
COSC 240, Spring 2020: Problem Set #3

Assigned: Thursday, 2/13
Due: Thur, 2/27, at the beginning of class (hand in hard copy).
Lectures Covered: 10 to 13.
Academic Integrity: You can work with other people in the class but you must write up your own answers
in your own words. You can also use the textbook and talk to the professor. You may not use any other
resources (e.g., material found online) or talk to people outside the class about these problems. See the
syllabus for details on the academic integrity policy for problem sets.

Amortized Analysis

Assume you run a testing center where students arrive throughout the day to take the GRE. (For simplicity,
assume students never leave). Your testing center has a classroom of size 2i, for each i ≥ 0. You only have
one proctor, however, so all students at the test center at any given time must be in the same classroom. You
have also noticed that students perform poorly if a room seems empty, so you insist on the rule that the room
containing the students at any given time must have more full than empty seats.

To accommodate these constraints you use the following algorithm to handle each new arrival of a student:

• Start the day using the smallest available classroom (which is size 20 = 1).

• Once you run out of space in a classroom of size 2i (e.g., the room is full and then a new student
arrives), move all of the existing students and the new student to the classroom of size 2 · 2i = 2i+1.

You are concerned about the cost of this room scheduling policy. In particular, you calculate the cost of each
student arrival to be the number of students that must be moved (including the new student) to accommodate
the arrival. More formally, consider a sequence of n arrivals. Let ci be the cost of the ith student arrival.
You can define ci = 1 +mi where:

mi =

{
i− 1 if i− 1 is a power of 2
0 otherwise

The three questions that follow ask about this above scenario. The purpose of these questions is to explore
how the three types of amortized analysis studied in class might help you more accurately understand the
arrival costs over time in this scenario.

1. Prove that arrivals have a constant amortized cost by using the aggregate analysis technique discussed
in class (and Chapter 17.1 of the textbook).

2. Prove that arrivals have a log n amortized cost, assuming n total students arrive, by using the account-
ing method technique discussed in class (and Chapter 17.2 of the textbook).

3. Optional Extra Credit. Provide an improved version of your answer to the previous problem that
now applies the accounting method to establish a constant amortized cost.

(Hint: students who arrive after a classroom expansion might want to help the students who arrived
before the expansion regain the credit they will need to pay for their movement in the next expansion.)

1



4. We now turn our attention to a different problem. Consider a simple unary counter that counts from 1
to k before wrapping back around to 1 (for some k ≥ 1). One way to implement this counter is with
an array A of size k. Initially A[1] = 1 and A[j] = 0, for 2 ≤ j ≤ k. A variable p keeps track of the
smallest position in the array that currently stores a 0. If there are no 0’s in the array, then p = k + 1.
We initialize p← 2.

To INCREMENT the counter, there are two cases. If p = k+1, loop through A and set each position
to 0, then set A[1]← 1 and p← 2. Otherwise, if p ≤ k, then set A[p]← 1 and p← p+ 1.

Let ci be the cost of the ith INCREMENT. If we focus only on changing array entries when calculating
cost, we can use the following definition for ci:

ci =

{
1 if i is not a multiple of k,
k+1 else.

In the worst case, therefore, ci = k + 1. Prove that INCREMENT has constant amortized cost using
the potential method.

Dynamic Programming

1. Consider the following problem. You run ticket sales for a baseball stadium and are trying to sell the
valuable seats in the row right behind the home team dugout. There are n total seats in the row.

For each i ∈ {1, 2, ..., n}, let pi be the price for a contiguous block of i seats (i.e., a block containing
seats j, j + 1, ... , j + i − 1, for some j ∈ {1, 2, ..., n − i + 1}). These prices were set by a com-
plicated pricing algorithm so they do not necessarily increase with group size (it might be possible,
for example, that p7 < p4, as groups of 4 are more common than groups of 7, and so on). With this
in mind, you should not assume anything about these pi values other than the fact that they are all
integers greater than 0.

Your goal, given a set of pi values, is to figure out how to break up the dugout row into contiguous
blocks so as to maximize the money you make selling the blocks for their corresponding block prices.
(For example, if n = 6 and you break the row into one block of size 3, and three blocks of size 1, then
you would earn p3 + p1 + p1 + p1 by selling the row in blocks of those sizes.)

Because there are an exponential number of different ways to break up the row into blocks, standard
brute-force algorithms are too slow. The three-part problem that follows asks you to develop a more
efficient dynamic programming solution.

(a) For each i ∈ {1, 2, ..., n}, let q[i] be the maximum amount of money you can make breaking up
the first i seats of the row into contiguous blocks of size i or less. It is clear to see that q[0] = 0,
q[1] = p1, and q[n] is the final answer you are trying to calculate.
Define q[i] with a recurrence by filling in the blank line in the following:

q[i] =


0 if i = 0

p1 if i = 1

if i > 1

(Hint: the answer I have in mind includes a max statement containing i different values.)

(b) Using your answer from part (a) of this problem, design a dynamic programming algorithm that
calculates q[n].

2



(c) Show how to update the algorithm from part (b) so that it in addition to returning q[n], it also
prints the sizes of the blocks whose prices add up to q[n]. You can either write a new algorithm
from scratch, or just describe the new lines required for this printing and specify where they
should be added to your part (b) solution.

3


