
Dispersing Asymmetric DDoS Attacks with SplitStack
Ang Chen †∗ Akshay Sriraman † Tavish Vaidya ‡ Yuankai Zhang ‡

Andreas Haeberlen † Boon Thau Loo † Linh Thi Xuan Phan †

Micah Sherr ‡ Clay Shields ‡ Wenchao Zhou ‡

† University of Pennsylvania ‡ Georgetown University

ABSTRACT

This paper presents SplitStack, an architecture targeted at

mitigating asymmetric DDoS attacks. These attacks are par-

ticularly challenging, since attackers can use a limited amount

of resources to trigger exhaustion of a particular type of sys-

tem resource on the server side. SplitStack resolves this by

splitting the monolithic stack into many separable compo-

nents called minimum splittable units (MSUs). If part of

the application stack is experiencing a DDoS attack, Split-

Stack massively replicates just the affected MSUs, poten-

tially across many machines. This allows scaling of the im-

pacted resource separately from the rest of the application

stack, so that resources can be precisely added where needed

to combat the attack. We validate SplitStack via a prelimi-

nary case study, and show that it outperforms naïve replica-

tion in defending against asymmetric attacks.

Categories and Subject Descriptors

G.2.0 [General]: Security and protection

Keywords

Denial-of-service attacks, denial-of-service defenses

1. INTRODUCTION
Stopping denial-of-service attacks on networked services re-

mains a challenging problem, and stories about successful

attacks on commercial services [36, 43] or the Internet’s in-

frastructure [44] are still disturbingly common in the news.

Existing solutions primarily focus on stopping the attack traf-

fic as early as possible. This can be done at the source by

blocking transmissions on compromised machines [23]; it

can be done in the network by filtering traffic at routers [31];

or it can be done at the end hosts by trying to recognize

and block bogus requests before they can consume any re-

sources [26, 30]. None of these techniques are perfect. Hence,

∗The authors are listed alphabetically, with student authors appear-
ing before faculty authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee, provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

authors must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

HotNets-XV, November 9–10, 2016, Atlanta, GA, USA.

Copyright is held by the authors. Publication rights licensed to ACM.

ACM 978-1-4503-4661-0/16/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/3005745.3005773.

it remains important to harden a data center against attacks

that manage to pass through all the other defenses.

We characterize two kinds of denial-of-service attacks that

can reach a data center based on the resources involved in the

attack. In a symmetric attack, the resources required from

the attacker are of the same type and scale as those denied

the victim. For example, a network flooding attack requires

the attacker to use significant network bandwidth; the same

amount of bandwidth is consumed at the victim who receives

it. In this case, the defender can succeed by matching the

attacker’s resources using over-provisioning and/or massive

replication. Such attacks have been studied in detail, and

there are commercial solution – e.g., from major CDNs [5]

– that can provide the necessary resources on demand.

Defending against an asymmetric attack is more difficult.

In these attacks, the resources used by the attacker and the

victim resources in the data center differ in type or scale,

or both. Common examples include those in which attacker

traffic consumes limited computational resources or requires

maintenance of state in finite memory. For instance, in TLS

renegotiation attacks [2], the attacker constantly asks the

servers to generate new key material for an existing TLS

connection, which is computationally expensive. As a re-

sult, the servers’ CPUs are loaded with cryptographic op-

erations and cannot handle requests from legitimate clients,

even though all the other necessary resources (memory, net-

work bandwidth, I/O bandwidth, etc.) remain available. There

is a variety of known asymmetric attacks [24], including

SlowPOST/Slowloris attacks [37], zero-length TCP window

attacks [13], and ReDoS attacks [1], etc. These attacks are

trickier to handle because they can succeed even if the at-

tacker has vastly fewer resources than the defender. Our goal

is to develop a new kind of defense against those attacks.

There are two fundamental reasons why asymmetric at-

tacks are so difficult to defend against. The first is their

great diversity: in contrast to symmetric attacks, which all

tend to use the same brute-force approach, each asymmetric

attack targets one particular weakness in the defender’s ser-

vice, such as the complexity of Regex parsing in ReDoS, or

the server’s limited connection pool in Slowloris. As a re-

sult, although defenses exist in the market for dealing with

these attacks, they tend to be specialized point solutions – for

instance, a defense against ReDoS attacks would be useless

against Slowloris attacks, and vice versa. Therefore, it is dif-

ficult to get a truly comprehensive defense against asymmet-

197

Attack Target resource Existing defenses
SYN-flood [17] Half-open connection pool SYN cookies

TLS renegotiation [2] CPU cycles spent on TLS handshakes SSL accelerators
ReDOS [1] CPU cycles spent on Regex parsing Regex validation

SlowPOST/Slowloris [37] Established connection pool Increase connection pool size
HTTP GET flood [12] CPU cycles and memory Rate limiting

Christmas tree attack [7] CPU cycles spent on processing packet options Filtering
Zero-length TCP window [13] Established connection pool Increase connection pool size

HashDoS [8] CPU cycles spent on maintaining hash tables Use stronger hash functions
Apache Killer [33] Memory Allocate more memory

Table 1: Examples of asymmetric denial-of-service attacks.

ric attacks: even if the defender deploys all known defenses

in combination, the result is still unlikely to help against an

attack that uses a new attack vector.

The second reason is that today’s application stacks are

monolithic, so they place constraints on how available re-

sources can be used. Consider, for instance, a TLS renegoti-

ation attack on a typical two-tiered web service that consists

of a HTTP server tier and a database tier. Since TLS is han-

dled exclusively by the HTTP servers, the attacker can win

by exhausting the CPU resources on these servers – even if

the database servers are completely idle, and have lots of

CPU resources that could have been used to help the first

tier! We could increase the CPU resources by spinning up

more nodes as HTTP servers, but this ties down all other re-

sources on these nodes (e.g., memory, I/O bandwidth) that

could be used elsewhere, and they essentially go to waste.

Notice that this limitation exists only because of the mono-

lithic architecture in current HTTP servers. If we could find

a way to carve out the TLS handshake component, and repli-

cate just this component on the database tier to use its idle

CPU cycles, it would be a much more effective defense.

In this paper, we propose a new approach to handling

asymmetric denial-of-service attacks, with three key elements.

First, we propose to break up the application stack into smaller

components that can be moved and replicated independently.

This is inspired by the current trend towards micro-services [40],

but our vision goes much further: we aim to operate at a

much smaller granularity, e.g., by moving the TLS hand-

shake component or the SYN processing component. Sec-

ond, we propose to add a centralized controller that assigns

components to machines and routes data flows between them,

much like an SDN controller routes packet flows between

switches. This controller could carefully schedule the com-

ponents, e.g., to meet a given SLA objective. Third, we pro-

pose to continuously monitor the resource consumption of

each component, and to replicate any components that are

overloaded, e.g., due to a denial-of-service attack. We refer

to this design as the SplitStack architecture.

The SplitStack architecture offers two benefits for defend-

ing against asymmetric attacks. First, the fine-grained com-

ponents make it easier for the defender to deploy all avail-

able resources on all machines against the attacker, exactly

as needed. For instance, SplitStack could respond to a TLS

renegotiation attack by temporarily enlisting the database

tier, or even machines from other services, to help with TLS

handshakes. Second, the reactive replication approach is not

attack-specific and can thus potentially mitigate unknown

asymmetric attacks. Once SplitStack recognizes that a com-

ponent is overloaded or its throughput appears to drop, it

can respond by replicating that particular component – with-

out having seen the attack before, and without knowing the

specific vulnerability that the attacker is targeting! This is

especially useful because DDoS attacks today tend to use

multiple attack vectors [27].

We do not intend SplitStack as a cure against all possi-

ble DDoS attacks. If an attacker can fill up the data cen-

ter’s inbound link or completely overwhelm the defender’s

resources, she can still succeed. We also do not envision

SplitStack as the only defense against attacks: specialized

defenses, such as hardware SSL accelerators [18], can be

more efficient than SplitStack because they are tailored to

a particular attack vector. Rather, we propose SplitStack as

a generic defense that can mitigate an attack (particularly

unknown attacks) at least until help arrives. As a welcome

side-effect, SplitStack’s fine-grained scheduling and migra-

tion techniques provide more freedom for matching up tasks

and resources and could thus increase utilization in data cen-

ters and/or provide better QoS even in the absence of attacks.

As a proof-of-concept, we conducted an initial set of ex-

periments with a preliminary SplitStack prototype to show

that SplitStack’s approach can be effective, and that it can

utilize all available resources when under attack. Looking

forward, there is clearly a lot of work left to be done. For in-

stance, it would be useful to have an automated way to split

existing network stacks into fine-grained components (per-

haps with a bit of help from the developer), and there may

be cases where a ‘component’ cannot be split and replicated

easily (e.g., when consistency requirements are involved).

On the other hand, an architecture like SplitStack could also

provide many interesting new opportunities: by separating

out a ‘control plane’ for software systems, analogous to the

control plane in software-defined networks, SplitStack could

potentially enable entirely new kinds of policies, e.g., for

scheduling, migration, and fault-tolerance.

2. OVERVIEW
As a running example, we consider a two-tiered web service

hosted in a data center, where the frontend is an HTTP server

tier, and the backend is a database tier. An external adver-

sary launches a TLS renegotiation attack [2] that consumes

CPU resources on the HTTP servers, by constantly asking

198

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B

C

D

E

A

B
D

E

CC C

(a))Monolithic)software (b))Graph)of)MSUs (c))Normal)schedule (d))System)under)attack (e)) System)after)MSU)C)has)been) split

Figure 1: Example use case of SplitStack. The monolithic software (a) is transformed into a dataflow graph (b) with smaller

components, called MSUs, which are then scheduled on the available machines (c). When an attacker attempts to overload one

of the components (d), SplitStack disperses the attack by generating additional instances on other machines (e).

the servers to switch to a new cryptographic key. As a re-

sult, legitimate requests are being served very slowly, or not

at all. (Of course, SplitStack is applicable to other types of

asymmetric attacks as well, e.g., those shown in Table 1.)

Threat model: In asymmetric DDoS attacks, the attacker is

unable to match the defender’s bandwidth, but she succeeds

by cleverly “choking” some other resources, e.g., CPU cy-

cles, memory. We do not assume that the attack vector is

known to the operator – novel attacks are explicitly in scope.

Our goal is to automatically mitigate an attack, even if it has

a new attack vector, and to provide reasonably good quality

of service to the legitimate clients while the human operators

are working on a more permanent solution. We do not con-

sider brute-force attacks that saturate a data center’s ingress

link, or exploits that take over data center machines.

2.1 Strawman Solutions
One strawman defense is to filter or block suspicious net-

work traffic. For instance, if the service is receiving a huge

number of GET /redsox.mov requests, the operators can

simply block access to /redsox.mov. However, this heav-

ily relies on the accuracy of request classification, so it is

susceptible to false positives and negatives – what if the re-

quests are really coming from baseball fans after a successful

game by the Boston Red Sox? Also, an adversary can send

a heterogeneous mix of requests to confuse such a defense.

Another approach is to increase capacity by replication.

For instance, to handle a TLS renegotiation attack, an oper-

ator can launch more web server nodes to increase the num-

ber of TLS connections that can be handled. This defense

does not critically depend on an accurate classification, but

it is very inefficient: every new machine will contribute a bit

more CPU power, while its other resources (memory, band-

width, I/O, ...) will be heavily underutilized or go to waste.

2.2 Approach: SplitStack
Our observation is that the data center often has a lot more

of the overloaded resources elsewhere, but the current soft-

ware architecture cannot effectively use them. For instance,

in our example, the CPUs on the database servers will be

mostly idle while the web servers struggle to keep up with

the attack. If the database servers were able to “help” the

web servers by contributing their computation power, the ca-

pacity at the bottleneck (TLS renegotiation) would increase.

We propose such “helping” by splitting the monolithic ap-

plication stack into smaller pieces that can be replicated and

migrated independently. This additional flexibility would

enable an attacked service to use all of the available resources

for its defense – by temporarily enlisting other servers, or

even machines from different services. The effect would be a

substantial increase in the service’s capacity, and thus, hope-

fully, better quality of service for the legitimate clients.

2.3 Challenges
This approach raises a number of important questions. First,

where and how should we split a monolithic software into

smaller pieces? If the splitting is not done carefully, Split-

Stack may not be able to provide correctness guarantees.

Second, how should the pieces coordinate with each other

to best utilize the available resources? Finally, who should

make the decision to split and move the pieces to find the

best way to respond to a given attack?

3. THE SPLITSTACK ARCHITECTURE
The SplitStack architecture models a monolithic application

stack as a dataflow graph consisting of Minimum Splittable

Units (MSUs), each of which can be further annotated with

an expected execution time and deadline (if any). MSUs are

deployed in lightweight containers, and can be replicated on

one or more machines.

Figure 1 shows how this approach can disperse a DDoS

attack. The monolithic software (a) is transformed into a

dataflow graph with several MSUs (b), which are then sched-

uled by a controller to run on one or more available ma-

chines so as to meet specified deadlines (c). When the sys-

tem comes under attack, one of the MSUs becomes over-

loaded and prevents the software from handling legitimate

requests (d). The controller detects this based on the gath-

ered performance statistics, automatically creates additional

instances of the affected MSU on other machines, and bal-

ances the workload across them (e). Meanwhile, SplitStack

alerts the operator and provides diagnostic information, so

that she can better understand the attack vector, e.g., a bug

in the affected MSU, and find a long-term solution. Thus, as

long as the system as a whole has enough resources, all of

the incoming requests can still be handled.

199

3.1 Minimum Splittable Units
In Figure 1(b), each vertex in the dataflow graph represents

an MSU. An MSU is a small, (mostly) self-contained func-

tional unit with narrow interfaces to other MSUs. It contains

four types of meta data: a) a primary key to unique identify

an MSU, b) a routing table that steers requests to next-hop

MSUs, c) a cost model, which we describe more in Sec-

tion 3.4, and d) typing information, which specifies how an

MSU communicates with its replicas after being cloned into

multiple copies (certain kinds of MSU replicas can operate

independently; other kinds would need to coordinate).

Inter-MSU communication takes place via IPC when the

MSUs are located on the same node (or even via function

calls when they are located in the same address space), but it

can be transparently switched to RPCs after an MSU migra-

tion. This is because the SplitStack controller may transform

the dataflow graph in response to an attack, invoking four

transformation operators on MSUs: add, remove, clone,

and reassign. The MSUs and transformation operators

form a basis for a SplitStack to defend against DDoS attacks.

3.2 Software Partitioning
Partitioning a monolithic software into MSUs requires an

intricate balance: if an MSU contains too little functional-

ity (e.g., wrapping each function into its own MSU), it may

need to constantly coordinate with other MSUs to get things

done, resulting in high overhead; if an MSU is too large,

then we cannot easily achieve the fine-grained responses we

desire. Therefore, one rule of thumb for partitioning MSUs

is that the cost incurred by book-keeping and communica-

tions between MSUs should be much less than the cost of

replicating a larger component in the software.

Fortunately, the layered nature of the network stack pro-

vides a useful starting point. The cross-layer interfaces are

already reasonably narrow for use as a first approximation of

MSU boundaries. For each layer, we further adopt a static

partitioning of MSUs, including TCP handshake MSUs, TLS

negotiation MSUs, etc., somewhat analogous to what Click [28]

has done. As past work – e.g., on SawMill Linux [21] – has

shown, manually splitting complex software, such as an OS

kernel, is feasible but difficult. We are developing ways to

automate this process in our ongoing work (see Section 6).

3.3 MSU Coordination
At runtime, additional MSU instances may be replicated and

migrated, so we need to carefully coordinate the state across

MSU instances. SplitStack achieves this by applying differ-

ent coordination mechanisms depending on the functionality

of the MSU, and on how the MSU handles requests.

Independent MSUs: Some MSUs can process each request

in isolation. For instance, our current SplitStack prototype

has a TCP handshake MSU that can serialize, marshal, and

migrate a completed TCP connection to its downstream appli-

cation-layer MSUs, using the TCP connection repair func-

tionality [15] available in Linux v3.5 and above. It also has

a TLS negotiation MSU; transferring state from this MSU to

its downstream MSUs is also just a matter of migrating the

appropriate keys, secrets, and ciphersuite selections. In both

cases, the MSU replicas can operate independently.

In the case of such “siloed” MSUs, the reassign and

clone SplitStack operations are simple: reassign transfers

the corresponding state to the new instance, and clone can

be performed without any coordination whatsoever. Migrat-

ing state from one MSU to another (i.e., during reassign)

could be performed either as an offline or live process. In the

offline case, SplitStack reserves resources to construct the

new MSU, the existing MSU is stopped, state is transferred,

and the new reassigned MSU is then activated. Under load,

such offline migration may be too costly since transferring

state could be slow, thus incurring an unacceptable down-

time. Inspired by techniques for live VM migration [14],

SplitStack uses iterative copy and commitment phases that

more slowly migrate state while allowing the existing MSU

to service requests until the new MSU is activated. Live mi-

gration minimizes downtime at the expense of a longer over-

all reassign operation.

Handling state: Coordinating state is more difficult for MSUs

with cross-request dependencies. For example, an MSU that

handles the search function of a web application may require

access to state related to the user’s access permissions and

prior requests, both of which may be affected by separate

MSUs. A simple approach is to maintain and access such

state only through a centralized memory store such as Re-

dis. (This model is already becoming widely adopted for

applications deployed as a collection of microservices.) In

Section 6, we sketch a potential solution for coordinating

cross-request state between MSUs in a distributed fashion.

Routing requests through MSUs: As SplitStack dynami-

cally schedules MSUs on multiple physical nodes, control

and data traffic is routed accordingly to ensure that requests

arrive at the correct MSUs, using a “routing table” in each

MSU. For example, when multiple MSUs are created to scale

the processing of a particular functionality (such as handling

TLS key negotiation), the incoming traffic is divided evenly

among these MSUs. SplitStack preserves flow affinity re-

quirements for MSUs whenever appropriate.

3.4 The SplitStack Controller
SplitStack has a central controller that is responsible for al-

locating resources and scheduling the MSU graph at run-

time. Scheduling decisions include the initial and subse-

quent placement of the (instances of the) MSUs on the ma-

chines, the scaling of the MSUs in response to potential at-

tacks, and the assignment of requests to MSU instances. The

controller’s goal is to balance loads across the data center to

meet a certain SLA. By default, our scheduler uses the stan-

dard Earliest Deadline First (EDF) algorithm within each

node for predictable performance.

SplitStack accepts an overall SLA requirement for an ap-

plication in the form of end-to-end latency constraints. In the

software partitioning phase (Section 3.2), SplitStack obtains

the MSU-level deadlines by dividing the end-to-end latency

200

constraint among the MSUs along a path of the graph, pro-

portionally to their computation costs.

Cost model. To make resource allocation decisions, the

SplitStack controller needs to know the execution require-

ments of each MSU, in the form of its cost model. Con-

cretely, the cost model for each MSU includes (a) the amount

of computation resource needed to process an input data

item (e.g., a packet or an RPC), (b) the number of output

data items to be transmitted to a downstream MSU, and the

amount of network bandwidth required for each item, and (c)

the effect of the graph operators on the MSU. Since these re-

source requirements can change drastically at runtime, e.g.,

during algorithmic complexity attacks, SplitStack periodi-

cally updates the cost model based on the monitoring in-

formation gathered at runtime. When not provided by the

operator, the computation overhead (i.e., the worst-case exe-

cution time, or WCET [9]) of each MSU and the communi-

cation costs among them can be estimated using either static

analysis of the source code (e.g., using existing timing anal-

ysis tools developed in the real-time community [9]) or pro-

filing (if only binaries are available).

MSU placement. Based on the cost models and individual

MSU deadlines, the SplitStack controller formulates the ini-

tial placement of MSUs on machines and the assignment of

requests to the MSU instances as an optimization problem.

It uses two kinds of constraints: (a) the total utilization of

the MSUs on each core should be at most one, to ensure that

MSUs meet their deadlines; and (b) the resulting total band-

width required on each network link for the communication

among MSUs on different machines should not exceed the

link’s available bandwidth. The optimization objective aims

to, first, minimize the worst-case bandwidth requirement on

a network link, and then minimize the worst-case CPU uti-

lization per machine, so as to balance load across the ma-

chines and network links. When possible, MSUs that are

adjacent in the dataflow graph are scheduled on the same

machine, so that they can communicate using IPC (or even

function calls!) rather than using network messages.

Monitoring and adaptation. At runtime, the controller de-

tects bottlenecks by monitoring the system, using a set of

monitoring agents on each machine. The data is aggregated

hierarchically reduce communication overhead. The agents

keep track a range of critical metrics necessary for the de-

tection of potential DDoS attack, including the fill levels of

the input and output queues, the current CPU load, memory

and I/O utilization on each machine, and the load at each

router. SplitStack reserves a fixed amount of the available

bandwidth for the communication between the monitoring

component and the controller.

When a potential DDoS attack is detected, the controller

invokes the four transformation operators to scale the MSUs,

re-allocate resources, re-assign requests, and update the rout-

ing tables and cost models for the MSUs. Our initial Split-

Stack controller uses a greedy approach – it assigns cloned

MSU instances based on the least utilized machines and net-

work links, while ensuring the two utilization and bandwidth

constraints are satisfied – but we are currently working on

more refined strategies. The controller also periodically re-

balances the load among the data center resources by re-

solving the optimization problem with updated information,

while minimizing changes to the current allocation.

If the controller blindly replicated overloaded MSUs on

random nodes, it could take resources away from other ser-

vices and/or consume additional bandwidth for inter-MSU

communication, which could further aggravate the situation.

Hence, it is essential for the controller to have a global view

and to find solutions that provide good overall performance.

4. CASE STUDY
To validate that SplitStack can disperse asymmetric DDoS

attacks more effectively than naïve replication, we have de-

veloped a proof-of-concept prototype of SplitStack, and we

have conducted a set of experiments on five DETERLab [6]

nodes. Our server-side setup consisted of one ingress node,

and three service nodes; all incoming requests arrive at the

ingress and then get processed on the service nodes. Initially,

only two service nodes were activated – one node ran an

Apache v2.4 web server, and another ran a MySQL v5.7.12

database; the web server was backed up by the database us-

ing a PHP v7.0 framework. In the absence of attacks, the

third service node was idle. The attacker resided on a fifth

DETER node that was connected to the ingress.

In our experiment, the attacker launched a TLS renegoti-

ation attack using the thc-ssl-dos [39] tool, which ex-

hausted the computation resources on the web server node

with frequent TLS renegotiations. To defend against this,

a naïve replication strawman approach replicated one ad-

ditional web server on the idle service node, and balanced

the incoming requests between the two web servers using

HAProxy v1.6.3. SplitStack, in contrast, recognized the TLS

handshake component as the MSU, and replicated only this

MSU. SplitStack enlisted not only the idle service node, but

also the database node and the ingress node; we used this

as a first approximation of the kind of fine-grained replica-

tion strategy SplitStack enables. Therefore, SplitStack repli-

cated three additional components on these three nodes; the

incoming requests were then balanced among the four com-

ponents for the TLS handshaking stage. This was approxi-

mated by launching three stunnel [42] v5.3.4 proxies on

those nodes which help with TLS processing, which then

handed off established connections to the Apache web server.

Note that we are able to create three additional stunnel

instances in SplitStack, as opposed to only one additional

instance of web server in the naïve approach, because the

stunnel component is a lightweight process with compar-

atively smaller memory and computational footprint. Con-

sequently, SplitStack was able to utilize spare cycles on the

database and ingress nodes for running an extra instance of

stunnel, which the naïve approach was unable to do.

Figure 2 shows the comparison between the three different

responses to the DDoS attack: (a) the “no defense” approach

201

1

2

3

4

No defense Naive Repl. SplitStack

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

Figure 2: Comparison of three defense mechanisms.

deployed no additional replication, (b) the “naïve replica-

tion” approach instantiated one additional web server, and

(c) the SplitStack approach replicated three impacted MSUs.

For each setup, we measured the maximum number of attack

handshakes the web service can handle per second. We ob-

serve that naïve replication does help with alleviating the at-

tack – the web service can handle about 1.98 times as many

handshakes per second. SplitStack, on the other hand, can

handle 3.77 times as many handshakes per second; this did

not achieve a 4-times scale up, as one might expect, be-

cause the ingress node spent quite some CPU cycles on load-

balancing the requests. Nevertheless, we can see that Split-

Stack still squeezed out significant computation power from

the remaining CPU cycles. Overall, SplitStack achieved al-

most twice the throughput of naïve replication.

In practice, the improvement relative to naïve replication

depends on the exact setup and could even be considerably

higher than in our experiment. For instance, if we had a

different number of additional nodes or VMs in the web ser-

vice, the improvement ratio would change accordingly. Nev-

ertheless, this initial set of results suggests that fine-grained

replication, as enabled by SplitStack, can be a promising ap-

proach for defending against asymmetric DDoS attacks.

Our current prototype is not yet complete enough to al-

low a meaningful evaluation of SplitStack’s overhead. For

instance, the communication between MSUs can introduce

delay or – if the MSUs are placed on different nodes – create

additional traffic. We expect that a) the overhead will be low

during normal operation, when MSUs will typically share an

address space and “communicate” via function calls, much

like the subsystems of a classical application do today, and

that b) the overhead can be kept low even under attack, as

long as the MSUs have narrow interfaces and the scheduler

takes care to place related MSUs on the same node if it can.

We are currently working on a full prototype that can be used

to answer these questions experimentally.

5. RELATED WORK
Asymmetric DDoS attacks: There are many kinds of asym-

metric DDoS attacks, including ReDoS [1] that uses mali-

cious Regex patterns that take very long for servers to pro-

cess, TLS renegotiation attacks [2] that exhaust CPU cycles

with SSL/TLS requests, HTTP SlowLoris/SlowPOST [37]

that send partial HTTP requests at a delayed rate in order

to occupy server resources, HashDoS [8] that exploits weak

hash functions to create hash collisions, just to name a few.

Existing defenses create specialized solutions for each at-

tack, so a solution for one attack almost never works for an-

other. In contrast, SplitStack uses a single defense strategy

for a wide variety of asymmetric attacks.

Dispersion-based defenses: Dispersing DDoS attacks can

be achieved by load-balancing [35, 31, 29]. For instance,

Ananta [35] proposes a software load-balancing architecture

for high-speed data centers, Pushback [31] and CoDef [29]

can rate-limit traffic to defend against DDoS attacks, etc.

Dispersion can also be achieved by replicating the service

under attack [25, 46, 19]. XenoService [46] replicates web

sites across XenoService servers when they are under attack,

[25] replicates an attacked service to a different location and

confuses attacks by a random shuffling, Botahei [19] dynam-

ically launches more VMs to defend against legacy attacks.

SplitStack is related to both approaches, but it has two ad-

vantages: (a) SplitStack only replicates impacted MSUs, not

an entire stack or service, so it outperforms naïve replication

strategies; (b) SplitStack does not look for specific features

of legacy attacks, so it can handle new attacks with an un-

known attack vector.

6. DISCUSSION
We are currently exploring the following open problems.

Identification of split points. The effectiveness of Split-

Stack depends on a careful software partitioning. Our cur-

rent design adopts a strawman approach that uses cross-layer

interfaces and pre-defined software components as splitting

points; however, there is a rich literature on program par-

titioning [41, 10, 34, 11, 47] that contains a variety of ap-

proaches for splitting monolithic programs into a set of com-

municating components, and that SplitStack can benefit from.

We are also investigating the use of declarative network-

ing approaches [22], which can provide component-based

abstractions for building composable software modules, as

well as control-flow graph analysis [32, 38, 20] and program

slicing [45, 3] to partition legacy applications.

Coordinating inter-dependent MSUs. The current Split-

Stack only supports “siloed” MSUs – i.e., MSUs with no

cross-request dependencies. In addition to exploring cen-

tralized solutions for cross-request state management, we are

investigating the use of SDN features to route state informa-

tion between MSUs involved in a user’s requests. Our goal

is to combine distributed shared memory systems such as

Orbe [16] with SDN routing to ensure causal consistency [4]

of cross-request information among MSUs.

Acknowledgments
We thank our shepherd Stefano Vissicchio and the review-

ers for their helpful comments. This material is based upon

work supported in part by the the Defense Advanced Re-

search Projects Agency (DARPA) under Contract No. HR0011-

16-C-0056, and NSF grants CNS-1054229, CNS-1453392,

CNS-1527401, CNS-1513679, and CNS-1563873. Any opin-

ions, findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not neces-

sarily reflect the views of DARPA or NSF.

202

7. REFERENCES
[1] Regular expression denial of service - ReDoS.

https://www.owasp.org/index.php/Regular_
expression_Denial_of_Service_-_ReDoS.

[2] SSL renegotiation DoS.
https://www.ietf.org/mail-archive/web/
tls/current/msg07553.html.

[3] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
Proc. PLDI, June 1990.

[4] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto. Causal memory: Definitions, implementation, and
programming. Distributed Computing, 9(1):37–49, 1995.

[5] Akamai. Cloud security. https://www.akamai.com/
us/en/cloud-security.jsp.

[6] T. Benzel. The science of cyber-security experimentation:
The DETER project. In Proc. ACSAC, Dec. 2011.

[7] B. Brenner. TCP flag DDoS attack by Lizard Squad indicates
DDoS tool development.
https://blogs.akamai.com/2015/01/tcp-
flag-ddos-attack-by-lizard-squad-
indicates-ddos-tool-development.html.

[8] B. M. Carlson. A PoC hash complexity DoS against PHP.
https://github.com/bk2204/php-hash-dos.

[9] S. Chattopadhyay, C. Kee, A. Roychoudhury, T. Kelter,
P. Marwedel, and H. Falk. A unified WCET analysis
framework for multi-core platforms. In Proc. RTAS, 2012.

[10] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic
partitioning. In Proc. SOSP, 2007.

[11] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic execution between mobile device and
cloud. In Proc. EuroSys, 2011.

[12] D. Cid. Layer 7 DDOS-blocking HTTP flood attacks.
https://blog.sucuri.net/2014/02/layer-7-
ddos-blocking-http-flood-attacks.html.

[13] Cisco. Microsoft windows TCP/IP connection exhaustion
denial of service vulnerability.
https://tools.cisco.com/security/center/
viewAlert.x?alertId=18959.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. In Proc. NSDI, 2005.

[15] J. Corbet. TCP connection repair.
https://lwn.net/Articles/495304/.

[16] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:
Scalable causal consistency using dependency matrices and
physical clocks. In Proc. SOCC, 2013.

[17] W. M. Eddy. Defenses against TCP SYN flooding attacks.
http://www.cisco.com/c/en/us/about/
press/internet-protocol-journal/back-
issues/table-contents-34/syn-flooding-
attacks.html.

[18] F5. SSL Acceleration.
https://f5.com/glossary/ssl-acceleration.

[19] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei:
Flexible and elastic DDoS defense. In Proc. USENIX
Security, Aug. 2015.

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987.

[21] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone,
V. Uhlig, J. E. Tidswell, L. Deller, and L. Reuther. The
SawMill multiserver approach. In Proc 9th ACM SIGOPS
European Workshop, pages 109–114, 2000.

[22] H. Gill, D. Lin, X. Han, C. Nguyen, T. Gill, and B. T. Loo.
Scalanytics: A declarative multi-core platform for scalable
composable traffic analytics. In Proc. HPDC, 2013.

[23] S. Guha, P. Francis, and N. Taft. ShutUp: End-to-end
containment of unwanted traffic. Technical report, Cornell
University, July 2008.

[24] D. W. Holmes. Defending against low-bandwidth,

asymmetric denial-of-service attacks. Presentation at the
RSA Conference Europe, Oct. 2013.

[25] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell.
Catch me if you can: A cloud-enabled DDoS defense. In
Proc. DSN, June 2014.

[26] C. Jin, H. Wang, and K. G. Shin. Hop-count filtering: an
effective defense against spoofed DDoS traffic. In Proc.
CCS, 2003.

[27] C. Kern. Increased use of multi-vector DDoS attacks
targeting companies. http://www.bsminfo.com/
doc/increased-use-of-multi-vector-ddos-
attacks-targeting-companies-0001.

[28] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Trans. Comput.
Syst., 18(3):263–297, Aug. 2000.

[29] S. B. Lee, M. S. Kang, and V. D. Gligor. CoDef:
Collaborative defense against large-scale link-flooding
attacks. In Proc. CoNEXT, 2013.

[30] Q. Liao, D. A. Cieslak, A. D. Striegel, and N. V. Chawla.
Using selective, short-term memory to improve resilience
against DDoS exhaustion attacks. Security and
Communication Networks, 1(4):287–299, 2008.

[31] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling high bandwidth
aggregates in the network. In Proc. CCR, 2002.

[32] J. Midtgaard. Control-flow analysis of functional programs.
ACM Comput. Surv., 44(3):10:1–10:33, June 2012.

[33] National Vulnerability Database. Vulnerability summary for
CVE-2011-3192. https://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2011-3192.

[34] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and
S. Madden. Wishbone: Profile-based partitioning for
sensornet applications. In Proc. NSDI, 2009.

[35] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and
N. Karri. Ananta: Cloud scale load balancing. In Proc.
SIGCOMM, 2013.

[36] D. Pauli. Chinese gambling site served near record-breaking
complex DDoS. July 2016. http:
//www.theregister.co.uk/AMP/2016/07/01/
470_gbps_multivector_chinese_gambling.

[37] D. Senecal. Slow DoS on the rise.
https://blogs.akamai.com/2013/09/slow-
dos-on-the-rise.html.

[38] O. Shivers. Control flow analysis in Scheme. In Proc. PLDI,
June 1988.

[39] The Hacker’s Choice. The thc-ssl-dos tool.
https://www.thc.org/thc-ssl-dos.

[40] Thoughtworks. Real-world microservices: Lessons from the
frontline. 2014.
https://www.thoughtworks.com/insights/
blog/microservices-lessons-frontline.

[41] E. Tilevich and Y. Smaragdakis. J-Orchestra: Enhancing Java
programs with distribution capabilities. ACM Trans. Softw.
Eng. Methodol., 19(1):1:1–1:40, Aug. 2009.

[42] M. Trojnara. The stunnel TLS proxy.
https://www.stunnel.org/index.html.

[43] W. Turton. An interview with Lizard Squad, the hackers who
took down Xbox Live. Dec. 2016. http://www.
dailydot.com/debug/lizard-squad-hackers/.

[44] R. Vamosi. Study: DDoS attacks threaten ISP infrastructure.
http://www.cnet.com/news/study-ddos-
attacks-threaten-isp-infrastructure/.

[45] M. Weiser. Program slicing. In Proc. ICSE, Mar. 1981.
[46] J. Yan, S. Early, and R. Anderson. The XenoService – a

distributed defeat for distributed denial of service. In Proc.
ISW, 2000.

[47] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using
replication and partitioning to build secure distributed
systems. In Proc. IEEE Symp. on Security and Privacy, 2003.

203

https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://www.akamai.com/us/en/cloud-security.jsp
https://www.akamai.com/us/en/cloud-security.jsp
https://blogs.akamai.com/2015/01/tcp-flag-ddos-attack-by-lizard-squad-indicates-ddos-tool-development.html
https://blogs.akamai.com/2015/01/tcp-flag-ddos-attack-by-lizard-squad-indicates-ddos-tool-development.html
https://blogs.akamai.com/2015/01/tcp-flag-ddos-attack-by-lizard-squad-indicates-ddos-tool-development.html
https://github.com/bk2204/php-hash-dos
https://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.html
https://blog.sucuri.net/2014/02/layer-7-ddos-blocking-http-flood-attacks.html
https://tools.cisco.com/security/center/viewAlert.x?alertId=18959
https://tools.cisco.com/security/center/viewAlert.x?alertId=18959
https://lwn.net/Articles/495304/
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
https://f5.com/glossary/ssl-acceleration
http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001
http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001
http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3192
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3192
http://www.theregister.co.uk/AMP/2016/07/01/470_gbps_multivector_chinese_gambling
http://www.theregister.co.uk/AMP/2016/07/01/470_gbps_multivector_chinese_gambling
http://www.theregister.co.uk/AMP/2016/07/01/470_gbps_multivector_chinese_gambling
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://www.thc.org/thc-ssl-dos
https://www.thoughtworks.com/insights/blog/microservices-lessons-frontline
https://www.thoughtworks.com/insights/blog/microservices-lessons-frontline
https://www.stunnel.org/index.html
http://www.dailydot.com/debug/lizard-squad-hackers/
http://www.dailydot.com/debug/lizard-squad-hackers/
http://www.cnet.com/news/study-ddos-attacks-threaten-isp-infrastructure/
http://www.cnet.com/news/study-ddos-attacks-threaten-isp-infrastructure/

	Introduction
	Overview
	Strawman Solutions
	Approach: SplitStack
	Challenges

	The SplitStack Architecture
	Minimum Splittable Units
	Software Partitioning
	MSU Coordination
	The SplitStack Controller

	Case Study
	Related Work
	Discussion
	References

