; /∗ asset to be transferred or refunded ∗/
13 Digraph digraph ; /∗ swap digraph ∗/
14 address[] leaders ; /∗ leaders ∗/
15 address party ; /∗ transfer asset from ∗/
16 address counterparty ; /∗ transfer asset to ∗/
17 uint [] timelock ; /∗ vector of timelocks ∗/
18 uint [] hashlock ; /∗ vector of hashlocks ∗/
19 uint start /∗ protocol starting time ∗/
20) {
21 asset = asset ; /∗ copy ∗/
22 party = party ; counterparty = counterparty ; /∗ copy ∗/
23 timelock = timelock ; hashlock = hashlock ; /∗ copy ∗/
24 unlocked = [false , …, false]; /∗ all unlocked ∗/
25 }

Figure 4: Swap contract (part one)

In the three-way swap recounted earlier, each arc had a single

hashlock and a single timeout. Timeouts were assigned so that the

timeout on each arc entering a follower v was later by at least ∆
than the timeout on each arc leaving v . �is gap ensures that if any

arc leaving v is triggered, then v has time to trigger every entering

arc.

If a swap digraph has only one leader, v̂ , then the subdigraph

of its followers is acyclic. As in our three-way swap example, the

hashlock on arc (u,v) can be given timeout (diam(D) + D(v, v̂) +
1) · ∆, where D(v, v̂) is the length of the longest path from v to the

unique leader v̂ . (See le�-hand side of Figure 6.)

�is formula does not work if a swap digraph has more than one

leader, because the subdigraph of any leader’s followers has a cycle,

and it is not possible to assign timeouts across a cycle in a way that

guarantees a gap of at least ∆ between entering and leaving arcs.

(See right-hand side of Figure 6.)

Instead, for general digraphs, we must replace timed hashlocks

with a more general mechanism, one that assigns di�erent timeouts

to di�erent paths. Pick a set L = {v0, . . . ,v`} of vertexes, called
leaders, forming a feedback vertex set for D. Each leader vi gener-
ates a secret si and hashlock value hi = H (si), yielding a hashlock
vector (h0, . . . ,h`), which is assigned to every arc.

A hashkey for h on arc (u,v) is a triple (s,p,σ), where s is the
secret h = H (s), p is a path (u0, . . . ,uk) in D where u0 = v and uk

is the leader who generated s , and

σ = sig(· · · sig(s,uk), . . . ,u0),

the result of having each party in the path sign s . A hashkey (s,p,σ)
times out at time (diam(D) + |p |) · ∆ a�er the start of the protocol.

�at hashkey unlocks h on (u,v) if it is presented before it times

out. An arc is triggered when all of its hashlocks are unlocked. A

hashlock has timed out on an arc when all of its hashkeys on that arc

have timed out. Figure 7 shows partial hashkeys for a two-leader

swap digraph.

4.2 Market Clearing
For simplicity, assume the swap digraph is constructed by a (pos-

sibly centralized) market-clearing service, which perhaps commu-

nicates with the parties through its own blockchain. �e clearing

service is not a trusted party, because the parties can check the

consistency of the clearing service’s responses.

Each party creates a secret s and matching hashlock h = H (s). It
sends the clearing service its hashlock, along with an o�er charac-

terizing the swaps it is willing to make. �e service combines these

o�ers, and publishes a swap digraph D = (V ,A), a vector L ⊂ V
of leaders forming a feedback vertex set, a vector of those leaders’

hashlocks h0, . . . ,h` , and a starting time T , at least ∆ in the future.

26 function unlock (int i , uint s , Path path, Sig sig) {
27 require (msg.sender == counterparty); /∗ only from counterparty ∗/
28 if (now < start + (diam(digraph) + |path |) ∗ ∆ /∗ hashkey still valid ? ∗/
29 && hashlock[i] == H(s) /∗ secret correct ? ∗/
30 && isPath(path, digraph, leader [i], counterparty) /∗ path valid ? ∗/
31 && verifySigs (sig , s , path) { /∗ signatures valid ? ∗/
32 unlocked[i] = true ;
33 }
34 }
35 function refund () {
36 require (msg.sender == party); /∗ only from party ∗/
37 if (any hashlock unlocked and timed out) {
38 transfer asset to party ;
39 halt ;
40 }
41 }
42 function claim () {
43 require (msg.sender == counterparty); /∗ only from counterparty ∗/
44 if (every hashlock unlocked) {
45 transfer asset to counterparty ;
46 halt ;
47 }
48 }
49 }

Figure 5: Swap contract (part two)

A

BC

secret	ݏ,
݄ ൌ ሻݏሺܪ

	6	6

	4 	4 A

BC

secret	ݏ,
݄ ൌ ሻݏሺܪ

	6	6

	5

	4 	4

? ? ?

	5

Figure 6: A is the leader, B and C followers. Timeouts can be assigned when the follower subdigraph is acyclic (le�) but not
when it is cyclic (right)

If all parties conform to the protocol, all contracts will be trig-

gered before T + 2 · diam(D) · ∆, but if some parties deviate, the

conforming parties’ assets will be refunded by then.

A

BC

,BAݏ
,BCAݏ
,Bݏ

,Aݏ
,ABݏ
,ACBݏ

,CAݏ
,CBAݏ
,CBݏ
,CABݏ

,BAݏ
,BCAݏ
,Bݏ

,CAݏ
,CBAݏ
,CBݏ
,CABݏ

,Aݏ
,ABݏ
,ACBݏ

secret	ݏ,
݄ ൌ ሻݏሺܪ

secret	ݏ,
݄ ൌ ሻݏሺܪ

Figure 7: Hashkey paths for arcs of two-leader digraph

A

BC

A

BC

A

BC

secret	ݏ,
݄ ൌ ሻݏሺܪ

secret	ݏ,
݄ ൌ ሻݏሺܪ

my	entering	arcs
	all	have	contracts

Figure 8: Concurrent contract propagation for two-leader digraph

4.3 Contracts
Figures 4 and 5 show pseudocode

3
for a hashed timelock swap

contract. A smart contract resembles an object in an object-oriented

programming language, providing long-lived state (Lines 2-9), a

constructor to initialize that state (Lines 12-25), and one or more

functions to manage that state (Lines 26-48).

�e contract’s long-lived state records the asset to be transferred

or refunded (Line 2), the digraph D (Line 3), the digraph’s set

of leaders (Line 4), the party transferring the asset (Line 5), the

3
�is pseudocode is based loosely on the popular Solidity programming language for

smart contracts [24].

counterparty receiving the asset (Line 6), a vector of timelocks

(Line 7), a vector of hashlocks (Line 8), and a Boolean unlocked
vector marking which hashlocks have been unlocked (Line 9).

When the contract is initialized, its constructor copies the �elds

provided into the contract’s long-lived state (Lines 21-23) and sets

each entry in unlocked to false (Line 24).

�e unlock () function (Line 26), callable only by the counterparty
(Line 27), takes an index i , a secret si , a path p, and the signature

sig . �e hashlock hi is unlocked if

• the current time is less thanT +(diam(D)+ |p |)·∆ (Line 28),

• hi = H (si) (Line 29),

• p is a path in D from the counterparty to the leader who

generated si (Line 30), and
• the signature is the result of signing si by the parties in p

(Line 31)

�e refund () function (Line 35), callable only by the party, re-

funds the asset to the party if any unlocked hashlock has timed out.

�e claim () function (Line 42), callable only by the counterparty

(Line 36), transfers the asset to the counterparty if all hashlocks

have been unlocked.

4.4 Pebble Games
We analyze the protocol using two variations on a simple pebble

game. We are given a strongly-connected digraph D = (V ,A), and
a vertex feedback set L ⊂ V of leaders.

In the lazy pebble game, start by placing pebbles on the arcs

leaving each leader. Place new pebbles on the arcs leaving vertex v
when there is a pebble on every arc entering v .

In the eager pebble game, start by placing a single pebble on one

vertex z. Place new pebbles on the arcs leaving v when there is a

pebble on any arc entering v . Both games continue until no more

pebbles can be placed.

Lemma 4.1. In the lazy game, every arc in D eventually has a

pebble.

Proof. Suppose by way of contradiction, the game stops in a

state where an arc (u,v) has no pebble. �ere must be a pebble-

free arc (u ′,u) entering u, because otherwise the game would have

placed a pebble on (u,v). Continuing in this way, build a longer

and longer pebble-free path until it becomes a pebble-free cycle.

But leaders form a feedback vertex set, so every cycle inD includes

a leader, and the arcs leaving that leader have pebbles placed in the

�rst step. �

Lemma 4.2. In the eager game, every arc in D eventually has a

pebble.

Proof. Suppose by way of contradiction, the game stops in

a state where an arc (u,v) has no pebble. Because G is strongly

connected, there is a path from z to v . Since z has a pebble and

v does not, there is an arc (w,w ′) on that path where w has a

pebble but w ′ does not, so w ′ will get a pebble in the next step,

contradicting the hypothesis that the game has stopped. �

Suppose there is a worst-case delay ∆ between when the last

pebble is placed on any arc entering v , and when the last pebble is

placed on any arc leaving v .

Lemma 4.3. In both pebble games, every arc will have a pebble in

time at most diam(D) · ∆ from when the game started.

Proof. For the lazy game, it is enough to show that in each

interval of time ∆, the longest pebble-free path shrinks by one. At

any time a�er the �rst step, let a0, . . . ,ak be a pebble-free path of

maximal length. �at path cannot be a cycle, because then it would

include a leader, who would have placed a pebble on a0 in the �rst

step. It follows that every arc entering the head of a0 must have a

pebble, because otherwise we could construct a longer pebble-free

path. By hypothesis, within time ∆, a0 will have a pebble, and the

path will have shrunk by one.

For the eager game, it is enough to observe that in each interval

of time ∆, for every vertex v , the number of unpebbled vertexes

in every path from z to w shrinks by one. Because D is strongly

connected, such a path always exists. �

Corollary 4.4. Under the stated timing assumptions, for both

games, every arc has a pebble within time diam(D) · ∆.

4.5 �e Protocol
�ere are two phases. In Phase One, instances of the Swap contract

(Figures 4 and 5) are propagated through D, starting at the leaders.

Each time a party observes that a contract has been published on

an entering arc, it veri�es that contract is a correct swap contract,

and abandons the protocol otherwise.

Here is the Phase-One protocol for leaders:

(1) Publish a contract on every arc leaving the leader, then

(2) wait until contracts have been published on all arcs enter-

ing the leader.

Here is the protocol for followers:

(1) wait until correct contracts have been published on all arcs

entering the vertex, then

(2) publish a contract on every arc leaving the vertex.

Figure 7 shows how contracts are propagated in a swap digraph

with two leaders.

In Phase Two, the parties disseminate secrets via hashkeys.

While contracts propagate in the direction of the arcs, from party to

counterparty, hashkeys propagate in the opposite direction, from

counterparty to party. Informally, each party is motivated to trigger

the contracts on entering arcs to acquire the assets controlled by

those contracts.

We now trace how the secret si generated by leader vi is propa-
gated. At the start of the phase, vi calls unlock(si ,vi , sig(si ,vi)) at
each entering arc’s contract (here, the function’s arguments are the

hashkey, andvi is a degenerate path). �e �rst time any other party

v observes that hashlock hi on a leaving arc’s contract has been un-

locked by a call to unlock(si ,p,σ), it calls unlock(si ,v+p, sig(σ ,v))
at each entering arc’s contract. �e propagation of si is complete

when hi has either timed out or has been unlocked on all arcs.

Lemma 4.5. If all parties conform to the protocol, then every arc

has a contract within time diam(D) · ∆ of when the protocol started.

Proof. Phase One is an instance of the lazy pebble game on D,

so the claim follows from Lemmas 4.1 and 4.3. �

Lemma 4.6. If all parties conform to the protocol, then every arc’s

contract is triggered within time 2 · diam(D) · ∆ of when the protocol

started.

Proof. Each secret’s dissemination is an instance of the eager

pebble games on DT
, the transpose digraph. �e secrets are dis-

seminated in parallel. �

Theorem 4.7. If all parties conform to the protocol, then every

contract is triggered within time 2 · diam(D) · ∆ of when the protocol

started.

�e deadline 2 · diam(D) · ∆ bounds the time assets can be held

in escrow when things go wrong. In practice, one would expect

actual running times to be shorter.

�ere is a simple optimization that ensures that Phase Two com-

pletes in constant time when all parties conform to the protocol. We

use a shared blockchain, perhaps that of themarket-clearing service,

as a broadcast medium. Each leader vi publishes its secret si on
the shared blockchain, and each follower monitors that blockchain,

triggering its entering arcs when it learns the secret. (Logically, we

create an arc from each follower directly to that leader.) Unfortu-

nately, while this broadcasting blockchain can “short-circuit” the

Phase Two protocol, it cannot replace it, because a deviating leader

might refrain from publishing the secret on that blockchain, but

publish it on others. (Miller et al. [18] propose a similar optimization

for the Lightning network.)

Lemma 4.8. If hashlock h times out on any arc entering a conform-

ing v , then h must have timed out on every arc leaving v .

Proof. Suppose h was triggered on (v,w) by hashkey (s,p,σ).
If v does not appear in p, then v + p is a path from v to the leader,

and v can immediately trigger h on (u,v) using the hashkey (s,v +
p, sig(σ ,v)), which has not timed out. If v appears in p, then v has

already received (and signed) a hashkey that triggersh on (u,v). �

Theorem 4.9. No conforming party ends up Underwater.

Proof. Assume by way of contradiction that some conforming

party v ends up Underwater: a leaving arc (v,w) has a triggered
contract, but an entering arc (u,v) does not and will not.

First, arc (u,v) must have a contract. Suppose v is a leader.

Since (v,w) has been triggered, v has revealed its secret through a

hashkey. But a leader issues hashkeys in Phase Two only a�er a

contract has been published on every entering arc during Phase One.

Suppose insteadv is a follower. Since (v,w) has been triggered, one

of the arcs leaving v has a contract. But in Phase One, a follower

publishes a contract on a leaving arc only a�er contracts have been

published on all of its incoming arcs.

Since (u,v) has a contract, one of that arc’s hashlocks must have

timed out. By Lemma 4.8, the arc (v,w) must also have timed out,

a contradiction. �

Theorem 4.10. For D = (V ,A) with leaders L ⊂ V , the space
complexity, measured as the number of bits stored on all blockchains,

is O(|A|2).

Proof. �ere are |A| contracts, one on each arc, each with a

copy of the digraph D, which requires O(|A|) storage. �

Finally, any atomic cross-chain swap protocol using hashed time-

locks must assign secrets to a feedback vertex set.

Lemma 4.11. In any uniform hashed timelock swap protocol, no

follower v can publish a contract on an arc leaving v before contracts

have been published on all arcs entering v .

Proof. If follower v has has a contract on arc (v,w) but no
contract on arc (u,v), then the parties other thanv could collude to

trigger the contract on (v,w), while refusing to publish a contract

on (u,v), leaving v Underwater. �

Theorem 4.12. In any uniform swap protocol based on hashed

timelocks, the set L of leaders is a feedback vertex set in D.

Proof. Suppose, instead, there is a uniform swap protocol where

the leaders do not form a vertex feedback set.

At any step in the protocol, the waits-for digraphW is the subdi-

graph of DT
where (v,u) is an arc ofW if (u,v) has no published

contract. Informally, Lemma 4.11 implies thatv must be waiting for

u to publish a contract on (u,v) before u can publish any contracts

on its own outgoing arcs. In the initial state, if D \ L contains a

cycle, so doesW . At each protocol step, a follower v can publish a

contract on a leaving arc only if v has indegree zero in the current

waits-for digraph. But no vertex on a cycle in the waits-for digraph

will ever have indegree zero, a contradiction. �

4.6 Single-Leader Digraphs
As noted, in the common special case where a swap digraph needs

only one leader, we can replace hashkeys with simple timeouts,

reducing message sizes and eliminating the need for digital signa-

tures. In the following, letD be a swap digraph with a single leader

v̂ with hashlock h.

Lemma 4.13. If each arc (u,v) has timeout (diam(D) + D(v, v̂) +
1) ·∆, then for every conformingv , v̂ , the timeout on each arc (u,v)
is later by at least ∆ than the timeout on each arc (v,w).

Proof. Let p be the longest path fromw to the leader v̂ . Because
the subdigraph of followers is acyclic, v + p is a path of length

D(w, v̂) + 1 from v to v̂ , so D(v, v̂) ≥ D(w, v̂) + 1. �

Lemma 4.14. For a single-leader digraph using timeouts, if hashlock

h times out on any arc entering a conforming v , then h must have

timed out on every arc leaving v .

Proof. By Lemma 4.14, once h is triggered on (v,w), v has time

at least ∆ to trigger (u,v). �

From this point on, the bounds on running time and proofs of

safety for the single-leader-using-timeouts protocol are essentially

the same as for the general protocol.

5 REMARKS
We have seen that single-leader swap digraphs do not require

hashkeys and digital signatures, only timeouts. Is there a way

to reduce the use of digital signatures in the general case?

Finding a minimal feedback vertex set forD is NP-complete [15],

although there exists an e�cient 2-approximation [3].

�e protocol is easily extended to a model where there may be

more than one arc from one vertex to another, so-called directed

multi-graphs [2], re�ecting the situation where Alice wants to trans-

fer assets on distinct blockchains to Bob.

�e swap protocol is still vulnerable to a weak denial-of-service

a�ack where an adversarial party repeatedly proposes an a�ractive

swap, and then fails to complete the protocol, triggering refunds,

but temporarily rendering assets inaccessible. We leave for future

work the question whether one could require parties to post bonds,

and following a failed swap. examine the blockchains to determine

who was at fault (by failing to execute an enabled transition).

An interesting open problem is the extent to which this swap

protocol can be modi�ed to provide be�er privacy, analogous to

the way the Bolt network [12] improves on Lightning.

As noted, some parties may be willing to accept certain Un-

derwater outcomes rejected by the swap protocol presented here.

Future work might investigate protocols where parties are endowed

with customized objective functions to provide �ner-grained con-

trol which outcomes are acceptable.

�e swap protocol can be made recurrent by having the leaders

distribute the next round’s hashlocks in Phase Two of the previous

round. If swaps are recurrent, then it would be useful to conduct

swaps o�-chain as much as possible, similar to the way that Light-

ning [22] and Raiden [19] networks support o�-chain transactions

for bitcoin and ERC20 tokens.

One limitation of the swap protocol presented here is the as-

sumption that the swap digraph, its leaders, and their hashlocks are

common knowledge among the participants. Future work might

address constructing and propagating this information dynamically.

6 RELATEDWORK
�e use of hashed timelock contracts for two-party cross-chain

swaps is believed to have emerged from an on-line discussion fo-

rum in 2016 [4, 20]. �ere is open-source code [6, 9, 21] for two-

party cross-chain swap protocols between selected currencies, and

proposals for applications using swaps [27].

O�-chain payment networks [8, 12, 19, 22] circumvent the scala-

bility limits of existing blockchains by conducting multiple transac-

tions o� the blockchain, eventually resolving �nal balances through

a single on-chain transaction. �e Revive network [16] rebalances

o�-chain networks in a way that ensures that compliant parties do

not end up worse o�. �ese algorithms also use hashed timelock

contracts, but they address a di�erent set of problems.

Multi-party swaps arise when matching kidney donors and re-

cipients. A transplant recipient with an incompatible donor can

swap donors to ensure that each recipient obtains a compatible

organ. A number of algorithms [1, 10, 13] have been proposed for

matching donors and recipients. Shapley and Scarf [23] consider

the circumstances under which certain kinds of swap markets have

strong equilibriums. Kaplan [14] describes a polynomial-time algo-

rithm that given a set of proposed swaps, constructs a swap digraph

if one exists. �ese papers and many others focus on “the clearing

problem”, roughly analogous to constructing a swap digraph, but

not on how to execute those swaps on blockchains.

�e fair exchange problem [11, 17] is a precursor to the atomic

cross-chain swap problem. Alice has a digital asset Bob wants, and

vice-versa, and at the end of the protocol, either Alice and Bob have

exchanged assets, or they both keep their assets. In the absence of

blockchains, trusted, or semi-trusted third parties are required, but

roles of those trusted parties can be minimized in clever ways.

A atomic cross-chain transaction is a distributed task where a

sequence of exchanges occurs at each blockchain. An atomic cross-

chain swap is an atomic cross-chain transaction, but not vice-versa,

because not all transactions can be expressed as swaps. In our

original example, Alice could not borrow bitcoins from Bob to

pay Carol, because then Alice would have to execute two steps in

sequence (borrow, then spend) instead of executing a single swap.

A be�er understanding of atomic cross-chain transactions is the

subject of future work.

REFERENCES
[1] D. J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter ex-

change markets: Enabling nationwide kidney exchanges. In Proceedings of the

8th ACM Conference on Electronic Commerce, EC ’07, pages 295–304, New York,

NY, USA, 2007. ACM.

[2] J. Bang-Jensen and G. Gutin. Digraphs: �eory, Algorithms, and Applications.

Monographs in Mathematics. Springer, 2001.

[3] A. Becker and D. Geiger. Optimization of pearl’s method of conditioning and

greedy-like approximation algorithms for the vertex feedback set problem. Arti-

�cial Intelligence, 83(1):167 – 188, 1996.

[4] bitcoinwiki. Atomic cross-chain trading. h�ps://en.bitcoin.it/wiki/Atomic

cross-chain trading. As of 9 January 2018.

[5] bitcoinwiki. Hashed timelock contracts. h�ps://en.bitcoin.it/wiki/Hashed

Timelock Contracts. As of 8 January 2018.

[6] S. Bowe and D. Hopwood. Hashed time-locked contract transactions. h�ps:

//github.com/bitcoin/bips/blob/master/bip-0199.mediawiki. As of 9 January 2018.

[7] V. Buterin. On sharding blockchains. h�ps://github.com/ethereum/wiki/wiki/

Sharding-FAQ. As of 8 January 2018.

[8] C. Decker and R. Wa�enhofer. A fast and scalable payment network with bitcoin

duplex micropayment channels. In A. Pelc and A. A. Schwarzmann, editors,

Stabilization, Safety, and Security of Distributed Systems, pages 3–18, Cham, 2015.

Springer International Publishing.

[9] DeCred. Decred cross-chain atomic swapping. h�ps://github.com/decred/

atomicswap. As of 8 January 2018.

[10] J. P. Dickerson, D. F. Manlove, B. Plaut, T. Sandholm, and J. Trimble. Position-

indexed formulations for kidney exchange. CoRR, abs/1606.01623, 2016.

[11] M. K. Franklin and G. Tsudik. Secure group barter: Multi-party fair exchange

with semi-trusted neutral parties. In Financial Cryptography, 1998.

[12] M. Green and I. Miers. Bolt: Anonymous payment channels for decentralized

currencies. Cryptology ePrint Archive, Report 2016/701, 2016. h�ps://eprint.iacr.

org/2016/701.

[13] Z. Jia, P. Tang, R. Wang, and H. Zhang. E�cient near-optimal algorithms for

barter exchange. In Proceedings of the 16th Conference on Autonomous Agents

and MultiAgent Systems, AAMAS ’17, pages 362–370, Richland, SC, 2017. Inter-

national Foundation for Autonomous Agents and Multiagent Systems.

[14] R. M. Kaplan. An improved algorithm for multi-way trading for exchange and

barter. Electronic Commerce Research and Applications, 10(1):67 – 74, 2011. Special

Section: Service Innovation in E-Commerce.

[15] R. M. Karp. Reducibility among combinatorial problems. In Proceedings of a

symposium on the Complexity of Computer Computations, held March 20-22, 1972,

at the IBM �omas J. Watson Research Center, Yorktown Heights, New York., pages

85–103, 1972.

[16] R. Khalil and A. Gervais. Revive: Rebalancing o�-blockchain payment net-

works. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’17, pages 439–453, New York, NY, USA, 2017.

ACM.

[17] S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In

Proceedings of the Twenty-second Annual Symposium on Principles of Distributed

Computing, PODC ’03, pages 12–19, New York, NY, USA, 2003. ACM.

[18] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry. Sprites: Payment channels

that go faster than lightning. CoRR, abs/1702.05812, 2017.

[19] R. Network. What is the raiden network? h�ps://raiden.network/101.html. As

of 26 January 2018.

[20] T. Nolan. Atomic swaps using cut and choose. h�ps://bitcointalk.org/index.php?

topic=1364951. As of 9 January 2018.

[21] T. K. Organization. �e barterdex whitepaper: A decentralized, open-source cryp-

tocurrency exchange, powered by atomic-swap technology. h�ps://supernet.org/

en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf. As of 9 January

2018.

[22] J. Poon and T. Dryja. �e bitcoin lightning network: Scalable o�-chain instant

payments. h�ps://lightning.network/lightning-network-paper.pdf, Jan. 2016.

As of 29 December 2017.

[23] L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical

Economics, 1(1):23–37, 1974.

[24] Solidity documentation. h�p://solidity.readthedocs.io/en/latest/index.html.

[25] G. Weikum and G. Vossen. Transactional Information Systems: �eory, Algo-

rithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2001.

[26] Wikipedia. Two-phase commit protocol. h�ps://en.wikipedia.org/wiki/

Two-phase commit protocol. As of 18 May 2018.

[27] G. Zyskind, C. Kisagun, and C. FromKnecht. Enigma catalyst: a machine-based

investing platform and infrastructure for crypto-assets. h�ps://www.enigma.co/

enigma catalyst.pdf. As of 25 January 2018.

https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/decred/atomicswap
https://github.com/decred/atomicswap
https://eprint.iacr.org/2016/701
https://eprint.iacr.org/2016/701
https://raiden.network/101.html
https://bitcointalk.org/index.php?topic=1364951
https://bitcointalk.org/index.php?topic=1364951
https://supernet.org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf
https://supernet.org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf
https://lightning.network/lightning-network-paper.pdf
http://solidity.readthedocs.io/en/latest/index.html
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://www.enigma.co/enigma_catalyst.pdf
https://www.enigma.co/enigma_catalyst.pdf

	Abstract
	1 Motivation
	2 Model
	2.1 Digraphs
	2.2 Blockchains and Smart Contracts

	3 Swap Digraphs and Games
	4 An Atomic Swap Protocol
	4.1 Hashlocks and Hashkeys
	4.2 Market Clearing
	4.3 Contracts
	4.4 Pebble Games
	4.5 The Protocol
	4.6 Single-Leader Digraphs

	5 Remarks
	6 Related Work
	References

