
The Virtual Node Layer: A Programming Abstraction for
Wireless Sensor Networks∗

Matthew Brown
mdbrown@mit.edu

Seth Gilbert
sethg@mit.edu

Nancy Lynch
lynch@theory.csail.mit.edu

Calvin Newport
cnewport@mit.edu

Tina Nolte
tnolte@mit.edu

Michael Spindel
mspindel@mit.edu

MIT Computer Science and Artificial Intelligence Lab
Cambridge, MA 02139, USA

ABSTRACT
The Virtual Node Layer (VNLayer) programming abstrac-
tion provides programmable, predictable automata—virtual
nodes—emulated by the low-level network nodes. This sim-
plifies the design and rigorous analysis of applications for
the wireless sensor network setting, as the layer can mask
much of the uncertainty of the underlying components. In
this paper, we define a general VNLayer architecture, and
then use this framework to design a practical VNLayer im-
plementation, optimized for real-world use. We then discuss
our experience deploying this implementation on a testbed
of hand-held computers, and in a custom-built packet-level
simulator, and present a sample application—a virtual traf-
fic light—to highlight the power and utility of our abstrac-
tion. We conclude with a survey of additional applications
that are well-suited to this setting.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Theory, Algorithms, Reliability

Keywords
Wireless ad hoc networks, network architecture, virtual in-
frastructure

∗This work is supported by USAF,AFRL Award #FA9550-
04-1-0121, NSF award #CCR-0121277, Research Founda-
tion of CUNY Subcontract 71081-00-01, Cisco Systems, and
Quanta-MIT Award Number 012627-009.

1. INTRODUCTION
The increased miniaturization of computing devices and ra-
dios presents new opportunities for the design and imple-
mentation of low-cost network systems. One can imag-
ine, for example, a network of small, inexpensive, radio-
equipped computers being used to monitor environmental
conditions, coordinate robots, or manage traffic on high-
ways or in the air. Such platforms, however, are generally
not well-behaved. They are ad hoc, in that they include
little (or no) fixed network infrastructure. In addition, the
set of participating network nodes is typically not known
in advance, making it necessary to self-configure the nodes
into coherent structures. Furthermore, these networks are
dynamic, in that the set of nodes can change over time, as
devices enter and leave the area of interest, fail and recover.
Finally, we must acknowledge the prevalence of message loss
due to wireless interference or noise.

As a result, it is difficult to write and debug applications that
will run predictably on these fundamentally unpredictable
platforms. To obtain predictable behavior, the developer
must grapple with the whole range of complexities described
above. Even implementations of simple applications can be-
come unwieldy under the dynamic conditions that define
many wireless ad hoc network deployments.

A promising solution to this problem is clean, well-defined
abstraction layers—high-level, well-behaved network mod-
els emulatable by the low-level network nodes. These layers
can mask much of the uncertainty and change inherent in
this setting, simplifying the design of applications. They
can also simplify rigorous analysis. Such analysis is crucial
for command and control contexts—such as using actuator-
equipped sensor nodes to control a factory production line—
where best-effort is not sufficient, and applications must be-
have within precise specifications. This approach, in essence,
concentrates the challenge of handling the unpredictable na-
ture of the network in the (one-time) task of carefully de-
signing and analyzing the abstraction layer and its imple-
mentation.

With this in mind, it is clear that the careful design of good
abstraction layers for wireless ad hoc networks should be
a major research endeavor. Though other researchers have
considered the use of abstraction layers for sensor networks



(c.f. [4, 15]), much of this prior work has focused on sim-
plifying the design of best-effort applications, such as data
aggregation and analysis. Cluster-based networks (e.g., [14])
represent another useful tool to aid fault-tolerant data aggre-
gation and efficient routing. They do not provide, however,
a fully-generalized programming abstraction.

1.1 The Virtual Node Layer
The Virtual Node Layer (VNLayer) is a programming ab-
straction that presents the application developer with two
types of entities to program: predictable Virtual Nodes (VNs),
and unpredictable Client Nodes (CNs), which correspond to
the physical nodes in the system. See, for example, the
VNLayer described in Figure 1. The black circles represent
physical nodes (and their corresponding CNs), and the white
rectangles represent the VNs.

Figure 1: In this VNLayer, the mobile, fault-prone
physical nodes (black circles) emulate stable Virtual
Nodes (white rectangles) found in known grid re-
gions. The arrows emphasize that physical nodes
can be mobile while the Virtual Nodes remain sta-
tionary.

CNs share the dynamic nature of their physical counter-
parts: they can fail unpredictably, and the set of CNs in a
given region is unknown a priori and can change over time.

VNs, on the other hand, are not intended to correspond
directly to the underlying physical network. Rather, the
VNs are identified with arbitrary regions of the network,
and may either remain in a fixed, known location or move in
a controlled manner through the network. In the example
of Figure 1, each VN is at a fixed location, whose region
corresponds to the surrounding grid square.

Each VN is emulated by the physical nodes in its region,
using distributed-algorithms based on replicated state ma-
chines, elected leaders, and quorums. This emulation can
be performed in a fault-tolerant manner, allowing the VNs
to avoid much of the dynamism of the underlying network.

Consider how this VNLayer could simplify the task of dis-
tributed agreement in a given region. Instead of writing a
distributed algorithm that must take into account the fact
that the set of participating physical nodes is unknown, and
those participating might fail or leave during the protocol,

the developer could deploy a simple distributed agreement
object implementation on the stable VN in the region. Fol-
lowing the standard approach, the CNs can propose values
to their local VN, which will remember the first proposal,
and return this value to all who request the decision. As de-
sired, the complexity of dealing with the dynamic nature of
the participants has been concentrated into the design and
analysis of the VNLayer.

1.2 Prior Work
Our research group has been working on the design and
analysis of several varieties of VNLayers and their imple-
mentations [8, 6, 7, 9, 13]. We have used rigorous formal
modeling tools, such as the Timed I/O Automata formal-
ism, to analyze the correctness of these implementations.
We have also designed and analyzed a growing collection of
applications to run on top of these layers. These include,
among others, geocast communication, robot coordination,
and object tracking solutions.

These existing VNLayers can be divided into two main cat-
egories. Implementations in the first category make opti-
mistic assumptions about the communication behavior of
the physical nodes in the network. Namely, they assume
that broadcast messages will be always be received by nodes
within range (perhaps with some bounded delay). Under
these conditions, in [8], we first define a VNLayer whose
VNs are stationary asynchronous objects. In [6], we present
a VNLayer in which the VNs are arbitrary timed asyn-
chronous automata, positioned at known fixed locations, as
pictured in Figure 1. The failure model allows crash failures
if and only if the region immediately surrounding the VN is
unpopulated by physical nodes. It also allows some bounded
stretch in the clock rate (necessitated by delays caused by
the operations of the underlying emulation).

In the VNLayer of [8], the VNs are untimed asynchronous
automata moving along pre-defined trajectories, known to
all CNs. The failure model specifies that VNs can suffer
crash failures if and only if their path takes them into a
region unpopulated by any physical nodes. A variant of
this layer, [9], has the VNs re-calculate their path in real
time. This allows them, for example, to avoid unpopulated
regions, reducing the possibility of VN crashes.

The second category of VNLayer implementations makes
more pessimistic assumptions about the communication be-
havior of physical nodes, allowing for arbitrary, non-uniform
message loss. It does assume, however, rough synchrony
(as obtained, for example, by approximate clock synchro-
nization, which is a well studied problem). In an on-going
project, we describe a VNLayer in which the VNs are arbi-
trary synchronous automata positioned at known fixed lo-
cations; fault-tolerant agreement protocols, such as those
explored in [5], are used to maintain agreement on VN state
in the face of message loss.

1.3 The Contributions of this Study
In this paper we present a novel VNLayer optimized for
practical use. We start, in Section 2, by describing a general
architecture for VNLayer design. In Section 3, we provide
a high-level description of our new VNLayer and its imple-
mentation. To verify its practicality, we then describe our



experience deploying this abstraction on a testbed of hand-
held computers and within a custom-built packet-level sim-
ulator. In Section 4, we demonstrate its utility by describing
a demo application: a virtual traffic light. We conclude, in
Section 5, with examples of other applications whose imple-
mentations could benefit from the use of VNLayers.

2. THE VNLAYER ARCHITECTURE
To implement the VNLayer abstraction, the physical nodes
run emulation software that maintains a consistent view of
the layer. One way to do this, for example, is to have
all the physical nodes in a given region run that region’s
VN application, locally transforming their local views of the
state synchronously. Another—albeit non-fault-tolerant—
approach would be for a single leader per region to run the
VN application, passing off control to a new leader if it leaves
the region.

Membership 
Manager

Consistency
Manager

Leader 
Manager

Message
Multiplexer

CN applicationVN application

VN Emulation

Function interface

Message socket

Wireless Network

Figure 2: VNLayer architecture at each physical
node.

We desire an emulation architecture that remains general
enough to facilitate the design and deployment of a wide
variety of emulation schemes. At the same time, however,
we want it to be sufficiently modular that practitioners can
avoid producing complicated, monolithic emulator imple-
mentations for each new network context.

2.1 Architecture Overview
To meet these goals, we propose the architecture outlined
by Figure 2. In this framework, the task of emulating a
particular VN application program is divided among three
main components, each of which has access to location in-
formation accurate to region granularity:
Leader Manager: This component attempts to elect a re-
gion leader in each populated region of the network. It im-
plements a boolean function, called exclusively by the Con-
sistency Manager, which returns the leader status of the
physical node on which it is running.
Membership Manager: This component retrieves the cur-
rent state of the VN application being emulated in the re-
gion. It implements a function, called exclusively by the

Consistency Manager, which triggers this retrieval and re-
turns either the state or a time-out (e.g., the latter may
occur if there are no other nodes in the region).
Consistency Manager: This component contains the main
logic of the emulation. It is ultimately responsible for keep-
ing the VN application state synchronized with the other
physical nodes in the region. To do so, it can call upon both
the leader and membership manager, and can send out its
own control traffic (e.g., perhaps as part of a distributed
agreement protocol).

Access to the VN application is mediated through the Con-
sistency Manager, which implements the incoming and out-
going message sockets used in the application—passing it
messages and receiving/processing its outgoing messages.
We require that all VN applications implement two inter-
face functions called exclusively by the Consistency Man-
ager: getState and updateState. The former returns the VN
application’s current state and the latter resets the VN ap-
plication’s state to the values passed as a parameter to the
function. This interface allows the Consistency Manager
to keep the emulated application synchronized with other
nodes in the region. For example, if a physical node enters
a new region it might need to switch the application state
to that of the application being emulated in the new region.

The CN application(s) are unrestricted and run outside of
the emulation apparatus, sending and receiving messages to
and from the network directly.

3. THE “REACTIVE VN” VNLAYER
Here we describe a new VNLayer implementation. This
layer provides programmable Reactive VNs, which are re-
ceive event-driven automata. That is, their operations are
defined exclusively in terms of a msgReceived handler which,
upon being called with a received message, can transform
the automata state and (potentially) return message(s) to be
broadcast in response. The VNs are found at fixed, known
locations in the network, and fail if and only if their region
contains no physical nodes. We assume that messages might
be lost due to collisions.

We choose the Reactive VN paradigm for this VNLayer as it
simplifies the task of coding applications. That is, it is easier
to code a message handler than it is, for example, to code an
arbitrary timed I/O automaton. Notice that these VNs do
not have direct access to timers. It turns out, however, that
in situations where time is needed (e.g., the VN waits for
a certain timeout before broadcasting), it is often sufficient
to have the CNs (who do have access to clocks) broadcast
regular updates of the current time.

In the following, we provide a high-level description of the
main components in our VNLayer imlementation. We then
describe our experience deploying the layer on a testbed of
HP iPAQ Pocket PC’s and in a custom-built packet-level
simulator. We conclude with a summary of future work.

3.1 Implementation Details
VN application: Each VN application is receive event-
driven. That is, the application is written as a msgReceived
function, which is passed an incoming message. This func-
tion can arbitrarily transform the application state, and then



returns the message(s), if any, that it wishes to broadcast.
An example of a msgReceived function can be found in Sec-
tion 4.
Leader Manager: Our implementation of this component
relies on a pulse-based algorithm. A leader sends out a pulse
at regular intervals. If the leader’s pulse times out, the algo-
rithm attempts to declare its physical node as leader. If mul-
tiple nodes attempt to declare themselves leader, they elect
the one with the lowest ID. If multiple nodes elect them-
selves leader—due, perhaps, to message loss at the point
of declaration—they will eventually notice this situation by
hearing each other’s pulses. A leader who hears a pulse from
another leader with a lower ID will relinquish his status.
Membership Manager: A simple join protocol asks the
leader for a serialized version of the emulated VN applica-
tion’s state. If no leader exists, the request times out.
Consistency Manager: In our implementation, all phys-
ical nodes in a region locally emulate the VN application.
Only the current leader, however, broadcasts on behalf of
the application. For example, assume a client sends a mes-
sage to the VN in a given region. All physical nodes in the
region receive this message. The Consistency Manager run-
ning on each of these nodes passes the message to the VN
application, triggering, perhaps, a state change. If the VN
application reacts by broadcasting a message, the Consis-
tency Manager checks to see if its node is the leader. If it
is, it passes the broadcast messages out onto the network.
Otherwise, it discards it.

We also have the Consistency Manager perform several other
crucial functions. For example, it executes a message order-
ing algorithm on all received application messages, before
they are passed to the local copy of the VN application. The
algorithm maintains a consistent total order on the messages
across all nodes in the region.1

To account for the possibility that a node might miss a
message due to collision or temporary obstruction (possi-
bly leading the local copy of the emulated VN application
to fall out of synch with the copies on other nodes in the re-
gion), we have the Consistency Manager running on the cur-
rent leader tag each outgoing VN application message with
a hash of the application’s state. When a non-leader node
receives this message, its Consistency Manager can check
that the hash tag matches the hash of its local copy of the
VN application state. If the match fails, the node is out of
synch, and it refreshes its state by having the Membership
Manager perform a join protocol.

Finally, the Consistency Manager is also responsible for trig-
gering the Membership Manager to initiate a join protocol
whenever the physical node has entered a new region.

1This was necessary as our testing revealed that 802.11
broadcast does not guarantee total ordering. For example,
imagine two nodes, A and B, which broadcast (near) si-
multaneously. The nodes both receive their own messages
instantly, as the loop-back functionality of the network layer
bounces a copy of the message into the receive buffer before
it attempts the actual broadcast. Next, after back-off re-
lated delays, both messages are broadcast and received by
the other receiver. At this point, A’s buffer is ordered MA,
MB , while B’s buffer is ordered MB, MA.

3.2 Testbed Deployment
To obtain platform independance, we coded our implemen-
tation using Python, an interpreted object-oriented language
which runs on most Windows, Mac, and Linux-based oper-
ating systems. Our implementation was intended for mobile
devices, such as palm or laptop computers, communicating
wirelessly using the 802.11 standard.

We verified the system through a sample deployment on
a testbed comprising of five HP iPAQ Pocket PCs, run-
ning linux, and communicating with Netgear Compact Flash
802.11b Wireless Adaptors set to the same frequency in
ad hoc mode. Mobility was provided by graduate students
carrying the devices as they wandered a floor in an office
building. We used two different techniques to implement a
location service. The first was to simply have the user man-
ually input their current location as they moved. The sec-
ond was to perform rough localization using signal strength
readings from 802.11 Access Points at known locations.

We tested our systems using two simple VN applications.
The first maintained a counter in each region. Clients could
increment and decrement the counter at will. We verified
that even as clients failed and moved, the counters within
continually-populated regions remained consistent over time.
The second sample application is the traffic light described
in Section 4. Again, we verified that the light performed
as specified even as the set of client nodes in the region of
interest changed.

3.3 Simulator Deployment
We examined more extensive deployments using a custom-
built discrete-event, packet-level simulator that could run
the deployment code with only minimal modifications.2 The
simulator uses a simple distance threshold-based criteria for
determining who receives each message. It does not directly
model packet collisions, but does allow the user to supply a
probablistic message loss parameter. Mobility of the nodes
in the simulation can be described by the traces produced by
the popular set-dest tool included in the standard ns-2 dis-
tribution. Using the simulator, we validated our VNLayer—
running a simple geographic broadcast application—on de-
ployments as large as 100 nodes moving over a geographic
space divided into 25 regions.

3.4 Future Work and Code Availability
Our test deployments, as mentioned, are preliminary. We
leave it as future work to perform more systematic experi-
ments and produce detailed empirical descriptions of the sys-
tem performance. To date, we have developed a set of anal-
ysis tools—including a visualizer, which can produce real-
time animations from simulation traces, and a log parser,
which can process deployment logs to produce statistics on
the behavior of the VNs—to facilitate this evaluation. The
code for the implementation and simulator are available at
the Virtual Infrastructure Project Homepage [2].

On the theoretical front, it remains for us to complete a

2The only required change is to update the message multi-
plexer’s socket code to connect to the the sockets exposed
by the simulator as oppose to the sockets connected to the
Network Interface Card.



rigorous formal analysis of our Reactive VN VNLayer emu-
lator algorithm—confirming that it does, indeed, guarantee
the properties described above. This analysis will follow the
general format as those conducted for prior VNLayer imple-
mentations.

4. EXAMPLE: VIRTUAL TRAFFIC LIGHT
To demonstrate the utility of the VNLayer with reactive
VNs described in the previous section, we present an ex-
ample application: a virtual traffic light, designed to coor-
dinate client vehicles entering and leaving a road intersec-
tion. Each client can communicate with other clients us-
ing a local broadcast service and has access to information
about the time and its current location. The virtual traffic
light allows clients approaching an intersection to determine
whether it is safe to proceed without hitting another vehicle
(e.g., by viewing the “virtual traffic light” displayed on their
in-vehicle computer).

In our solution, a VN plays the role of a Virtual Traffic Light,
informing the client running on each physical node of the
color of the traffic light in its direction. The VN maintains
the safety property that, at any moment, only clients in a
single direction see a non-red light, and the liveness property
that a waiting client eventually sees a green light (in normal
cases, within a small time bound).

Using the VNLayer described in Section 3, our Virtual Traf-
fic Light implementation was easy to write, requiring fewer
than 300 lines of Python code. The main msgReceived func-
tion of the traffic VN is below:

def msgReceived(self, msg):

replyArray = []

if msg.msgtype(msg) == "UPDATE":

self.UpdateVehInfo(msg)

self.UpdateLightState()

reply = "STATUS^" + self._statusSTR_()

replyArray.append(reply)

return replyArray

Recall that reactive VNs do not have a clock, whereas the
clients in our application do. To help our VN make progress,
clients timestamp their messages with their clock times,
which are then adopted by the VN as its best estimate of
the current time.

Clients periodically broadcast their current time, position,
and heading in UPDATE messages to their local VN, the
receipt of which prompts the VN to perform state updates
and possibly change the color of some of the roads’ lights,
as described in the msgReceived function.

Specifically, the UPDATE messages allow the traffic VN to
maintain information about the current system time and
how many clients are incoming to the intersection in each
direction. It then uses this state information to determine
which directions get which color lights (the logic for these
decisions is encapsulated in UpdateLightState). The VN
broadcasts a STATUS message to local clients to describe
the light color for each road direction.

In UpdateLightState, once the VN sees, based on its estimate
of the local time, that a predetermined minimum “green
time” has passed after the start of a green light for a direc-
tion (or it sees that no more vehicles are left in the direction
with the green light), it changes the direction’s light color to
yellow. Similarly, if the VN sees that a predetermined min-
imum “yellow time” has passed after the start of a yellow
light, it sets the light red and assigns a new green direction.
In our implementation, UpdateLightState uses a fair algo-
rithm, cycling through each populated direction in a round
robin fashion, choosing them in order. If the light has just
been initialized, the function returns the direction with the
most vehicles, or a random direction if more than one direc-
tion has the maximum number of vehicles.

Whenever a client receives a STATUS message from the
traffic VN, it parses the message to determine the color of
the light in its direction, and then displays it.

We performed a preliminary evaluation of this application
by deploying it on a small number of HP iPAQ hand-held
computers. We used the Virtual Traffic Light application to
control “traffic flow” in a narrow hallway connecting three
different common areas on a floor of an office building. It
performed as expected in this initial test, though we look
forward to attempting larger scale deployments.

5. APPLICATIONS
Here we describe some applications faciliated by the VN-
Layer abstraction.

5.1 Basic communication and storage services
Geographical routing: A fundamental service for VN-
Layers, useful for many applications, is region-to-region rout-
ing (a form of geographical routing, also known as geocast).
In [10], we present a self-stabilizing algorithm to implement
geocast routing for timed stationary VNs using a persistent
greedy depth-first search (DFS) routing algorithm that runs
over the VNLayer. A similar algorithm could be used over
reactive VNs.
Location management: A location service in an ad
hoc network allows any client to discover the location of any
other client using only its identifier. A location manage-
ment scheme using timed stationary VNs is described in [10].
VNs serve as “home locations” [3, 11, 12] for clients. Each
client’s id hashes to the name of a VN, which serves as the
client’s home location, and is responsible for keeping track
of the client’s physical location. Clients keep their home lo-
cations informed of their whereabouts (using geocast), and
other nodes can query those same home locations for the
information. This, or even a low-stretch scheme, should be
adaptable to reactive VNs.
End-to-end message routing: Another basic service
in ad hoc networks is end-to-end IP-style message routing.
Such a service should be easy to provide, given a geocast
and a location service.
Data repositories: An auxiliary service that is useful for
planning and control applications is a data repository ser-
vice. Such a service can allow a VN to maintain a database
of information about conditions in its local region and other
regions. Resiliency can be built in by using techniques al-
ready designed for static but failure-prone networks, such as



automatically backing up data at neighboring VNs or send-
ing data to a central, reliable location.

5.2 Robot motion coordination
In [13], we demonstrate a simple algorithm that uses timed
stationary VNs to solve a fundamental motion coordina-
tion problem, namely, uniformly positioning mobile nodes
(robots) on a known differentiable curve in the plane. The
VNs act as controllers, managing movement of CNs in their
own regions of the plane. The paper also demonstrates a
simple “emulator-aware” approach to maintaining VNs: a
VN attempts to keep itself alive by using local population
density as one criterion for determining CN target destina-
tions. The approach could be extended to take into account
more client or network factors and even to provide active re-
cruitment. Other coordination applications that could ben-
efit from the use of a VNLayer include:

Intelligent-highways: We can extend the Virtual Traf-
fic Light application into future intelligent-highway appli-
cations. Such applications will need to conduct a variety
of activies, including collecting data (e.g., about traffic pat-
terns), alerting cars about road hazards (e.g., accidents or
arriving emergency vehicles), and providing advice and con-
trol. For example, a protocol may suggest less-congested
alternative routes, or may emulate the functions of virtual
traffic lights at intersections having no real traffic lights.
Air-traffic control (ATC): In current air-traffic con-
trol applications, ground-based human controllers coordi-
nate the activities of aircraft. Future aircraft systems may
allow aircraft greater autonomy in choosing flight plans dy-
namically [1], which will lead to a corresponding greater
need for coordination protocols to resolve conflicting require-
ments for airspace. In areas where no human controllers
are available, these protocols must be distributed, running
on computers on board the aircraft, but must also emulate
sensible, centralized air-traffic-control policies that are com-
patible with those enforced by ground controllers. In the
scenario we envision a VN acting as an air-traffic controller,
planning the trajectories of aircraft in its vicinity so as to
avoid conflicts.

6. REFERENCES
[1] Blueprint for NAS. FAA, Office of System

Architecture and Investment Analysis.

[2] Virtual infrastructure project homepage.
http://theory.csail.mit.edu/tds/vi-project/index.html.

[3] I. Abraham, D. Dolev, and D. Malkhi. LLS: A locality
aware location service for mobile ad hoc networks. In
Proceedings of the DIALM-POMC Joint Workshop on
Foundations of Mobile Computing, pages 75–84,
Philadelphia, PA, October 2004.

[4] J. Beal. Persistent nodes for reliable memory in
geographically local networks. Technical Memo AI
Memo 2003-011, MIT AI Lab, Cambridge, MA, April
2003.

[5] G. Chockler, M. Demirbas, S. Gilbert, C. Newport,
and T. Nolte. Consensus and collision detectors in
wireless ad hoc networks. In Proceedings of the
Twenty-Fourth Annual Symposium on Principles of
Distributed Computing (PODC 2005), pages 197–206,
Las Vegas, Nevada, July 2005.

[6] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and
T. Nolte. Timed virtual stationary automata. In 9th
International Conference on Principles of Distributed
Systems (OPODIS 2005), December 2005. Also,
Technical Report MIT-LCS-TR-979a, MIT CSAIL,
Cambridge, MA 02139, August 2005.

[7] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and
T. Nolte. Timed virtual stationary automata for
mobile networks. In Allerton Conference 2005: 43rd
Annual Allerton Conference on Communication,
Control, and Computing, page 323,
Champaign-Urbana, IL, September 2005. Invited
paper.

[8] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A.
Shvartsman, and J. L. Welch. Virtual mobile nodes for
mobile ad hoc networks. In R. Guerraoui, editor, 18th
International Symposium on Distributed Computing
(DISC 2004), Trippenhuis, Amsterdam, the
Netherlands, October, 2004, volume 3274 of Lecture
Notes in Computer Science. Springer, December 2004.
Also Technical Report MIT-LCS-TR-937, MIT
CSAIL, Cambridge, MA 02139, 2004.

[9] S. Dolev, S. Gilbert, E. Schiller, A. A. Shvartsman,
and J. Welch. Autonomous virtual mobile nodes. In
DIAL-M-POMC 2005: Third Annual
ACM/SIGMOBILE International Workshop on
Foundation of Mobile Computing, pages 62–69,
Cologne, Germany, September 2005. Also Technical
Report MIT-LCS-TR-992, MIT CSAIL, Cambridge,
MA, 2005.

[10] S. Dolev, L. Lahiani, N. Lynch, and T. Nolte.
Self-stabilizing mobile node location management and
message routing. In 7th International Symposium on
Self Stabilizing Systems (SSS 2005), Barcelona, Spain,
October 2005. Also, Technical Report
MIT-LCS-TR-999, MIT CSAIL, Cambridge, MA,
August 2005.

[11] Z. Haas and B. Liang. Ad hoc mobility management
with uniform quorum systems. IEEE/ACM Trans. on
Networking, 7(2):228–240, April 1999.

[12] J. Li, J. Jannotti, D. S. J. DeCouto, D. R. Karger,
and R. Morris. A scalable location service for
geographic ad hoc routing. In Mobicom 2000: The
Sixth International Conference on Mobile Computing
and Networking, pages 120–130, Boston,
Massachusetts, August 2000.

[13] N. Lynch, S. Mitra, and T. Nolte. Motion
coordination using virtual nodes. In 44th IEEE
Conference on Decision and Control and European
Control Conference (CDC-ECC 2005), Seville, Spain,
December 2005. Also Technical Report
MIT-LCS-TR-986, MIT CSAIL, Cambridge, MA
02139, April 2005.

[14] M. Steenstrup. Ad Hoc Networking, pages 75–138.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[15] M. Welsh and G. Mainland. Programming sensor
networks using abstract regions. In Proceedings of the
First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI ’04),
March 2004.


