
Leader Election in a Smartphone Peer-to-Peer Network

Calvin Newport
Georgetown University

Washington, D.C.
cnewport@cs.georgetown.edu

Abstract—In this paper, we study the fundamental problem
of leader election in the mobile telephone model: a recently
introduced variation of the classical telephone model modified
to better describe the local peer-to-peer communication services
implemented in many popular smartphone operating systems.
In more detail, the mobile telephone model differs from the
classical telephone model in three ways: (1) each device can
participate in at most one connection per round; (2) the
network topology can undergo a parameterized rate of change;
and (3) devices can advertise a parameterized number of bits
to their neighbors in each round before connection attempts
are initiated. We begin by describing and analyzing a new
leader election algorithm in this model that works under the
harshest possible parameter assumptions: maximum rate of
topology changes and no advertising bits. We then apply this
result to resolve an open question from [1] on the efficiency of
PUSH-PULL rumor spreading under these conditions. We then
turn our attention to the slightly easier case where devices can
advertise a single bit in each round. We demonstrate a large
gap in time complexity between these zero bit and one bit cases.
In more detail, we describe and analyze a new algorithm that
solves leader election with a time complexity that includes the
parameter bounding topology changes. For all values of this
parameter, this algorithm is faster than the previous result,
with a gap that grows quickly as the parameter increases
(indicating lower rates of change). We conclude by describing
and analyzing a modified version of this algorithm that does
not require the assumption that all devices start during the
same round. This new version has a similar time complexity
(the rounds required differ only by a polylogarithmic factor),
but now requires slightly larger advertisement tags.

I. INTRODUCTION

This paper describes and analyzes new leader election
algorithms in the mobile telephone model: an abstraction that
captures the local peer-to-peer communication capabilities
of existing commodity smartphone operating systems (e.g.,
as implemented by services such as Bluetooth LE [2], Wi-
Fi Direct [3], and Apple’s Multipeer Connectivity frame-
work [4]). The growing ubiquity of smartphones, combined
with the rapid improvement of operating system support
for direct wireless communication between nearby devices,
creates a compelling opportunity for the emergence of
easy to deploy and widely used smartphone peer-to-peer
applications.

There are several standard use cases for such applications.
For example, in developing countries cellular data minutes
are often bought in small blocks and carefully conserved by

users—generating an interest in networking operations that
can avoid infrastructure. In addition, smartphone peer-to-
peer networks can be used to bypass censorship in countries
where infrastructure networks are monitored (c.f., the use
of peer-to-peer smartphone chat among protestors in Hong
Kong [5]), and bring connectivity to settings such as disaster
zones, festivals, or wilderness where traditional cellular
and WiFi coverage is compromised, overwhelmed, or non-
existent.

Ultimately, however, it is likely unnecessary for computer
scientists to figure out in advance the killer app for this
massive platform. If we can develop network algorithms and
tools that simplify the design of useful distributed systems on
top of local peer-to-peer connections, the most compelling
use cases will emerge naturally from the vast competitive
marketplace of smartphone application developers. With this
in mind, this paper focuses on describing and analyzing
new provably correct and efficient leader election algorithms
that can be implemented and executed on top of existing
smartphone peer-to-peer services. These algorithms provide
a key primitive that supports the development of more
sophisticated distributed systems by simplifying tasks such
as event ordering, agreement, and synchronization.

The Mobile Telephone Model: The mobile telephone
model (introduced in our recent study of rumor spread-
ing [1]) is a variation of the classical telephone model
modified to better describe smartphone peer-to-peer commu-
nication. Its details are inspired, in particular, by the current
capabilities of Apple’s Multipeer Connectivity framework—
a peer-to-peer communication service available in every iOS
version since iOS 7 (and seen as one of the more flexi-
ble smartphone peer-to-peer options at the moment). This
service leverages both the 802.11 and Bluetooth radios on
the smartphone to implement discovery and direct wireless
connections between nearby devices. Like most smartphone
peer-to-peer services, the Multipeer Connectivity framework
allows devices to advertise a service and scan for the
services advertised by nearby devices. A device can then
attempt to form a reliable unicast connection with a nearby
device discovered in this scan. A key limitation is that
each device can only support a small number of concurrent
connections.

The mobile telephone model captures these capabilities
by assuming that in each round there is a graph describ-

ing the underlying network topology. At the beginning of
each round, each device learns its current neighborhood
(e.g., implementing a scan) and can attempt to initiate a
connection with a neighbor. If two devices connect they
can then perform a bounded amount of communication to
conclude the round. Each device can only participate in one
connection per round.

We parameterize the model with a tag length b ≥ 0. At
the beginning of each round, each device can choose a tag
consisting of b bits to advertise to its neighbors. When a
device scans its neighborhood it learns both the ids of its
neighbors and their chosen tags. (This capability is moti-
vated by the ability of devices to choose and change their
service advertisement labels in the Multipeer Connectivity
framework.) A key question in the mobile telephone model
is the power of such advertisements. In our study of rumor
spreading [1], we found a big complexity gap between b = 0
and b = 1, but little additional improvement for larger tags.
As described below, we find a similar gap in our study of
leader election.

We also parameterize our model with a stability factor
τ ≥ 0. The underlying topology graph must be stable for
at least τ rounds between changes. Notice, for τ = 1, the
network topology can change arbitrarily in every round.
By contrast, for τ = ∞, the network topology never
changes. The need to model topology changes is important
when studying smartphone peer-to-peer networks as the
underlying devices are inherently mobile. In this paper, we
study leader election algorithms that require no advance
knowledge of τ , and can gracefully adapt to whatever level
of stability they encounter in an execution.

Our Results: We study the leader election problem in
the mobile telephone model. This problem assumes each
device starts with a unique id (UID) and maintains a local
leader variable that contains an id. The problem requires the
system to stabilize to a point where all devices have leader
set to the same UID from the network. We study how many
rounds are required to reach this stabilization point with
high probability in the network size. An issue with worst
case analysis in this setting is that some network topologies
are inherently slow (e.g., a line) while others enable the
possibility of much more efficient communication (e.g., a
clique). Accordingly, we include the network topology’s
vertex expansion, denoted α, (a value which ranges from
a constant, indicating lots of connectivity, to something
close to 1/n, indicating very little connectivity) in our time
complexity results (see Section II for a formal definition).

We begin in Section VI by studying the difficult case
where b = 0 and τ = 1; i.e., devices cannot advertise any
extra information and the topology can change arbitrarily
in every round. In this setting, we describe and analyze an
algorithm called blind gossip leader election that implements
the following obvious strategy: flip a coin to decide whether
to receive or initiate connections; if you decide the latter

choose a neighbor at random to send a connection request; if
you decide the former, randomly select an incoming request
(if any) to accept and use the connection to trade the smallest
UIDs both devices have seen so far.

We show this algorithm stabilizes to a single leader
in O

(
(1/α)∆2 log2 n

)
rounds, where ∆ is the maximum

neighborhood size and n is the network size. We then show
our analysis near tight by describing a stable network in
which Ω

(
∆2/
√
α
)

rounds are necessary for this algorithm.
Finally, we leverage the new analysis techniques introduced
in this section to answer an open question from [1] about ru-
mor spreading in the mobile telephone model. In particular,
we proved in [1] that efficient PUSH-PULL rumor spreading
(with respect to ∆) is impossible in this model with b = 0,
but we stopped short of proving a precise upper bound. Our
analysis from Section VI allows us to resolve this question.

Next, in Section VII, we turn our attention to the slightly
easier case where b = 1. In this setting, we describe and
analyze an algorithm called bit convergence leader election.
This algorithm has devices partition rounds into groups
corresponding to the bits in the id of their current candidate
for the leader. During a group mapped to a given bit position
i, devices leverage their 1-bit tags to advertise the value in
bit i in the id of their current leader candidate. Devices
with a 0 in position i use these advertisements to attempt
to connect with devices with a 1 in this position to send
them a potentially smaller id. This task is complicated by
the fact that each device can only accept a single connection
per round and the graph can change every τ rounds. The
devices must therefore attempt, in a fully distributed manner,
to approximate a maximum matching in each group to
maximize the number of unique connections between 0-
bit and 1-bit devices for the current position i: a goal that
becomes particularly difficult for small τ .

We show this algorithm stabilizes to a single leader in
O
(
(1/α)∆1/τ̂ τ̂ log5 n

)
rounds, where τ̂ = min{τ, log ∆}.

Notice, as τ grows from 1 to log ∆ , the time complexity
advantage of this algorithm versus the blind gossip algorithm
grows from a factor of ∆ to a factor of ∆2 (ignoring the
log terms). For τ ≥ log ∆ and α = O(1) (e.g., a reasonably
stable and well-connected network), the bit convergence
algorithm requires time only polylogarithmic in the network
size to stabilize.

A shortcoming of our bit convergence algorithm is that it
assumes all devices activate during the same round, which is
useful to the algorithm as it allows it to assume synchronized
round counters. We overcome this issue in Section VIII,
where we describe and analyze a variation of this algorithm
that does not require devices to activate during the same
round. This new variation has a similar time complexity (it
is slower by only a log3 n factor). It now also requires that
b = log log n+O(1), which is slightly larger than the b = 1
required by the original bit convergence algorithm. This new
algorithm features characteristics of self-stabilization in that

if you connect isolated network components that have been
running the algorithm for arbitrary durations, the combined
network will still stabilize to a single leader in the same
stabilization time cited above.

Our algorithm analyses build on a key graph theoretic
result from [1] in which we proved a strong connection
between a graph’s vertex expansion and the amount of
information that can concurrently travel across an arbitrary
cut. The bit convergence algorithm variations also leverage
a key theorem from [1] that can be interpreted as bounding
the approximation ratio of random maximum matching
strategies. See Section V for a detailed treatment of these
useful results.

Related Work: The mobile telephone model studied in
this work was introduced by Ghaffari and Newport [1]. It is
a variation of the classical telephone model first introduced
by Frieze and Grimmett [6]. The mobile model differs from
the classical model in two ways: (1) the classical model
implicitly fixes b = 0 and (typically) τ = ∞; and (2)
the classical model allows a computational process (called
a node in the following) to accept an unbounded number
of incoming connections (a property that is crucial to most
analyses in the classical model). Though we discuss these
differences in more detail in [1], we note that this second
difference is the main reason why the classical model is not
suitable for describing smartphone peer-to-peer networks—a
setting in which the number of concurrent connections are
typically bounded for practical reasons.

A fundamental problem in telephone-style models is ru-
mor spreading: a rumor must spread from a single source
to the whole network. Early studies of this problem in these
models focused on restricted network topologies such as
cliques (e.g., [7]), where epidemic-style spreading enables
fast termination for simple random spreading strategies. In
the past half-decade, attention has turned to studying rumor
spreading with respect to spectral properties of the network
topology graph, such as graph conductance (e.g., [8]) and,
more relevant to this work, vertex expansion (e.g., [9], [10],
[11], [12]). Recent work by Daum et al. [13] emphasized the
well-known shortcoming of the telephone model mentioned
above: it allows a single node to accept an unlimited number
of incoming connections. They prove that if you instead
restrict nodes to a singe connection per round, there are
network topologies in which the optimal strategies from the
classical model perform much worse. Our recent work [1]
picks up where [13] leaves off by proving: (1) efficient rumor
spreading with respect to conductance is impossible in the
mobile telephone model, while efficient rumor spreading
with respect to vertex expansion is possible;1 (2) the well-
studied PUSH-PULL rumor spreading strategy from the
classical model cannot guarantee to be efficient with respect

1By “possible” and “impossible” we are describing the performance of
an offline optimal algorithm.

to α for b = 0; (3) a variation of PUSH-PULL called
PPUSH is efficient with respect to α with b = 1, and for
τ ≥ log ∆, where ∆ indicates maximum degree, it matches
the performance of PUSH-PULL in the easier classical
model (within log factors).

Information dissemination in a key subproblem in solving
leader election. Our algorithms from Section VII and VIII,
which tackle the case where b > 0, deploy a modified
version of the PPUSH rumor spreading strategy from [1]
as a subroutine. Accordingly, we borrow two useful results
from [1] to aid our analysis (see Section V). We emphasize
that our bit convergence leader election algorithm terminates
only a log n factor slower than PPUSH rumor spreading
algorithm from [1] in a network of size n, even though it
tackles a much more complicated task. In more detail, the
PPUSH algorithm, which assumes b = 1, has each node
use its single advertising bit to indicate whether or not it
knows the single rumor in the system—this allows nodes
that know the rumor to focus their connection attempts
on nodes that do not. When using PPUSH to propagate
UIDs for leader election, however, there is no such simple
binary status to advertise. In our algorithms, all nodes, in all
rounds, maintain a current candidate for leadership, so this
single bit must be somehow leveraged to indicate whether
a given neighbor’s candidate is better or worse. This task is
further complicated by a network topology that might change
frequently—preventing nodes from transmitting more com-
plicated information to their neighborhood, bit by bit, over
many rounds. Our bit convergence algorithm uses this single
bit in clever ways to guarantee progress is still made.

Finally, we note that leader election is well studied in
many classical distributed computing models under various
constraints; c.f., [14], [15], [16], [17], [18]. This problem
has also been studied in models with changing network
topologies; c.f., [19], [20], [21]. Perhaps most relevant to
our work is the leader election algorithm from [20], which
deterministically solves leader election in O(n2) rounds in a
network topology that can change in every round, but which
allows nodes to reliably broadcast O(1) UIDs to all of their
neighbors in each round. Our bit convergence algorithm
solves leader election in a comparable O(n∆polylog(n))
rounds under this amount of mobility, and the worst case
vertex expansion. We note, however, that in our model you
can transfer a UID to at most one neighbor per round, and
the n term corresponds to worst-case vertex expansion—this
term can decrease to a constant in a well-connected graph.

II. PRELIMINARIES

In this section we describe some useful notation, defini-
tions, assumptions and probability facts.

Graph Notation: In this paper, we model network topolo-
gies with connected undirected graphs. Here we describe
useful notation regarding such graphs. In particular, fix some
undirected and connected graph G = (V,E), defined over a

non-empty node set of V . For each u ∈ V , we use N(u) to
describe u’s neighbors and N+(u) to describe N(u)∪ {u}.
We define ∆ = maxu∈V {|N(u)|} and for each node u ∈ V ,
fix d(u) = |N(u)|. To simplify notation in our algorithm
analyses, we assume ∆ is a power of 2 (i.e., log ∆ is a
whole number).

Vertex Expansion: For a given S ⊆ V , we define the
boundary of S, indicated ∂S, as follows: ∂S = {v ∈ V \
S : N(v) ∩ S 6= ∅}: that is, ∂S is the set of nodes not
in S that are directly connected to S by an edge in E. We
define α(S) = |∂S|/|S|. As in [12], [1], we define the vertex
expansion α of a given graph G = (V,E) as follows:

α = min
S⊂V,0<|S|≤n/2

α(S).

Notice that despite the possibility of α(S) > 1 for some S,
we always have α ≤ 1.

Dynamic Graphs: Our model defined below sometimes
describes the network topology with a dynamic graph which
can change from round to round. Formally, a dynamic graph
G is a sequence of static graphs, G1 = (V,E1), G2 =
(V,E2), ... When using a dynamic graph G to describe a
network topology, we assume the rth graph in the sequence
describes the topology during round r. We define the vertex
expansion α of a dynamic graph G to be the minimum vertex
expansion over all of G’s constituent static graphs. Similarly,
we define the maximum degree ∆ of a dynamic graph to be
the maximum degree over all its static graphs.

Probability Preliminaries: Finally, we state a pair of well-
known inequalities that will prove useful in our analyses:

Fact II.1. For p ∈ [0, 1], we have (1− p) ≤ e−p and (1 +
p) ≥ 2p.

III. THE MOBILE TELEPHONE MODEL

We describe a smartphone peer-to-peer network using a
variation of the classical telephone model called the mobile
telephone model. In more detail, we describe a peer-to-peer
network topology in each round as an undirected connected
graph G = (V,E). We assume a computational process
(called a node in the following) is assigned to each vertex
in V , and use n = |V | to indicate the network size. Time
proceeds in synchronized rounds. At the beginning of each
round, we assume each node u learns its neighbor set N(u).
Node u can then select at most one node from N(u) and
send a connection proposal. A node that sends a proposal
cannot also receive a proposal. However, if a node v does
not send a proposal, and at least one neighbor sends a
proposal to v, then v can accept an incoming proposal. There
are different ways to model how v selects a proposal to
accept. In this paper, for simplicity, we assume v accepts an
incoming proposal selected with uniform randomness from
the incoming proposals. If node v accepts a proposal from
node u, the two nodes are connected and can perform a

bounded amount of interactive communication during the
round. We leave the specific bound on communication per
connection as a problem parameter.

We parameterize the mobile telephone model with two
integers, a tag length b ≥ 0 and a stability factor τ ≥ 1. If
b > 0, then we allow each node to select a tag containing
b bits to advertise at the beginning of each round. That
is, if node u chooses tag bu at the beginning of a round,
all neighbors of u learn bu before making their connection
decisions in this round. A node can change its tag from
round to round.

We also allow for the possibility of the network topology
changing, which we formalize by describing the network
topology with a dynamic graph G. We bound the allowable
changes in G with a the stability factor τ . For a given τ , G
must satisfy the property that at least τ rounds must pass
between any changes to the graph topology. For τ = 1,
the graph can change arbitrarily in every round. We use the
convention of stating τ = ∞ to indicate the graph never
changes.

IV. THE LEADER ELECTION PROBLEM

The leader election problem assumes each node begins the
execution provided with a unique id (UID). We also assume
each node is provided with a polynomial upper bound N
on the network size n. To keep our solutions as general
as possible, we treat the UID as comparable black boxes
that can only be communicated between nodes through
connections. In addition, we assume that a pair of connected
nodes can exchange at most O(1) UIDs and O(polylog(N))
additional bits during one round of connection.

Each node must maintain a leader variable that points
to a UID. These variables are initialized to each node’s
own UID. As a node learns other UIDs through peer-to-
peer connections it can update the variable. The goal of the
leader election problem is for all nodes to stabilize to a
state where every leader variable points to the same UID.
Formally, we say the system is stabilized by round r, if there
is some UID x such that for every round r′ ≥ r, every node
u ∈ V ends the round with leader = x. We say a distributed
algorithm solves the leader election problem, if it guarantees
with probability 1 that the system will eventually stabilize.
We say an algorithm solves the leader election problem in
f(n, α, b, τ) rounds, if with probability at least 1− 1/n, the
system stabilizes by round f(n, α, b, τ) when executed in a
network with size n, vertex expansion α, tag length b, and
stability factor τ .

V. USEFUL EXISTING RESULTS CONCERNING RUMOR
SPREADING

The rumor spreading problem attempts to spread a single
piece of information (the rumor) from a subset of nodes to
all nodes in a network. In [1], we studied the time complexity
of simple rumor spreading strategies in the mobile telephone

model. Here we replicate a pair of results from this existing
study that will prove useful in our analyses of leader election
algorithms in this paper.

A Formal Connection Between Expansion and Maximum
Matchings: We begin by connecting graph expansion to the
size of maximum matchings across network cuts. For a given
graph G = (V,E) and node subset S ⊂ V , we define B(S)
to be the bipartite graph with bipartitions (S, V \S) and the
edge set ES = {(u, v) : (u, v) ∈ E, u ∈ S, and v ∈ V \S}.
Recall that the edge independence number of a graph H ,
denoted ν(H), describes the size of a maximum matching
on H . For a given S, therefore, ν(B(S)) describes the
maximum number of concurrent connections that a network
can support in the mobile telephone model between nodes
in S and nodes outside of S. This property follows from the
restriction in this model that each node can participate in
at most one connection per round. This property is not true
of the classical telephone model in which a given node can
participate in multiple connections per round.

We now replicate an important (and non-obvious) result
from our earlier investigation of the mobile telephone model.
This lemma connects edge independence over cuts (the real
bound of concurrent information flow) to a graph’s vertex
expansion (the property we use to describe our graph’s
connectivity):

Lemma V.1 (from [1]). Fix a graph G = (V,E)
with |V | = n with vertex expansion α. Let γ =
minS⊂V,|S|≤n/2{ν(B(S))/|S|}. It follows that γ ≥ α/4.

The Performance of PPUSH Rumor Spreading: We now
replicate a result regarding the short term performance of
a straightforward rumor spreading strategy in the mobile
telephone model. For the setting where b = 1, an obvious
approach to rumor spreading is to deploy the productive
PUSH (PPUSH) algorithm, which works as follows: At the
beginning of each round, if you know the rumor advertise
tag 0, otherwise advertise tag 1. If you advertise 1, you
will only receive connection proposals in this round. If you
advertise tag 0, you will choose a neighbor advertising 1 (if
any) uniformly at random to send a connection proposal. If
a 0 connects with a 1 then the former sends the rumor to
the latter.

At the beginning of any given round, we can partition
the nodes into those that are informed (know the rumor)
and those that are uninformed (do not know the rumor).
There is a matching of some size m across this cut. This
value m represent the maximum number of nodes that can
become newly informed in a single round. (As noted above
in Lemma V.1, this matching has a size proportional to the
connectivity across the cut indicated by the graph’s vertex
expansion.) The following theorem from [1] bounds how
well PPUSH can approximate m successful connections
across the cut for a given number of stable rounds. The proof

of this theorem analyzes PPUSH as a random matching
strategy:

Theorem V.2 (from [1]). Fix a bipartite graph G with
bipartitions L and R, such |R| ≥ |L| = m and G
has a matching of size m. Assume G is a subgraph of
some (potentially) larger network G′, and all uninformed
neighbors in G′ of nodes in L are also in R. Fix an integer
r, 1 ≤ r ≤ log ∆, where ∆ is the maximum degree of G.
Consider an r round execution of PPUSH in G′ in which
the nodes in L start with the rumor and the nodes in R do
not. The exists a constant probability p and constant c ≥ 1,
such that with probability p: at least m/f(r) nodes in R
learn the rumor, where f(r) = ∆1/r · c · r · log n.

VI. LEADER ELECTION WITH b = 0 AND τ ≥ 1

We begin by considering the leader election problem in
the difficult case where b = 0. We analyze a straight-
forward gossip-style strategy and prove it converges in
O((1/α)∆2 log2 n) rounds, even with τ = 1 (i.e., the max-
imum possible amount of topology change). We show that
the analysis is not far from optimal in the sense that there
exists stable networks in which this algorithm requires at
least Ω(∆2/

√
α) rounds. We then leverage the new analysis

techniques introduced here to answer an important open
question from our previous study of rumor spreading [1].
We begin by describing our algorithm.

Blind Gossip Leader Election Algorithm: For each
node u, let Iu describe u’s UID. For each round r ≥ 0,
let Îu(r) be the smallest UID u has received by the end of
round r (including its own). By definition, Îu(0) = Iu. For
each round r ≥ 1, and each node u, node u flips a fair coin to
determine whether to send or receive connection proposals.
If u decides to send, it selects a neighbor uniformly from its
neighborhood in round r. If two nodes u and v connect, they
send each other Îu(r− 1) and Îv(r− 1), respectively. Node
u sets both Iu(r) and leader to min{Îu(r − 1), Îv(r − 1)}
to conclude the round.

Analysis: Our goal is to prove the following perfor-
mance bound on this blind gossip strategy:

Theorem VI.1. The blind gossip leader election algorithm
solves the leader election problem in O((1/α)∆2 log2 n)
rounds when executed in the mobile telephone model with
maximum degree ∆, vertex expansion α, stability factor τ ≥
1 and tag length b = 0.

The key to this analysis is bounding the time for the
smallest UID in the network (call this Î) to spread to all
nodes—at which point the network is stabilized. The intu-
ition behind the ∆2 term is the observation that a successful
connection between a node u with Î and a neighboring node
v that needs to earn Î requires two events to occur: (1) u
decides to send a connection proposal and selects v; (2)
v decides to receive connection proposals, and among the

incoming proposals, it accepts the proposal from u. In the
worst-case, this probability can be ≈ ∆−2. The (1/α) log2 n
term, roughly speaking, captures the time required for these
successful connections to spread Î to the entire network.
If α = O(1), for example, then the network is very well
connected and an epidemic style spread can stabilize the
network in only polylogarithmic rounds. If α = O(1/n), on
the other hand, then the network is not well connected and
it will take a long time for the spread of Î to complete.

Two issues complicate the formalization of this intuition.
The first is the changing network topology. In each round,
the set of potentially useful edges can change and the
definition of useful itself can change depending on the be-
havior in previous rounds. The second issue is probabilistic
dependencies. In a given round, it is straightforward to
calculate the probability that a given edge connects, but
there are potential dependencies between nearby edges with
respect to these probabilities.

To tame these dependency issues, we define a more
pessimistic event that is sufficient (but not necessary) for a
connection between a pair of neighboring nodes in a given
round. Before we provide this definition we need to specify,
without loss of generality, a technical detail about how our
algorithm makes its random choices. In more detail, assume
some node u decides to receive connection proposals in a
given round. According to our model (see Section III), u
will choose an incoming proposal (if any come in) with
uniform randomness. Here we specify exactly how it makes
this uniform choice. In particular, we assume that u first
generates a random permutation of its neighbors for the
round. It then receives incoming proposals and selects the
proposal highest ranked in its permutation. Below we call
this u’s selection permutation With this detailed specified,
we give the following definition:

Definition VI.2. Fix some round r ≥ 1. Let {u, v} be an
edge in the network topology graph for round r. Let e =
(u, v) be an ordered version of this pair. We say ordered
edge e is good in round r if and only if the following events
occur in this round:
• u decides to send connection proposals;
• v decides to receive connection proposals;
• u chooses v as the neighbor to send a proposal to; and
• v’s selection permutation has u ranked first

Let Xe(r) be the random indicator variable that evaluates
to 1 if e is good in round r, and otherwise evaluates to 0.

Notice that if an edge e is good then u and v will definitely
connect. There are cases, however, where an edge is not
good and u and v still connect. This condition is therefore
sufficient but not necessary for a given connection. Crucially,
for two edges e and e′ with no nodes in common, Xe(r) and
Xe′(r) are independent as the definition of good is based
on events that depend only on the graph topology for the
round and local independent coin flips made by individual

nodes. Similarly, for any e and e′ (not necessarily disjoint)
and rounds r′ > r, Xe(r) and Xe′(r

′) are also independent.
Finally, it is straightforward to verify that for any such e
and r, Pr(Xe(r) = 1) ≥ 1/(4∆2).

We now establish a useful graph property that follows
from a direct application of Lemma V.1 from Section V.
The lemma statement, as well as some of the arguments that
follow, leverage the definition B(Q) (the bipartite subgraph
with bipartitions Q and V \Q) also defined in Section V.

Lemma VI.3. Fix some Q ⊂ V such that |Q| ≤ n/2. Fix
some round r ≥ 1. Let M be a maximum matching on B(Q)
defined with respect to the topology graph for round r. It
follows that |M | ≥ |Q| · (α/4).

We now prove the core technical lemmas of this analysis.
In the following, let Î be the smallest UID in the network,
and for each round r ≥ 1, let Sr = {u | Îu(r − 1) = Î} to
be the set of nodes that have adopted Î by the start of round
r. We will prove that with high probability Sr grows by a
factor of ≈ (1 + α) in any interval of length Θ(∆2 log n)
rounds. The below proofs leverage the definition of good
from Definition VI.2 as well as Lemma VI.3 from above.

Lemma VI.4. Fix some round r ≥ 1 such that |Sr| ≤ n/2.
There exists a constant c ≥ 1 such that with high probability:
|Sr′ | ≥ (1 + α

4)|Sr|, where r′ = r + c ·∆2 · log n.

Proof: Fix some r and Sr as specified by the lemma
statement. Let k = |Sr| · (α/4). Fix t = c · ∆2 · log n,
for a constant c ≥ 1 that we will fix later in this proof.
By Lemma VI.3 we know that in every round r′ ∈ R =
{r, r + 1, ..., r + t− 1}, there is a matching Mr′ of size at
least k in B(Sr) defined with respect to the topology graph
for r′ (that is, there is a matching of size k from nodes in
Sr to nodes not in Sr in this round). We define a set Z of
edge/round pairs based on these matchings as follows:

Z = {((u, v), r′) | r′ ∈ R, {u, v} ∈Mr′ , u ∈ Sr}.

In the following, for each edge/round pair p = ((u, v), r′) ∈
Z, we define the notation p.first = u, p.second = v,
p.edge = (u, v) and p.round = r′. We say a given
edge/round pair p is good if ordered edge p.edge is good
in round p.round (see Definition VI.2). A good edge/round
pair from Z indicates that a node in Sr connected to a node
not in Sr—allowing Sr to grow.

We must show enough edge/round pairs are good to
ensure Sr grows enough to satisfy the lemma statement in
interval R. We are helped in these efforts by our careful def-
inition of good and Z, which ensure that for p, p′ ∈ Z where
p 6= p′, whether p is good is independent of whether p′ is
good (formally, Xp.edge(p.round) and Xp′.edge(p

′.round)
are independent). We can therefore calculate a lower bound

on the expected number of good edge/round pairs in Z, and
then use their independence to concentrate on this mean.

Unfortunately for the cause of simplicity, bounding the
number of good edge/round pairs in Z is not sufficient
as many such pairs might be redundant. In particular, if
two such pairs p and p′ are defined such that p.second =
p′.second, then combined they only grow Sr by one more
node. To satisfy our lemma, therefore, we must take more
care in organizing Z.

To do so, we start by partitioning Z into equivalence
classes based on the edge endpoints not in Sr. In particular,
let Y = {p.second | p ∈ Z} be the set of endpoints in
V \ Sr that show up in edge/round pairs in Z. For each
v ∈ Y we define Zv = {p ∈ Z | p.second = v}. Notice
that Ẑ = {Zv | v ∈ Y } describes a partitioning of Z.

A key property of these equivalence classes is that if
p ∈ Zv and p′ ∈ Zv′ , for v 6= v′, then p and p′ are not
redundant, as by definition the edge/round pairs have distinct
second endpoints (p.second 6= p′.second). At this point, we
know little about the size or number of these partitions—
complicating our ability to bound the number that contain at
least one good edge/round pair. This brings us to the second
step of our organization of Z in which we greedily pack
these equivalence classes into better structured sets we call
buckets as follows:

1) Initialize k buckets B1, B2, ..., Bk to be empty. Ini-
tialize set W ← Ẑ.

2) Remove the largest class Zv that remains in W . Let
i be the smallest index from {1, 2, ..., k} such that
Bi contain less than t/2 edge/round pairs. If no such
i exists, we terminate successfully. Else, add every
edge/round pair in Zv to Bi and repeat this step.

We must now show that this procedure will always
terminate successfully. To do so, we point out several key
properties about our partition of Z. First, we know that in
each round r′ ∈ R, |Mr′ | ≥ k and therefore |Y | ≥ k. It
follows that there are at least k classes in Ẑ. We also know
that each endpoint in Y can show up at most once per round
in that round’s matching, so each class can have at most t
edge/round pairs in it. Finally, we know each round adds at
least k new edge/round pairs to Z, so we have at least t · k
such pairs total.

A standard greedy packing argument now establishes
successful termination. The key observation is that because
we add equivalence classes to buckets in order of largest to
smallest, if a given bucket Bi has less than t/2 edge/round
pairs in it, then all of the classes remaining in set W are of
size at most t/2. Similarly, no class in Ẑ has more than t
pairs. It follows that a bucket never has more than t pairs in
it. We also know there are at least t ·k edges to distribute, so
all buckets will receive enough edge/round pairs to exceed
the t/2 threshold by this procedure before we run out of
classes to distribute to buckets.

We are finally ready to analyze the probability of sufficient
goodness. Recall, at the beginning of this argument, we fixed
an execution prefix through r−1 rounds and identified a set
Sr of nodes that know Î be the start of round r. We then
divided into buckets a collection of edge/round pairs that
describe edges that will occur in the dynamic graph over
the next t rounds. Each pair describes a future opportunity
for a node in Sr to connect to a node not in Sr. We now
analyze the probability that in the t rounds that follow we
have at least one good edge/round pair in each bucket—
ensuring at least k new nodes learn Î , as required by our
lemma. To do so, or a given bucket Bi, let Yi be the number
of good edge/round pairs in Bi. Note that:

E(Yi) =
∑
p∈Bi

Xp.edge(p.round)

≥ (t/2)(1/(4∆2))

= (c log n)/8

As argued, the X indicator variables are independent. It
follows that we can apply a Chernoff bound to E(Yi) to
prove that for a sufficiently large constant c (defined with
respect to the form of the Chernoff bound we use and the
level of high probability needed by the analysis), Yi ≥ 1
with high probability. A union bound over the k buckets
establishes that with high probability every bucket has at
least one good edge/round pair in it. Because we did not
split any equivalence classes between buckets, it follows that
at least k nodes not in Sr connect with nodes in Sr—as
required to satisfy the lemma.

The following lemma follow from a symmetric version of
the proof applied to Lemma VI.4:

Lemma VI.5. Fix some round r ≥ 1 such that |Sr| > n/2.
Let Ur = V \ Sr. There exists a constant c ≥ 1 such that
with high probability: |Ur′ | ≤ (1 − α

4)|Ur|, where r′ =
r + c ·∆2 · log n.

We are now ready to prove Theorem VI.1. The proof
below levarages Lemmas VI.4 and VI.5 to make a standard
epidemic expansion argument.

Proof (of Theorem VI.1).: Divide rounds into phases
of length c ·∆2 · log n, where c ≥ 1 is the constant specified
by Lemmas VI.4 and VI.5. For each I ≥ 1, let ri be the
first round of phase i.

At the beginning of a given phase i, if Sri ≤ n/2 then
we can apply Lemma VI.4, which tells us that with high
probability Sri+1 is a factor of (1 +α/4) larger than Sri . If
this occurs, we call the phrase productive.

Leveraging Fact II.1, it follows that: (1 + α
4

)t ≥ 2
t·α
4 .

Therefore, after at most t = (4/α) log (n/2) productive
phases, more than n/2 nodes know Î . By a union bound,
with high probability, the first t phases are all productive.
Therefore, with high probability, Srt > n/2.

We can now apply Lemma VI.5, which tells us that with
high probability, this set of uninformed nodes (i.e., nodes
that do not know Î) will shrink by a factor less than or equal
to (1− α/4). Once again we call such a phase productive.
Leveraging Fact II.1, it follows: (1 − α

4)t
′
< e−

t′·α
4 .

Therefore, after at most t′ = (4/α) ln (n/2) productive
phases, all remaining nodes learn Î . By a union bound,
with high probability, these next t′ phases are all productive.
Therefore, with high probability, Srt+t′ = n.

We have shown that with high probability, after t+ t′ =
O(log n/α) phases all nodes know Î—at which point,
every node has Î as their leader and will never again
change this leader. To conclude the proof, we note that
O(log n/α) phases of O(∆2 log n) rounds each combine to
O((1/α)∆2 log2 n) total rounds to solve leader election—as
claimed by the theorem statement.

A New Bound for PUSH-PULL Rumor Spreading:
Notice that our blind gossip leader election algorithm can be
directly applied to solve the rumor spreading problem (see
Section V) in the mobile telephone model with b = 0. In
particular, in this setting, it describes the classical PUSH-
PULL strategy. In [1], we identified the performance of
PUSH-PULL in the mobile telephone model with b = 0
as an open question. In this previous work, we proved a
lower bound that established its performance would not be
efficient, but stopped short of providing a upper bound (due,
in part, to the complexity of the dependency issues tamed in
our above analysis with the careful deployment of bucketed
collections of good edges). Our above analysis, therefore,
yields the following corollary which resolves this question:

Corollary VI.6. PUSH-PULL rumor spreading succeeds
with high probability in O((1/α)∆2 log2 n) rounds when
executed in the mobile telephone model with maximum
degree ∆, vertex expansion α, stability factor τ ≥ 1 and
tag length b = 0.

Analysis Optimality: A time complexity in Ω(∆2/α)
might seem pessimistic as ∆ can be as large as n. As a
point of comparison, in both the classical telephone model
and the mobile telephone model with b = 1, rumor spreading
requires only O((1/α)polylog(n)) rounds for stable graphs.
It is straightforward to show, however, that there exists
a stable network (with non-constant ∆ and α), in which
the blind gossip algorithm requires Ω(∆2/

√
α) rounds.

This does not exactly match our upper bound analysis, but
it is close, and more importantly it establishes that the
performance of this algorithm is fundamentally slower than
the O((1/α)polylog(n)) round complexities of the classical
and b = 1 models. Notice, this result does not rule out the
possibility of faster leader election algorithms in this setting
with b = 0. It concerns only the performance of the blind
gossip strategy.

In more detail, consider a network constructed as follows:

arrange
√
n nodes in a line. Call these nodes u1, u2, ..., u√n.

Connect each ui to its own collection of
√
n nodes—

resulting in a line of
√
n stars each consisting of

√
n points.

Fix Iu1 = Î (i.e., the center of the first star in the line has
the network’s smallest UID). For blind gossip to converge,
Î must propagate down the full line. For Î to propagate
from some ui to its neighbor ûi+1, however, requires ui to
select ui+1 to send its proposal from among its neighbors.
This occurs with probability ≈ 1/∆. Furthermore, ui+1

must select ui’s proposal. Note that if any point in the star
centered on ui+1 decides to send a proposal it will send it
to ui+1 (as it is their only neighbor). Each node decides to
send a proposal with probability 1/2. We therefore expect
ui+1 to receive Θ(∆) proposals. It selects ui’s proposal also
with probability ≈ 1/∆. Progress from ui to ui+1 therefore
occurs with probability ∆−2. We expect therefore ∆2

√
n

rounds for Î to propagate down the entire line. Notice,
however, that α > 1/n in this network, so this above
propagation time is also in Ω(∆2/

√
α).

VII. LEADER ELECTION WITH b = 1 AND τ ≥ 1

We now consider leader election with b = 1. We describe
and analyze a new algorithm that leverages this single
bit advertisement to achieve potentially large efficiency
gains over the blind gossip algorithm of Section VI. The
algorithm works for any τ ≥ 1 and requires no advance
knowledge of τ . It does assume, however, that all nodes
start during the same round—allowing them to rely on a
global round counter to align groups of rounds in useful
ways. In Section VIII, we describe how to modify the below
algorithm so that it still works even in a setting where nodes
can activate in different rounds and have only local round
counters. The algorithm description below references the
PPUSH information dissemination strategy. See Section V
for a reminder of how this strategy works.

The Bit Convergence Leader Election Algorithm: For
each node u, let Iu be u’s UID. At the beginning of the
execution, each u chooses an ID tag, indicated tu, uniformly
from the space 1 to nβ , for some constant β ≥ 1 (fixed in
the below analysis). Let k = dβ log ne be the number of bits
required to describe each ID tag. We call the combination
(Iu, tu) an ID pair.

Nodes partition rounds into groups of length 2 log ∆. They
then partition groups into phases consisting of k groups
each. In the following, we label the phases 1, 2, ..., and label
the groups in each phase 1, 2, ..., k. At the beginning of each
phase, each node u sets a local pair (Îu, t̂u)← (I ′, t′), where
(I ′, t′) is the ID pair with the smallest tag t′ of all ID pairs
it has encountered up to this point. We refer to t̂u as u’s
smallest ID tag and (Îu, t̂u) as u’s smallest ID pair. Notice,
at the beginning of the first phase, (Îu, t̂u) = (Iu, tu), by
default. If a node u has received more than one ID pair with
the same smallest tag, it can break ties with the ordering on
the UID element of the pairs. After setting its smallest ID

pair (Îu, t̂u) at the beginning of a phase, node u then sets
leader ← Îu.

The nodes can now proceed with the k groups that make
up the current phase. For each group i of the phase, each
node u executes PPUSH as follows: it uses bit position i
of the binary encoding of t̂u as the bit it advertises during
PPUSH; if a given u connects with a node v, then they
send each other (Îu, t̂u) and (Îv, t̂v), respectively, during
their connection. We emphasize that nodes only update their
smallest ID pairs at the beginning of each phase. ID pairs
received during a phase are stored locally until the next such
update.

Analysis Preliminaries: We now introduce several use-
ful pieces of notation. At the start of phase i, let bi be the
most significant bit position such that there exists two nodes
u and v where t̂u and t̂v differ in position bi. (For example,
bi = 2 indicates that at the start of phase i, all nodes have
the same value in the most significant bit of their smallest ID
tags, but there are at least two nodes with different values
in the second most significant bit.) If all nodes have the
same smallest ID tag in phase i, we define bi = ⊥. In
the following, we call bit bi the maximum difference bit for
phase i.

For a given phase i, let Si be the set of nodes with 0 in
bit position bi of their smallest ID tags, and Ui = V \ Si
be the set of nodes with a 1 in this position. Notice, for
bi 6= ⊥, both Si and Ui are well-defined and non-empty.
Let f(r) = ∆1/r · c · r · log n be the approximation factor
function fixed in Theorem V.2 in Section V. And finally, let
τ̂ = min{τ, log ∆} be the relevant stability for this analysis
(performance is not improved as we grow τ past log ∆).

Before continuing to the main analysis we first prove some
important properties about bi and Si. At a high-level, the
below lemma formalizes the intuition that the maximum
difference bit can only grow between phases (as once all
nodes have the same bits through a given position in their
tags, this cannot change going forward), and that during
phases with the same maximum difference bit the set of
nodes with 0 in that position can only grow (as a node will
never swap its smallest ID tag for a larger tag).

Lemma VII.1. Fix two phases i and j such that i ≤ j.
The following three properties follow: (1) if bi = ⊥ then
bj = ⊥; (2) if bi 6= ⊥ and bj 6= ⊥ then bi ≤ bj; and (3) if
bi = bj 6= ⊥ then |Si| ≤ |Sj |.

Proof: Let Qi be the set of smallest ID tags in the
network during phase i. It follows from the definition of
the algorithm that for j ≥ i: Qj ⊆ Qi, and that for
every i, |Qi| > 1. We can leverage these straightforward
observations to prove the three lemma properties.

To prove the first property, fix some i such that bi = ⊥.
By definition of ⊥, it follows that |Qi| = 1. By our above
observation on the decreasing and non-empty nature of Q,
it follows that Qj = Qi and therefore bj = ⊥ as well.

To prove the second property, fix some i and j such that
bi 6= ⊥ and bj 6= ⊥. By definition, all tags in Qi have the
same bits in the first bi − 1 bit positions (ordering the bits
from most to least significant). By our above observation,
Qj ⊆ Qi so the same must be true of the tags in Qj . It
follows that bj ≥ bi.

To prove the third property, fix some i and j such that
bi = bj 6= ⊥. By definition, every smallest ID tag owned by
a node in Si during phase i is smaller than every smallest ID
tag owned by a node in Ui during phase i. This follows from
the definition of Si and Ui which tells us that all nodes have
the same bits through position bi − 1, and then in position
bi nodes in Si have a 0 whereas nodes in Ui have a 1. The
third property can be restated to say that no node in Si will
later adopt a smallest ID tag currently owned by a node in
Ui. Given that a node only adopts a new smallest ID tag if
it is smaller than its current tag, and our above observation
that all Si tags are smaller than all Ui tags, it follows that
this will never happen.

Analysis: Our goal is to prove the following theorem
regarding the performance of the bit convergence algorithm
in the mobile telephone model:

Theorem VII.2. The bit convergence leader elec-
tion algorithm solves the leader election problem in
O
(
(1/α)∆1/ττ log5 n

)
rounds when executed in the mobile

telephone model with maximum degree ∆, vertex expansion
α, stability factor at least τ , 1 ≤ τ ≤ log ∆, and tag length
b = 1.

We begin by studying the spread of small ID tags in the
network. To do so, fix some phase i such that bi 6= ⊥.
By definition, the bit convergence leader election algorithm
executes PPUSH during group bi of this phase with the
nodes in Si acting as the informed nodes and those in Ui
acting as the uninformed nodes. Similar to our analysis of
rumor spreading in [1], we call this phase good if we grow
Si (or, equivalently, shrink Ui) by a sufficient magnitude,
where in this context we define “sufficient” with respect to
the graph’s vertex expansion α and the approximation factor
f(τ̂) defined above in the analysis preliminaries.

Definition VII.3. Fix some phase i with bi 6= ⊥. We
consider two cases for considering a phase good:

• If |Si| ≤ n/2, we call this phase good if: (1) bi+1 6= bi;
or (2) |Si+1| ≥

(
1 + α

4·f(τ̂)
)
|Si|.

• Else if |St| > n/2, we call this phase good if (1) bi+1 6=
bi; or (2) |Ui+1| ≤

(
1− α

4·f(τ̂)
)
|Ui|.

In our analysis of the bit convergence algorithm, the
core unit of progress is advancing maximum bit difference
values. This advancement matters because these values can
only increase a bounded number of times before it must
be the case that all nodes have converged to the same
smallest ID tag (which, under the assumption that these

tags are unique, implies convergence to a single leader).
The following lemma bounds the number of good phases
required to guarantee the maximum bit difference increases.
Notice, the below proof leverages Lemma VII.1 to ensure
we do not backtrack between good phases. It also uses the
definition of τ̂ from the analysis preliminaries.

Lemma VII.4. Fix some phase i such that bi 6= ⊥. Let
tmax = d(1/α)8f(τ̂) log ne. Assume there are at least tmax
good phases between phase i and some phase j ≥ i+ tmax.
It follows that either bj = ⊥ or bj > bi.

Proof: Fix some phase i as specified by the lemma
statement. By Lemma VII.1, once we arrive at any phase
j such that bj = ⊥ or bj > bi, we are done, as this will
necessarily be true of all future phases. To count how many
good phases are required to guarantee this occurs, we notice
that for each phase i′ ≥ i such that bi′ = bi, there are two
cases for what happens if i′ is good. These case depend on
the size of Si′ :
• The first case applies if the number of nodes with a 0

in position bi′ is no more than n/2 (i.e., |Si′ | ≤ n/2).
By Definition VII.3, either bi′+1 = ⊥, or the number
of nodes with a 0 in this position grows by a factor
greater than or equal to

(
1 + α

4·f(τ̂)
)
.

• The second case applies if the number of nodes with a
0 in position bi′ is greater than n/2 (i.e., |Si′ | > n/2).
By Definition VII.3, either bi′+1 = ⊥, or the number
of nodes with a 1 in this position shrinks by a factor
less than or equal to

(
1− α

4·f(τ̂)
)
.

Leveraging Fact II.1, it follows that:(
1 +

α

4 · f(τ̂)

)tgrow ≥ 2
tgrow·α
4·f(τ̂) .

The first case from above, therefore, can occur at most
tgrow = (1/α)4f(τ̂) log (n/2) times before either we arrive
at a phase i′ with i′ = ⊥, or we have grown the size of
Si′ to a size of at least n/2 and we are no longer in the
first case. Crucial to this argument is the third property of
Lemma VII.1, which tells us that the Si′ set cannot shrink.
Therefore, in between good phases, we do not lose ground,
and once move to the second case we cannot move back to
the first.

After this point, we turn our attention to the second case.
Leveraging Fact II.1, it follows:(

1− α

4 · f(τ̂)

)tshrink < e−
tshrink·α

4·f(τ̂) .

The second case from above, therefore, can occur at most
tshrink = (1/α)4f(τ̂) ln (n/2) times before we arrive at
a phase i′ where either bi′ = ⊥, or we have reduced the
number of nodes with a 1 in position bi to 0. This later event
implies bi′ > bi. As above, we leverage the third property of
Lemma VII.1 to ensure that Ui′ cannot grow between good

phases. To conclude the lemma, we note tmax > tgrow +
tshrink.

The properties studied so far have been deterministic. We
now turn to the probabilistic nature of the algorithm by
lower bounding the probability that a given phase is good.
This argument leverages Theorem V.2 from Section V which
describes the effectiveness of PPUSH for a bounded number
of stable rounds.

Lemma VII.5. There exists a constant probability pg > 0
such that for any phase i with bi 6= ⊥, the probability that
phase i is good is at least pg .

Proof: Fix some phase i as specified by the lemma
statement. Consider group bi in phase i. Recall that τ̂ =
min{τ, log ∆}. Because each group consists of 2 log ∆
rounds, it follows that there must be a stretch of τ̂ con-
secutive stable rounds in this group (i.e., rounds in which
the graph does not change). Let Gi be stable graph during
these τ̂ consecutive rounds in group bi of phase i.

Now we study the properties for Gi. In particular, let Mi

be a maximum matching between Si and Ui in Gi. Formally,
Mi is a maximum matching in B(Si) defined with respect
to Gi (see Section V for the formal definition of B). Let
m = |Mi| be the size of this matching.

We consider two cases with respect to the size of Si. The
first case is that |Si| ≤ n/2. In this case, by Lemma V.1 in
Section V applied to Gi, it follows that m/|Si| ≥ α/4 ⇒
m ≥ |Si| · (α/4).

We now consider how many pairs in this matching of
size m we expect to successfully connect in the τ̂ rounds
during which the graph remains stable as Gi. To then end,
we deploy Theorem V.2 from Section V. In more detail,
we apply this theorem where L ⊆ Si contains all nodes in
Si that are endpoints of an edge in the matching Mi, R
contains the neighbors of L in Gi that are also in Ui, G is
the bipartite graph with bipartitions L and R, and an edge set
{{u, v} | u ∈ L, v ∈ R, {u, v} ∈ Gi}, and r = τ̂ . It follows
from Theorem V.2 applied to these parameters that there is
a constant probability p, such that with probability at least
p, at least |Si| · (α/4) · (1/f(τ̂)) nodes in Ui connect with a
node from Si (and therefore shift to Si+1). Put another way,
with probability at last p, |Si| grows by a factor of at least(
1 + α

4·f(τ̂)
)

between phase i and i + 1—exactly matching
the first case of our definition of good (Definition VII.3).

The second case to consider is when |Si| > n/2. Here we
can apply the same argument as for the first case, with the
exception that now m ≥ |Ui|·(α/4). The result is that with in
this case, with probability at least p, |Ui| shrinks by a factor
of
(
1− α

4·f(τ̂)
)

between phase i and i+1—exactly matching
the second case of our definition good (Definition VII.3).
Combining these two cases it is clear that the lemma holds
for probability pg = p.

We are now ready to prove our main theorem. The core
insight is that there are only k bit positions in an ID tag.

Therefore, we can only increase the maximum bit difference
k times before all nodes have the same ID tag and the leader
election problem is solved (assuming that all initial choices
of ID tags are unique). We can combine Lemmas VII.4
and VII.5, with a stochastic dominance argument (to handle
dependencies between phases) to bound the number of
rounds needed to achieve the needed number of advances
with a sufficiently high probability.

Proof (of Theorem VII.2): We begin by assuming that
at the beginning of the execution each node selects a unique
ID tag. This occurs with high probability in n that grows
with the multiplicative constant β in the definition of k.

We now calculate how many phases are needed to ensure
at least tmax (from Lemma VII.4) are good, with high prob-
ability. To do so, for any given phase t, let Xt be the random
indicator variable that evaluates to 1 if phase t is good (or
bt = ⊥), and otherwise evaluates to 0. For any given integer
T > 0, and phase i > 0, let YT,i =

∑i+T−1
t=i Xt be the

number of good (or already converged) phases in the T
phases i, i+ 1, ..., i + T − 1. We know from Lemma VII.5
and linearity of expectation that E(YT,i) ≥ pgT . We cannot
directly concentrate on this expectation, however because Xt

and Xt′ might be dependent for t 6= t′.
To overcome this issue, for each phase t, fix X̂t to

be the trivial random variable that evaluates to 1 with
independent probability pg , and otherwise evaluates to 0.
By Lemma VII.5 we know that Pr(Xt = 1) ≥ pg ,
regardless of the behavior in previous phases It follows that
for every t, Xt stochastically dominates X̂t. Accordingly,
if ŶT,i =

∑i+T−1
t=i X̂t is greater than some x with some

probability p̂, then YT,i is greater than x with probability at
least p̂.

A Chernoff bound applied to ŶT,i, for any phase i and
T = c · tmax (where c ≥ 1 is a sufficiently large constant
defined with respect to constant pg and the Chernoff form
deployed), provides that ŶT,i ≥ tmax with high probability
in n. It follows the same holds for YT,i.

We have established, therefore, that with high probability,
every Θ(tmax) phases we experience at least tmax good
phase. By Lemma VII.4, this is a sufficient number of good
phases to ensure that the maximum difference bit either
increases or converges to ⊥. We can advance the maximum
difference bit at most k = Θ(log n) times before it converges
to ⊥. Therefore, applying a union bound to the (at most) k
advances, and the assumption that all ID tags are unique,
it follows that with high probability (with an exponent that
grows with constants β and c) our algorithm converges to a
single unique ID in at most:

O
(
tmax log n

)
= O

(
(1/α)f(τ̂) log2 n

)
= O

(
(1/α)∆1/τ̂ τ̂ log3 n

)
phases. To obtain our final time complexity result, we note
that each phase consists of 2k log ∆ ∈ O(log2 n) rounds.

VIII. LEADER ELECTION WITH ASYNCHRONOUS
ACTIVATIONS

The bit convergence leader election algorithm described
and analyzed in Section VII assumes all nodes start during
the same round. The assumption simplifies matters as it
provides nodes synchronized round counters, which allow
them to assign rounds to specific bits from their ID tags in
a consistent manner.

Here we consider the harder case where nodes might acti-
vate during different rounds. In more detail, we assume that
each node begins with a local round counter initialized to 1
when it activates, and is provided no a priori knowledge of
the other nodes’ activation statuses or local round counters.
In this setting, we modify the definition of leader election
so that when we claim an algorithm solves the problem in
T rounds, we mean that it solves the problem in T rounds
after the last node activates.

Below we describe a modification to our bit convergence
algorithm that solves leader election in the asynchronous
activation setting with a round complexity that is within
polylogarithmic factors of the original algorithm. The algo-
rithm requires an advertising tag length b = log log n+O(1).
Our original algorithm, by contrast, can work for any b ≥ 1.
It remains an open question whether this small gap can be
closed in the asynchronous activation setting without a major
impact on the time complexity.2

The Non-Synchronized Bit Convergence Leader Elec-
tion Algorithm: Here we describe our modifications to bit
convergence algorithm from Section VII. As in the original
algorithm, nodes randomly generate ID tags containing k =
β logN bits (for some constant β ≥ 1 fixed in the analysis)
to pair with their UIDs, and keep track of the smallest
ID pair they have received so far in the execution. Also
as in the original algorithm, nodes divide their rounds into
groups consisting of 2 log ∆ rounds each. Notice, however,
unlike the original algorithm, group boundaries are not
necessarily synchronized between different nodes as they
can now activate at different rounds.

Each node u, at the beginning of each of its groups, selects
a bit position i ∈ [k] with uniform randomness. During all
2 log ∆ rounds of the this group, u advertises the position
i, as well as the value of the bit in position i of the ID tag
of its current smallest ID pair. Notice, advertising i requires
up to log k bits (as there are k bit positions). One extra bit
is required to describe the bit in position i. Therefore, any
tag length b > dlog ke = log log n+O(1) is sufficient.

2We already know it is feasible to solve leader election in the asyn-
chronous activation setting with small b values—if time complexity is
not important. In more detail, our blind gossip leader election algorithm
assumes b = 0 and makes no assumption about round synchronization. Its
analysis, therefore, directly applies to the asynchronous activation setting.
Its time complexity, however, includes an extra ∆ factor. The true open
question is whether it is possible to solve leader election in this setting in
similar time to blind convergence with b = O(1).

Fix some group during which node u is advertising the bit
in position i. During this group, u runs a slightly modified
version of the PPUSH information spreading strategy used
in the original algorithm. In particular, if u is advertising a 1
bit in position i, it receives connection proposals during the
rounds of the group. On the other hand, if u is advertising
a 0 bit for position i, it sends PPUSH connection proposals
during the rounds of this group. In more detail, in each
round, it chooses a recipient for a connection proposal
uniformly from neighbors that: (1) are also advertising
position i; and (2) advertise a 1 in that bit position (if any
such neighbors happen to exist). In other words, nodes only
want to deal with other nodes that happen to be advertising
the same ID tag bit position in that round.

If two nodes u and v connect, they behave the same as
in the original algorithm: they trade smallest ID pairs, and
update their locally stored smallest ID pair if the pair they
received is smaller than what they are currently storing.

Analysis: The analysis that follows modifies the exist-
ing analysis of the original bit convergence algorithm from
Section VII. Accordingly, we reference much of the existing
terminology, and several proof arguments, from this section
without recreating them from scratch here.

We also, however, introduce some new notation useful for
studying our new modifications. For each node u and each
round r ≥ 1, let t̂(r)u be the tag in u’s smallest ID pair at the
start of round r. Let t̂ = minu∈V {t̂(1)u } be the smallest ID
tag in the system at the start of the execution. For a given
tag t and position i ∈ [k], let t[i] be the bit in position i of
tag t. Recall, that we use the convention that in interpreting
tags as numerical values, we list the bits in decreasing order
of significance: that is, for tag t, t[1] is the most significant
bit and t[k] is the least.

We begin our analysis by establishing a useful property of
our algorithm: if the i ∈ [k] most significant bits of the tag in
a node’s smallest ID pair are the same as these corresponding
bits in t̂, this node, going forward, will never change this tag
to one with different bits in these positions. This property,
which we formalize below, follows from the definition of our
algorithm which only allows a node to replace its smallest
ID pair if it encounters one with a smaller ID tag (or the
same tag and smaller UID). If the i most significant bits of
a node’s tag are the same as these bits in t̂, then any tag
with a different set of bits in these positions must be larger.

Lemma VIII.1. Fix some node u, round r ≥ 1, and tag bit
position i ∈ [k]. Assume ∀j ∈ [i] : t

(r)
u [j] = t̂[j]. Then for

every r′ ≥ r : ∀j ∈ [i] : t
(r′)
u [j] = t̂[j].

We are now ready for our main theorem. The proof
that follows will study the spread of bits from t̂, one at
a time, starting with the most significant bit, and leveraging
Lemma VIII.1 to consolidate gains. We will modify the anal-
ysis of the original bit convergence algorithm to bound the

time required for these spreads given the non-synchronized
conditions of this setting. The extra round complexity cost,
roughly speaking, covers the new need for relevant neighbors
to both randomly select the right bit positions to advertise.

Theorem VIII.2. The non-synchronized bit convergence
leader election algorithm solves the leader election problem
in O

(
(1/α)∆1/ττ log8 n

)
rounds after the last node is

activated when executed in the mobile telephone model
with asynchronous activations, maximum degree ∆, vertex
expansion α, stability factor at least τ , 1 ≤ τ ≤ log ∆, and
tag length b = dlog ke+ 1 = log log n+O(1).

Proof: Assume that at the start of the execution every
node generates a unique ID tag. This occurs with high
probability that we can adjust with the constant in the
definition of k. We begin our analysis by considering the
time required for every node to adopt a tag with bit t̂[1] in
the first (most significant) position of the tag in its smallest
ID pair (which we also call its “smallest ID tag” in the
following), after all nodes are activated. By Lemma VIII.1,
once any node adopts a smallest ID tag with the same bit
as t̂ in its first position, it will never again adopt a tag with
a different bit in that position. We can, therefore, treat the
spread of tags with this bit like a spreading rumor, and bound
the time for this spread to complete using the analysis from
our original bit convergence algorithm.

To apply this existing analysis, however, will require some
new scaffolding to compensate for the lack of synchroniza-
tion between nodes. With this in mind, fix some arbitrary
node u, and some integer constant c > 1 that we will bound
later in this analysis. Consider u’s local group schedule. We
use the notation g(i), for integer i ≥ 1, to indicate the ith

full group in u’s schedule that occurs after all nodes are
activated. We now select a subset of these groups to play
the role of reference groups in our analysis. In more detail,
g(c) is reference group 1, g(2c) is reference group 2, and,
more generally, for every i ≥ 1: g(i · c) is reference group i.
That is, we select one out of every c of u’s groups to play
the role of a reference group in our analysis.

Let Si, at the beginning of a given round, describe the
nodes with t̂[i] in position i of their tag. In this stage of the
analysis, we are bounding the number of reference groups
needed until S1 includes all the nodes. To do so, we will
adapt the definition of good from the original analysis to
apply to our reference groups (instead of phases). We will
also modify its definition to reduce the fraction by an extra
k4 term. That is, we call a reference group good if the
relevant set grows or shrinks by a factor of α

c′·f(τ̂)·k4 , for
some constant c′ ≥ 1 we fix below.

Let tmax be the number of good phases needed in the
worst case before S1 includes all nodes. It is straightfor-
ward to adjust our analysis of tmax from Lemma VII.4 to
compensate for this extra factor, as this analysis depends
only on the fraction used in the definition of good and does

not depend on the details of the underlying algorithm. The
new result now states that tmax = O((1/α)f(τ̂)k4 log n)

We must now adapt Lemma VII.5 to establish that the
probability Following the same general outline as this ex-
isting proof (but now shifting our attention from phases to
reference groups), fix some reference group i. Because this
group contains 2 log ∆ rounds, there must be some stretch of
τ̂ = min{τ, log ∆} consecutive rounds in this group during
which the network topology does not change. Let Gi be the
stable graph during these τ̂ consecutive rounds.

As in the original analysis, we can identify a large
matching Mi in Gi between nodes in S1 and nodes not in
S1. Let m = |Mi|. In the original analysis, we could assume
that all endpoints in Mi would be running PPUSH with the
same bit position during the stable rounds. This assumption
does not hold for our modified algorithm.

To handle this reality, we say a given node v ∈ Mi is
useful if it is advertising bit position 1 for every round of
this reference group. Notice, even though v’s local groups
are not necessarily synchronized to the reference group’s
boundaries, it takes at most two consecutive v groups to
cover all the rounds of the rounds of our fixed reference
group. For v to be useful, therefore, requires (at most) that
it selects bit position 1 for two of its groups in a row. It
follows that node v is useful with probability at least 1/k2.
Therefore, the probability that both endpoints of a given
edge in Mi are useful is at least 1/k4.

Let M̂i be the subset of Mi that is useful, and m̂ = |M̂i|.
We can continue the Lemma VII.5 analysis with M̂i, which
tells us that with at least some constant probability p1, at
least m̂/f(τ̂) nodes in this matching connect and learn a tag
with t̂[1] in the first position.

Because the choice of bit to advertise in a group is
made with independent randomness, it is straightforward to
show that with some constant probability p2, m̂ is within a
constant fraction of its expected value of m/k4. That is, it
is at least c′′ · (m/k4) for some constant c′′ > 0. It follows
that with constant probability p1p2: at least (c′′m)/(k4f(τ̂))
new nodes learn the bit.

Given the bounds on the size of Mi derived from the
original analysis, this is a sufficient number of new nodes
entering S1 for the reference group to satisfy our modified
definition of good (assuming we adjust the definition of c′

used in the good definition to appropriately accommodate
constant c′′).

We can now focus on how many reference groups are
needed before tmax are good with high probability. In this
case, we can apply the same stochastic dominance argument
used in the proof of the main theorem in the analysis of the
original algorithm. The only new care that must be taken
is to ensure that node u’s relevant bit choices for a given
reference group do not intersect the relevant choices for a
different group. This is easily accomplished if we set c > 2
in our selection of the reference groups. This ensures that

each pair of reference groups are separated by at least two
non-reference groups. This in turn ensures that the groups a
node must use to cover a given reference group are different
for each reference group.

To conclude this proof, we note that we have established
that with high probability, all nodes have t̂[1] in position 1 of
their tag after O(tmax) reference groups. By Lemma VIII.1,
this bit will never again change so we can now apply the
same analysis to t̂[2], then t̂[3], and so on, until all nodes
have exactly t̂ as their smallest ID tag. Combined with our
original assumption that all ID tags are unique, it follows
that we solved leader election. A union bound can be used
to combine the k instances of the above argument as well
as the unique ID tag assumption. Since all hold with high
probability the result remains high probability.

Putting together the pieces, we have shown that with
high probability, O(ktmax) reference groups are sufficient
to solve the problem. Each group requires Θ(log ∆) rounds
(including the constant number of non-reference groups that
separate each reference group). Our total time complexity,
therefore, can be bounded as

O(k log ∆tmax) = O((1/α)f(τ̂)k5 log n log ∆) =

O((1/α)∆1/τ̂ τ̂ log8 n),

rounds, as required by the theorem statement.

IX. CONCLUSION

In this paper, we study leader election in the mobile
telephone model. We prove that efficient leader election
is possible in this model given small advertising tags and
reasonable stability, where we define “efficient” to mean
within polylogarithmic factors of the classical telephone
model results. This work also generated several interesting
open problems. Most of our algorithms, for example, include
a ∆1/τ term that decreases from ∆ to 1 as the stability
factor τ increases from 1 to log ∆. It is unclear whether
this cost of mobility is fundamental or if more clever
algorithmic strategies might achieve better performance for
small τ . Another open question is the relationship between
the tag length b and leader election performance. In this
paper, shifting from b = 0 to b = 1 allowed us to solve
leader election significantly more efficiently, and the shift
from b = 1 to b = log log n + O(1) allowed us to also
handle asynchronous activations. We have no lower bounds
establishing any of these gaps as fundamental. Investigating
the power of advertisements remains a key question about
the mobile telephone model. Beyond these open questions,
we emphasize that the model itself is well-motivated and
can be used to study any number of other problems that
might prove useful in a peer-to-peer setting, including, for
example, gossip, consensus, and data aggregation.

REFERENCES

[1] M. Ghaffari and C. Newport, “How to discreetly spread
a rumor in a crowd,” in Proceedings of the International
Symposium on Distributed Computing (DISC), 2016.

[2] C. Gomez, J. Oller, and J. Paradells, “Overview and eval-
uation of bluetooth low energy: An emerging low-power
wireless technology,” Sensors, vol. 12, no. 9, pp. 11 734–
11 753, 2012.

[3] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-
to-device communications with wi-fi direct: overview and
experimentation,” IEEE wireless communications, vol. 20,
no. 3, pp. 96–104, 2013.

[4] D. Mark, J. Varma, J. LaMarche, A. Horovitz, and K. Kim,
“Peer-to-peer using multipeer connectivity,” in More iPhone
Development with Swift. Springer, 2015, pp. 239–280.

[5] N. Cohen, “Hong Kong Protests Propel FireChat Phone-to-
Phone App,” The New York Times, July 5, 2014, available on-
line: http://www.nytimes.com/2014/10/06/technology/hong-
kong-protests-propel-a-phone-to-phone-app-.html .

[6] A. M. Frieze and G. R. Grimmett, “The shortest-path prob-
lem for graphs with random arc-lengths,” Discrete Applied
Mathematics, vol. 10, no. 1, pp. 57–77, 1985.

[7] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking,
“Randomized rumor spreading,” in Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS),
2000, pp. 565–574.

[8] G. Giakkoupis, “Tight bounds for rumor spreading in graphs
of a given conductance,” in Proceedings of the Symposium on
Theoretical Aspects of Computer Science (STACS), 2011.

[9] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Rumour
spreading and graph conductance.” in Proceedings of the
ACM-SIAM symposium on Discrete Algorithms (SODA),
2010.

[10] G. Giakkoupis and T. Sauerwald, “Rumor spreading and ver-
tex expansion,” in Proceedings of the ACM-SIAM symposium
on Discrete Algorithms (SODA). SIAM, 2012, pp. 1623–
1641.

[11] N. Fountoulakis and K. Panagiotou, “Rumor spreading on
random regular graphs and expanders,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Springer, 2010, pp. 560–573.

[12] G. Giakkoupis, “Tight bounds for rumor spreading with vertex
expansion,” in Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2014.

[13] S. Daum, F. Kuhn, and Y. Maus, “Rumor spreading with
bounded in-degree,” arXiv preprint arXiv:1506.00828, 2015.

[14] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg, “Stable leader election,” in Proceedings of the
International Symposium on Distributed Computing (DISC),
2001.

[15] B. Awerbuch, “Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election, and related
problems,” in Proceedings of the ACM Symposium on Theory
of Computing (STOC), 1987.

[16] S.-T. Huang, “Leader election in uniform rings,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS),
vol. 15, no. 3, pp. 563–573, 1993.

[17] G. Singh, “Leader election in the presence of link failures,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 7, no. 3, pp. 231–236, 1996.

[18] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg, “Communication-efficient leader election and con-
sensus with limited link synchrony,” in Proceedings of the
ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 2004, pp. 328–337.

[19] M. Ghaffari and C. Newport, “Leader election in unreliable
radio networks,” in Proceedings of the International Collo-
quium on Automata, Languages, and Programming (ICALP),
2016.

[20] F. Kuhn, N. Lynch, and R. Oshman, “Distributed computation
in dynamic networks,” in Proceedings of the ACM Symposium
on Theory of Computing (STOC), 2010.

[21] N. Malpani, J. L. Welch, and N. Vaidya, “Leader election
algorithms for mobile ad hoc networks,” in Proceedings of the
International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications. ACM, 2000.

