COSC 545, Spring 2013: Problem Set #5

Due: Tue., 4/9, at the beginning of class (hand in hard copy). **Covers:** Lectures 18 to 21.

Collaboration: You must work alone on the problem set and not consult outside sources. See the syllabus for details on the academic integrity policy for problem sets.

Problems

- 1. Prove the following: $TQBF \leq_p 3SAT \Rightarrow PSPACE = NP$.
- 2. Let $EQ_{NFA} = \{ \langle N_1, N_2 | N_1 \text{ and } N_2 \text{ are NFAs and } L(N_1) = L(N_2) \}$. Prove that $EQ_{NFA} \in PSPACE$.
- 3. In class and in Theorem 8.14 of Sipser we proved that GG (Generalized Geography) is PSPACEcomplete. This proof required us to construct a graph structure of the form shown in Figure 8.16.
 Consider the following update to this graph structure:

In the original proof, we include a column of diamonds gadgets, one for each variable x_i . (This structure is highlighted in Figure 8.15.) In more detail, each x_i has a 4-node diamond, consisting of a *top* node with directed edges to a *left* and *right* node, each with a directed edge to the *bottom* node.

In our new version of the structure, we replace each diamond with a hexagon. In more detail, we point the outgoing edge from *left* to a new node, *left2*, then point an outgoing edge from *left2* to the *bottom* node. We add a *right2* node in a similar fashion. The gadgets are otherwise connected as in the original proof, that is: the *bottom* of one gadget connects to the *top* below, and the edges incoming from the right side can stay the same (each goes to a single *left* or *right* node).

Describe where the proof of Theorem 8.14 (GG is PSPACE-complete) breaks when we switch to this modified version of the graph structure.

4. We can represent a linked list by a directed graph in which each node has exactly one out-going edge. We call a linked list *proper* if traversing the edges visits every node in the graph. Let $LL = \{ \langle D \rangle \mid D$ is a proper lined list $\}$. Prove that $LL \in L$.