The Ordered Core Based Tree Protocol

Clay Shields

J. J. Garcia-Luna-Aceves

{clay, jj}Q@cse.ucsc.edu
Department of Computer Engineering
University of California—Santa Cruz
Santa Cruz, CA 95064

Abstract

This paper presents a new protocol, the Ordered Core
Based Tree (OCBT) protocol, which remedies several short-
comings of the Core Based Tree (CBT) multicast protocol.
We show that the CBT protocol can form loops during peri-
ods of routing instability, and that it can consistently fail to
build a connected multicast tree, even when the underlying
routing is stable. The OCBT protocol provably eliminates
these deficiencies and reduces the latency of tree repair fol-
lowing a link or core failure. OCBT also improves scala-
bility by allowing flexible placement of the cores that serve
as points of connection to a multicast tree. Simulation re-
sults show that the amount of control traffic in OCBT is
comparable to that in CBT.

1 Introduction

Multicast routing protocols build routing trees for
the dissemination of messages to a select group of
other stations. In some protocols, such as the Distance
Vector Multicast Routing Protocol (DVMRP) [1]
and the Protocol Independent Multicast-Dense Mode
(PIM-DM) protocol [2] the receiving group is assumed
to be fairly dense and the sender initiates the multicast
assuming all routers in the network are interested in
receiving the multicast. If any receiver does not wish
to receive the multicast, it must take explicit action
and send a message called a prune to remove itself
from the tree. These types of protocols are termed
sender initiated as the receivers are not required to
take any action to receive the multicast.

In each of these protocols the routing tree is formed
along the shortest path between each sender and re-
ceiver. The overhead at a router O(n - s), where n is
the number of multicast groups and s is the number
of sources in the group.

In both the Core Based Tree (CBT) multicast pro-
tocol [3] and in the Protocol Independent Multicast-
Sparse Mode (PIM-SM) protocol [4] [5], a single shared
tree is created for all sender and receivers in the group,

This work was supported in part by the Office of Naval
Research under Contract No. N-00014-92-J-1807

and receivers initiate their own connection to the tree.
In each of these receiver initiated protocols a well
known router exists that accepts connection requests
from other routers. This router is known as the ren-
dezvous point in PIM; in CBT it is called a core. The
returning acknowledgment builds a branch of the tree
back to the initiator along the reverse path of the con-
nection request. Instead of forwarding each packet on
a per-group per-source basis, each data packet is in-
stead forwarded over every on-tree link for that group
except the one on which it was received. Accord-
ingly, the router does not have to maintain informa-
tion about each source for each group and has instead
a single entry for each group. The router overhead
is therefore O(n), giving the shared tree approach su-
perior scalability. However, because each packet no
longer travels over its shortest path to each receiver,
shared trees incur longer average delay in the delivery
of a data packet.

During times of underlying unicast instability CBT
can form loops. Loops in a shared multicast tree are
disastrous. When a data packet enters a loop, it cir-
culates the loop endlessly until its time-to-live expires;
as a circulating data packet passes through a router
that has an off-loop branch, the packet gets forwarded
down that branch. This leads to multiple transmis-
sions of each packet in the loop to the rest of the tree.
As more traffic finds its way into the loop this situa-
tion gets worse, as more and more off-loop transmis-
sions occur. Eventually, the loop can start forwarding
so many packets to the rest of the tree that all links on
the tree become saturated. We present a new proto-
col for the construction of shared multicast trees that
eliminates this looping problem and other problems
that can keep a multicast tree from forming in CBT.
We call this protocol the Ordered Core Based Tree
protocol.

The next section describes the ways in which CBT
can fail. Section 3 describes and specifies the OCBT
protocol. Section 4 provides an example of how OCBT

handles link failures and is followed in Section 5 with
simulation results showing the performance of OCBT
and CBT, based on the CBT specifications of April
1996 [6]. We discuss some aspects of core placement
in Section 6 before presenting our conclusions.

2 Looping in CBT

CBT [3] [7] [8] [6] forms a backbone within a con-
nected group of nodes called cores. The backbone
is formed by selecting one router, called the primary
core, to serve as a connection point for the other cores,
called secondary cores. Secondary cores remain dis-
connected from the primary core until they are re-
quired to join the multicast group. A router wishing
to participate in the multicast session sends a join-
request towards the closest core. This request travels
hop-by-hop on the shortest path to the core, forcing
other off-tree nodes to join the branch that the router
is forming. When the join-request reaches a core or
an on-tree node, a join-acknowledgment is sent back
along the reverse path, forming a new branch from
the tree to the requesting router. If the core that is
reached is a secondary core and is off-tree, it connects
to a primary core using the same process. Once the
tree is constructed, data packets flow from any source
to its parent and children. Each parent node forwards
the packet to all children other than the sender and
to its parent until the data packet reaches the back-
bone. Each packet is then sent along the backbone
and down all other branches, ensuring that all group
members receive it.

In the event of a link or node failure, the child node
that detects the failure follows a particular strategy in
order to reconnect to the tree. If that node’s next hop
to the nearest core is through one of its immediate
children, it sends a message, called a flush message, to
its children. The flush message travels down the tree,
forwarded from parent to child, removing the connec-
tion between the parent and child. This message tears
down the tree to the individual receivers, which then
attempt to reconnect along their best path to a core.
If the next hop to the core is not through a child, the
detecting node attempts to reconnect itself by send-
ing a rejoin-request towards the nearest core and does
not send the flush message to its children. When the
request reaches an on-tree node, that node returns a
join acknowledgment that rebuilds the branch down to
the sending node. It also sends the rejoin-request to
its parent for forwarding to the primary core. The for-
warding of the rejoin-request back up the constructed
tree is a mechanism used to detect loops that may have
formed. If a node receives a rejoin-request that it orig-
inated, then a loop has formed. The node detecting

’ core
Rejoining
Router
On-tree
router

,,,,, - New Shortest
Path to Core

Figure 1: Looping in a disconnected subtree

the loop removes the link to its parent by sending a
message called a quit-request and again attempts to re-
join. Otherwise, if the rejoin-request is received at the
primary core, that core sends a unicast acknowledg-
ment to the originator of the rejoin request to verify
the absence of a loop. This unicast message is needed
because if a loop had formed and the rejoin-request
was lost before it was returned to the originator, then
the loop would not have been detected. However, if
the originator never receives the ack, it can assume
that a loop has formed, quit from its parent by send-
ing a quit message, and attempt to rejoin again.

Surprisingly, there have been no prior attempts to
show that CBT is correct, that is, that CBT creates
multicast trees in finite time and that it does not form
loops. In fact, CBT does not always form a tree. Part
of the tree can remain disconnected when a router
seeks to rejoin the multicast tree in response to a fail-
ure in the link to its parent. The router detecting the
link failure attempts to maintain the sub-tree below it
while rejoining the rest of the tree by sending a rejoin-
request towards the core. If the path to the core is
through an immediate child, the sub-tree is destroyed
by transmission of a flush message. Otherwise, the re-
joining router sends a rejoin-request towards the core.
If this request reaches a descendent in the sub-tree,
it is acknowledged and a link forms between the de-
scendent and the rejoining router, completing a loop.
Figure2 shows the topography of a CBT sub-tree sub-
ject to this transient looping. The grey node is at-
tempting to rejoin along a newly formed shortest path
to the next reachable core. Because its path passes
through a descendent child, a loop is formed. This
type of loop can occur even when the underlying rout-
ing algorithm, which a CBT node uses to determine
the path to the core, does not contain loops and is said
to be stable.

As a loop detection mechanism, the descendent
node forwards the rejoin request to its parent, and
this message is passed up tree until it reaches the

Join Join
Request Request

@ O T -

Primary Core

g7
)

az

Secondary Core

a1

ni
out

Figure 2: Deadlock or loop formation in tree formation

originating router, at which point the loop is detected
and action taken to correct it. According to the CBT
protocol specification of April 1996 [6], the rejoining
router simply sends a quit request to its parent to re-
move the loop. This correction mechanism can fail,
however, as the rejoining router takes no action to de-
stroy its sub-tree and instead attempts to rejoin again,
possibly along the same path forming the same loop.
Each time the router reconnects along the same path,
the same loop forms. This continual looping denies
multicast service to the disconnected sub-tree, but it
can be stopped if upon detecting a loop, the rejoining
router is allowed to flush the tree by forwarding a flush
message to all of its children, after which each receiver
or sender on the sub-tree connects directly to the core
along the shortest path.

If the rejoining router is a secondary core that must
reconnect to the primary core, then flushing the tree
does not always solve the looping problem. In this
case, flushing the tree can initiate a race condition in
which local routers attempt to join the secondary core
as it attempts to join the primary core. Upon receiving
a flush message, routers with members of their subnets
desiring the multicast immediately send a join-request
on a hop-by-hop basis towards the closest core. That
could be a secondary core which is trying to connect
to the primary core. If a router that lies on the path to
the primary core has attempted to join the secondary
core, then it is possible that by the time the join re-
quest from the secondary core, which is destined for
the primary core, reaches the router, the router will be
awaiting an acknowledgment to its own join-request.
In this join-pending state the router will accept the lo-
cal core’s request, as illustrated in Figure 2. This will
lead to a temporary deadlock, until the appropriate
timeouts occur. If these timeouts occur close together
and there is no mechanism for selecting an alternate
primary core, or if the receiver group near the discon-
nected secondary core is dense so that each path to the
primary core is blocked, this race condition can occur
many times, leading to a long latency in reconnecting
the sub-tree, if the sub-tree is able to connect at all.
A solution to this would be to force routers receiving
a flush message to back off for some period of time
before attempting to rejoin. While this would prevent
the routers from winning the race, it would also lead

to long latency times for routers attempting to rejoin
the multicast tree.

The same situation that prevents proper recon-
struction of the tree following a link failure can also
prevent initial construction of the tree, and it can form
a loop in a disconnected sub-tree. If a secondary core
receives a join-request from a router that lies on the
path from the secondary core to the primary core,
the secondary core will be unable to form a link to
the primary core as all join-requests the secondary
core sends will be stopped at the first hop towards
the joining router. In Figure 2, this occurs at the
white colored router between the joining router and
secondary core. In this case the race is always won
by the joining router, as it has a head start in send-
ing its join request. As the secondary core sends a
join-acknowledgment to the router before attempting
to connect to the primary core, the nodes on the path
back to the joining router will consider themselves to
be on-tree and will acknowledge the secondary core’s
join-request if the acknowledgment arrives before the
secondary core’s join-request. A loop, which is un-
detected by CBT, will then be formed between the
router which is the first hop to the joining router and
the secondary core. Notice that this loop does not
form when secondary core is attempting to reconnect;
in the case in which reconnection is occurring the for-
warding of the rejoin-request back to the secondary
router removes the loop, though the secondary core
will still be unable to connect to the primary core. If
the secondary cores do not send a join acknowledg-
ment before sending a join-request, then deadlock can
occur as described above.

If the network is unstable during construction, the
secondary core’s attempt to join the multicast tree
can again lead to undetected loops in the disconnected
sub-tree. Assume that a router sends a join-request to
a secondary core, which is currently off-tree. When the
join-request reaches the core, the core acknowledges it
and attempts to join the primary core by sending a
join-request of its own. If this request travels a dif-
ferent path due to unicast routing instability and tra-
verses a branch of its sub-tree, the join-request will
be accepted and acked as shown in Figure 3. The
transmission of the ack will occur immediately if the
receiving node is on the branch, indicated by path A,
or as soon as the ack traveling from the core reaches
that point on the branch, indicated by path B. This
ack will travel back to the core and form a loop that
will not be detected; traffic will circulate within the
loop endlessly, dumping repeat copies of data packets
down each other off-loop branch as it goes by. Again,

,,,,,,, Path of itia join request
= Pathof corejoin request

Secondary
Core
Ontree
Router

Figure 4: Permanent loops in the core backbone

this type of loop can only be formed during the initial
build of the tree; if the core is attempting to reconnect
and uses a rejoin-request instead of a join-request, the
loop detection mechanism will detect the loop when
the rejoin is forwarded to the core.

There is one similar undetected loop that can form
when the tree is constructed during times of network
instability or when secondary cores are attempting to
contact different primary cores. In this situation it
is possible that the primary core is thought to be un-
reachable by part of the secondary core group without
that information having been disseminated through
the rest of the group. This inconsistency can oc-
cur, due to the mechanism causing deadlock described
above, if some secondary core has been unable to reach
the primary core because its children blocked the con-
nection and it is now attempting to reach an alternate
primary core. If the branches being formed by two
secondary cores cross, either due to differences in the
destination of the join-request or because of looping in
the unicast routing, a loop can be formed. If the loop
is formed during the initial construction of the tree, it
will be undetected and will not be removed.

If two secondary cores are attempting to form the
backbone and their branches meet in a way that forms
aloop, one of two things will happen. In the best case,
join-pending nodes on each branch receive the request
of the other. This is illustrated in Figure 4, where
each join-pending node chooses the hop labeled C. No

loop will be formed as no acks will be sent; instead,
each branch will wait for an ack until they time out.

In the second case, one or both of the forming
branches will meet the other at a core or an on-tree
node that is a descendent of the core. The core or on-
tree router that receives the request will acknowledge
it. The ack will travel back along the reverse path
forming the branch, possibly getting forwarded back
down the other branch that was forming as well. In
this case, a loop has been formed in the backbone that
will not be detected. Any traffic entering the loop will
circle it endlessly, and each time it reaches a router
with an interface leading out of the loop, and addi-
tional copy will travel down the tree to all receivers.
Additional traffic flowing into the loop only serves to
exacerbate the situation, resulting in a denial of ser-
vice as the tree is flooded with the same packets re-
peatedly. Figure 4 shows how the loop will form if
either of any of the next hop choices labeled A or B
are taken.

3 The OCBT Protocol

CBT builds a multicast tree from a single level of
secondary cores which join at a single primary core.
Looping and disconnected sub-trees occur in CBT be-
cause the protocol does not enforce any ordering in the
way in which nodes and cores attempt to join the tree.
In contrast, OCBT maintains a logical level for each
node and core. The logical level is a label indicating
the cores place in the hierarchy of cores. The cores’
logical levels are fixed when the core is selected; the
nodes levels are not fixed but are assigned when the
node joins the tree. Any node or cores level is always
less than or equal to the level of its parent; OCBT uses
this property to guarantee that no transient or perma-
nent loops ever form in the structure of the tree and
that the protocol is safe and live even when routing-
table loops occur in the underlying routing protocols.
OCBT has been shown to be free of loops at every in-
stant and to be safe and live [9]. OCBT also reduces
control traffic following a link failure, allows for flex-
ible core placement, and does this without increasing
the complexity of the protocol.

When a router has a member wishing to receive the
multicast session, it locates the nearest core and sends
a join-request towards that core. Join-requests force
any off-tree routers they reach on their path to the core
to forward the request and attempt to join the tree. In
OCBT, join-requests also carry a field which contains
the level a node must have to safely acknowledge the
request. Join-requests from an off-tree router carry
a level of zero to indicate that any on-tree node or
core can safely acknowledge the request. If a node

receives a join-request carrying a level higher than its
level, it quits from its parent and joins the branch that
the join-request is forming. In this way, OCBT forces
lower-level branches to break to allow the construction
of higher-level branches. This prevents the cases in
CBT in which a node or core attempting to rejoin
following a link failure is unable to connect to a core
because it is blocked by its sub-tree, preventing that
sub-tree from joining the main multicast tree.

OCBT limits control messages to within a particu-
lar logical level and distributes the processing of con-
trol messages over a larger number of cores. When
a link fails, flush messages travel down-tree only as
far as the next lower level of cores; join-requests need
only travel as far as the next higher level of cores.
This results in less traffic following a link failure than
in CBT, in which flush messages from near a core or
rejoin messages originating far from the core have to
travel relatively long distances. More recent specifi-
cations for CBT [6] have a single primary core that
forms a point of connection for secondary cores that
stay off-tree until required to join. This single primary
core is a limiting factor to the scalability of CBT, as it
must receive and respond to all passive join-requests
from the entire multicast tree. OCBT has no similar
single point of traffic concentration, as cores need only
respond to traffic within its logical level.

Other differences between CBT and OCBT include
changes in the mechanism by which nodes destroy
the connection formed with their parent. OCBT re-
places the quit request of CBT with a quit notice,
and in OCBT nodes sending the quit request do not
wait for an acknowledgment before leaving the tree.
In contrast, under CBT, nodes must wait for an ac-
knowledgment from the parent before leaving the tree.
OCBT uses a keep-alive mechanism to detect lost quit-
notices and flush messages instead of using explicit ac-
knowledgments. A parent-assert message is included
in OCBT to insure that consistent state information
is maintained between nodes. A parent keeps track of
reception of keep-alive packets from its children. In
the event that the parent does not receive a keep-alive
from a child in a set period of time, it sends a par-
ent assert message to ascertain if the child still is its
child; if no reply or a negative reply to a parent assert
is received, the child is assumed to have quit. This
guarantees eventual consistent information about the
state of the link between child and parent, even if mes-
sages are lost. Because no node accepts or forwards
an on-tree data packet from an off-tree link, no data
packets are received twice, even if a quit-notice or flush
message is lost.

OCBT is quite similar in complexity to the origi-
nal CBT. OCBT takes O(n) to create a spanning tree,
where n is the number of links in the spanning tree and
is dependent on the network, core placement and mul-
ticast group members. The load on the routers is only
marginally increased. In addition to the state variable
required for CBT, each on-tree router in OCBT is ad-
ditionally required to track its level and to maintain
level information for each of its children, as well as
a marker as to whether that child has transmitted a
keep-alive packet recently.

OCBT’s specification is divided into four parts.
The first part is shown in Figure 5, and consists of
the functions used repeatedly in the operation of the
protocol. The operation of core nodes and non-core
nodes is presented in Figure 5. The response of both
core and non-core routers to a parent link failure or
the expiration of a timeout timer is shown in Figure 6.
Each part of OCBT’s specifications follows the same
conventions. Function names are in bold. A call to
another function or the name of a particular type of
message is capitalized. Parameters that are part of a
received message are in italics. Names of the variables
maintained within the node are plain, lower case.

Each of the cores and routers maintains variables
representing the state of the node in regard to OCBT’s
operation. Each node has an entry for its OCBT state
(on-tree or off-tree or join-pending, and core or non-
core), level, parent, the core it last attempted to reach,
and a list maintaining the list of the node’s children
and their level. Core nodes also have one additional
state variable, which is the logical level of their parent.
This entry is used to track the core state in case it is
coerced to a higher level; if for some reason it receives
a flush message from its parent, it can flush all children
of level greater than the original core level and return
to that level.

Examination of OCBT’s specifications reveals that
descriptions of some called functions are missing. In
particular, Next Hop, Find Core, Subnet Mem-
ber and Send Message were omitted for brevity, but
are explained below.

Subnet Member determines whether the router
has some member on its local network wishing to re-
ceive the multicast; if it does, this function returns
true.

Send Message transmits a message to the des-
ignated recipient that includes the information speci-
fied; if the message being sent is a join-request, Send
Message also starts the timeout timer. Receipt of an
appropriate acknowledgment cancels the timer.

Next Hop examines the unicast routing table and

returns the neighbor node on the next hop to take
towards a given destination.

Find Core returns the nearest core of a specified
level; if level 0 is specified, it returns the closest core
of any level. Find Core was omitted as the actual
OCBT code depends on the means used to distribute
core information. If some means of scoping is desired,
Find Core may not return the closest core, but in-
stead one that lies within the scoped area. Find Core
changes the node variable core; each time Find Core
is called, core is updated to whatever it returns. In
addition to locating cores, Find Core also detects
partitions in the network when higher-level cores are
unreachable and instigates a partition-recovery mech-
anism. In order to do this, it maintains a list of cores
that have been contacted but failed to respond; this
list is cleared when the node is joining and receives an
ack.

4 Tree Maintenance in OCBT

OCBT builds a distribution tree in which each
member has a logical level equal to or less than its
parent. The logical level changes only at a core or a
graft. Grafts occur where a lower-level branch is bro-
ken to make way for a higher level branch to form,
and the lower level branch is maintained below the
break. Figure 7a shows the structure of an OCBT
tree. The large nodes are cores and show their levels.
The smaller black nodes are on-tree nodes and have
the link to their parent labeled with their level. The
striped node is a graft node which formed when the
(n + 1)-level branch broke to allow the (n + 2)-level
branch to connect to the (n + 2) core.

When a link failure requires recovery of the tree,
cores and grafts respond in different manners. A core
attempts to reconnect for its children; a graft flushes
the tree below it and expects a core or receiver below
it to attempt reconnection. Figure 7b illustrates this
by showing the state of the tree after a link failure.
Following the link failure, the (n+1)-level core and the
leftmost level-n core would each attempt to reconnect
to their higher-level core. If the network remained
partitioned and the (n+2)-level core was unreachable,
the multicast tree would form up to the (n + 1)-level
core, which would then wait until the partition was
corrected to rejoin the multicast tree.

5 Simulation Results

To examine the performance of CBT and OCBT in
a realistic manner, we created a simulation of each
protocol using a simulation package® that supports

*The protocols presented in this paper were simulated using
the C++ Protocol Toolkit (CPT) by Rooftop Communications

(a) OCBT Tree (b) Link Failure

Figure 7: Link Failures and Routing Loop Unrolling

Figure 8: Arpanet Simulation Topography

protocol layering. These simulations ran on top of a
unicast routing layer that implemented the distributed
Bellman-Ford algorithm and used routing information
from the unicast layer. Using this simulation we mea-
sured the end-to-end delay of data packets traversing
the tree, the number of messages of each type sent be-
fore and after a link failure, and the number of times
CBT formed of transient loops requiring explicit ac-
tion from CBT to remove. In addition, each case in
which a CBT sub-tree was unable to reconnect to the
tree, as shown in Figure 2, was recorded. We also
recorded the number of times OCBT did not form
transient loops when CBT would have.

For our simulations we used the Arpanet topology
shown in Figure 8, which contains 47 nodes and 69
edges. We examined the performance of OCBT and
CBT under realistic conditions: the links on the net-
work were configured to run at 200 kilobits per second,
with a 1 millisecond delay between hops; the unicast
routing updates occurred four times as frequently as
the CBT and OCBT keep-alive messages. We chose
this update period to allow the unicast routing time to
disseminate routing information; this was important

Corp. of Los Altos, CA.

Add Child (child,level)
Add Child to List (child, level)
Send Message (Join Ack, child, level)

Break Branch (source, message level,
core, originator)
Send Message (Quit-Notice, parent)
if (state = On-Tree Core) or
(state = Join-Pending Core)

parent level = message level
parent = Next Hop (core)
if (On Child List (parent))

Remove Child from List (parent)
Add Child (source, message level)
send message (Join-Request, parent,

message level, core, originator)
if (state = On-Tree Core)

state = Join-Pending Core
else
state = Join-Pending

Forward Message (type, source)
for each child

if (child ! = source)
Send Message (type, child)
if (parent ! = source)

Send Message (type, parent)

Join Tree (level)
if state = Join-Pending Core
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,
level + 1, core)
else /* level = 0 */
parent = Next Hop (Find Core(level))
Send Message (Join-Request, parent,
level, core)
state = Join-Pending

Multicast Message (type, level)
for each child on list
if (level = 0) or (level < child level)
Send Message (type, child, level)

Quit Tree ()
parent = null
if (state = On-Tree Core)

or (state = Join-Pending Core)

parent level = core level

state = off-tree core
else

state = off-tree

level = 0

halt /* do not return */

Remove Children (level)

for each child on list
if (level = 0) or (level < child level)
Remove Child from List (child)

if (child list = null)
and not (Subnet Receiver)
Send Message (Quit-Notice, parent)
Quit Tree

else
return to calling function

Remove Child (child)
Remove Child from List (child)
if (child list = null) and
not (Subnet Receiver)
Send Message (Quit-Notice, parent)
Quit Tree
else
return to calling function

Send Data (source, data)
if (source — parent) or
(On Child List (source))
Forward Message (data, source)
else
drop the packet and
do not forward to subnet

Join-Pending or
On-Tree Router (message type, message level,
source, core, originator)
case (message type)
Join-Request
if (on child list (source))
Remove Child (source)
if (message level > level)
Break Branch (message level,
core, originator)
else
if (state = On-Tree Router)
Add Child (level)
else
Add Child to List (source)
Quit-Notice
if (on child list (source))
Remove Child (source)
Flush Message
if (source = parent)
Forward Message (Flush Message, source)
Remove Children (0)
/* only reached if above function returns */
level = 0
Join Tree (level)
Join Ack
if (state = Join-Pending Router)
if (source = parent)
and (message level >= level)
level =message level
Forward Message (Join Ack, level,source)
Data
Send Data (data, source)

Off-Tree Router (message type, message level,
source, core, originator)
case (message type)
Join-Request
parent = Next Hop (core)
level = message level
Send Message (Join-Request, parent,
level, core)
state = Join-Pending

Join-Pending Core or
On-Tree Core (message type, message level,
source, core, originator)
case (message type)
Join-Request
if (on child list (source))
/* previous quit-notice was lost */
Remove Child (source)
if (message level <= level)
Add Child (source, level)
else
if (message level > parent level)
Break Branch (message level,
core, originator)
else
if (On-Tree Core)
Add Child (source, parent level)
else
if (originator = self)
/*message looped - unicast instability */
Send Message (Quit-Notice, parent)
Send Message (Flush Message,source)
parent level = level + 1
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,
level 4 1, core)
else
Add Child to List (source, message level)
Quit-Notice
if (on child list (source))
Remove Child (source)
Flush Message
if (source = parent)
Multicast Message (flush message, level)
Remove Children (level)
/* only reached if above function returns */
state = Join-Pending Core
Join Tree (level)
Join Ack
if (Join-Pending Core)
if (source = parent)
and (message level > level)
parent level = message level
foreach child on list
if (child level > core level) and
(child level <= parent level)
send message (Join Ack, child, parent level)
state = On-Tree Core
Data
if (On Tree Core)
Send Data (data, source)

Off-Tree Core (message type, message level,
source, core, originator)
case (message type)
Join-Request
if (message level <= level)
Add Child (source,level)
parent = Next Hop (Find Core(level + 1))
parent level = level +1
Send Message (Join-Request, parent,
level + 1, core)
else
Add Child to List (source, message level)
parent = Next Hop (core)
parent level = message level
Send Message (Join-Request, parent,
message level, core)
state = Join-Pending Core

Figure 5: Common OCBT Functions and Core and Router Specifics

because one indication of a link failure was a change
in the unicast routing table. We selected two receiver
groups for the simulation - a dense group consisting of
all nodes and a sparse group consisting of 11 widely
distributed nodes. The same single source was used
with each receiver group.

For each run of the simulation, we chose a particular
set of cores using what is probably the same “trivial
heuristic” used by Ballardie [3], that is, looking at a
picture of the network we picked distributed nodes of
relatively high degree to serve as cores. For OCBT,
the cores were divided into two logical levels. We con-
structed the CBT backbone before allowing receivers
to connect even though the current protocol specifi-

cation does not; we did this because of the difficulty
CBT has in connecting secondary cores to the pri-
mary cores. Building each of the trees for each receiver
group, we measured the construction costs in terms of
the traffic required. We then sent a stream of data
packets from the source to all receivers and recorded
the delay each data packet encountered. Finally, we
made each link in the network fail individually and
measured the number of messages required to recon-
nect the tree and any loops that were formed.

In our simulation, link failures were detected in two
ways. First, failure of a parent or child to respond to
a set number of keep-alive messages created the link-
down condition. Second, every time a message was

On Time Out
case (state)
Join-Pending Core
if (parent level > core level + 1)
for each child on list
if (child level > level)
Remove Child from List (child)
if (child list ! = null) or (Subnet Member)
parent = Next Hop (Find Core(level + 1))
parent level = level + 1
Send Message (Join-Request, parent,
level, core)
else
parent = null
parent level = level
state = Off-Tree Core

Join-Pending Router
for each child on list
Remove Child from List (child)
parent = null
level = 0
if (Subnet Member)
Join Tree (0)
else
state = Off-Tree Router

On Parent Link Failure
case (state)
On-Tree Core or
Join-Pending Core
Multicast Message (Flush M e, level)
for each child
if (child level > level)
Remove Child from List (child)
if (Subnet Member) or (child list ! = null)
state = Join-Pending Core
Joirldree (level)
parent = null
parent level = level
state = Off-Tree Core

On-Tree Router or
Join-Pending Router
Forward Message (Flush Message, parent)
for each child
Remove Child from List (child)
level = 0
if (Subnet Member)
Join Tree (level)
else
parent = null
state = Off-Tree Router

Figure 6: OCBT Functions for Timeouts and Parent Link Failures

sent, the unicast routing was checked to see if the next
hop to the destination had changed. Changes in the
next hop information reflect a change in the under-
lying unicast routing that came about as result of a
link failure. This allowed the protocol to detect link
failures before the set number of keep-alive messages
were lost.

The simulations used the 12 different core sets
shown in Figure 1, with the results summarized in
Table 2. Each run shows the average performance of
OCBT and CBT for a sparse and dense receiver group
for the selected core set. The delay and the variance of
the delay are normalized to the delay and variance of a
source based tree. The source based tree was created
using CBT with a single core located at the sender
for the same two receiver groups. The delay results
were then averaged. The Transient Loops entry for
CBT shows the number of transient loops that were
able to be corrected. The Disconnected Subtree col-
umn shows the number of times a CBT sub-tree was
unable to reconnect to the main tree following a link
failure. The Loops Prevented entry shows the number
of loops caused by instability in the unicast routing
that OCBT detected and which would have formed
transient loops in CBT.

The results demonstrate that the major advantage
of OCBT is its loop freedom and its ability to correctly
reconstruct a multicast tree following a link failure. In
our simulations, a CBT sub-tree was frequently un-
able to reconnect to the multicast tree following a link
failure as described in section 2. As each set of simula-
tion runs included 138 runs of the CBT protocol, and
an average of 15.6 disconnected sub-trees were formed
during those runs, we found a disconnection rate of
11.3% under the current protocol specifications [6].

Run Level 1 Level 2
Number Cores Cores
1 340 34 15 33 26
2 32 33 40 26
3 40 26 32 33 3 40
4 210 46 8 37
5 33 15
6 26 33 40
7 40 26 32 33 15
8 26 44 18 30
9 40 26 32 33 2 10 46
10 37 2 46
11 14 24 31 45 15 30
12 17 44 31 34 32

Table 1: Cores used in simulation

Clearly, a routing protocol that is unable to find a
correct path when one exists one time out of nine is
hardly suitable for use in a large Internet.

The message count for the CBT protocol was kept
artificially low in situations when a sub-tree was un-
able to reconnect, as our simulation enforced a time-
out period for any rejoining node that detected a loop.
Had those routers been allowed to attempt to connect
as quickly as possible, the total number of messages
would have been much higher. In addition, we formed
the CBT backbone before the receivers were allowed
to join; this also lowered the total message count as it
prevented situations in which a secondary core could
not connect to the primary core.

On average, OCBT requires some additional work
to build the tree, but once it is constructed the traffic
required to maintain the tree is reduced. Intuitively,
one might expect the OCBT tree to require less traffic
to build, as lower-level cores remain in an off-tree state
until they receive a join-request. If a particular core
never receives a request for the multicast session, it
can remain off-tree and no traffic is required to build
the tree out to it. However, we found that the OCBT
takes slightly more messages to form the multicast tree

Run Build Repair Average Delay Trans. Disconn. Loops
Messages Messages Delay Variance Loops Subtrees Prevented
1

OCBT 71 4 1.5 2.5 - - 0
CBT 70 14.2 1.5 2.7 0 9 -
2

OCBT 72.5 4. 1.4 2.0 - - 0
CBT 68 4. 1.4 1.9 0 17 -
3

OCBT 71 4.3 1.3 1.6 - - 0
CBT 73 4.4 1.9 3.5 0 19 -
4

OCBT 80 5.5 1.2 1.5 - - 0
CBT 72 4.5 1.7 3.0 0 18 -
5

OCBT 72 5.2 1.3 1.6 - - 0
CBT 70 15.3 1.2 1.6 0 17 -
6

OCBT 70 4.5 1.5 2.1 - - 0
CBT 66 10.9 1.5 2.1 1 18 -
7

OCBT 79.5 4.3 1.6 2.8 - - 0
CBT 69 12 1.6 2.4 1 13 -
8

OCBT 80 7.4 1.4 1.8 - - 0
CBT 69 4.1 1.4 1.8 0 10 -
9

OCBT 78.5 4.5 1.6 3.0 - - 4
CBT 73 21.4 1.2 0.5 1 11 -
10

OCBT 75 6.0 1.7 3.1 - - 2
CBT 72 4.9 1.2 0.5 0 23 -
11

OCBT 87.5 5.9 1.2 1.5 - - 2
CBT 71 4.1 1.5 2.1 0 20

12

OCBT 75 4.8 1.4 1.8 - - 0
CBT 68 3.6 1.4 1.8 0 12 -
Average

OCBT 76 5.1 1.43 2.1 - - .67
CBT 70 8.7 1.46 2.0 .25 15.6 -
Source

Based 72 1.00 1.00

95%

C.I.

OCBT 72.7-79.3 4.5-5.7 1.3-1.5 1.7-2.5 - - 0.0-1.5
CBT 68.7-71.5 4.9-12.4 1.3-1.6 1.4-2.6 0.0-0.5 12.8-18.4 -

Table 2: OCBT vs. CBT

than that of the version of CBT we tested. This is be-
cause many children tried to connect in close succes-
sion to lower-level cores that were off-tree. As these
lower-level cores sent join acks to the joining nodes
before attempting to reach a higher-level core, many
links were formed between the core and its new chil-
dren. The lower-level core was then forced to break
some of these existing links to reach the higher-level
core. Links formed this way required five messages to
form - two for the initial node to core join, two for the
link to form from between the lower-level core and the
higher-level core, and one quit-notice sent from the
child to its former parent as it was coerced to join the
higher-level branch that was forming.

OCBT did reliably reform the tree after a link fail-
ure with fewer messages than CBT. The branches of
the CBT tree can grow fairly long, and messages can
be required to traverse the entire length of the branch
in the event of a link failure. If the failure is near
the bottom of the branch and a rejoin occurs, CBT
requires that a passive rejoin be forwarded the length
of the branch to the primary core, which then sends
a unicast message to the originator acknowledging the
passive rejoin-request to ensure that there is no loop
formed. As the unicast message does not necessarily

traverse the multicast tree on its return to the origi-
nator, we did not include it in our message count as it
may not contribute to on-tree congestion.

Similarly, if the failure is near the backbone and
the branch is flushed, then the flush must travel the
length of the branch to the receivers which then send
a join-request back to a core, resulting in messages
traversing the branch twice. OCBT reduces the traffic
requirements in both cases. OCBT does not require
that a rejoin-request be forwarded to the highest-level
core; instead it only travels as far as the next higher
core as required to rejoin the tree. The flush message
cannot destroy a branch all the way from the highest-
level core down to the receivers as control traffic is
limited to a single logical level.

As expected, the multicast trees produced by CBT
and OCBT produce more delay in delivering packets
than do source-based trees. This can be seen intu-
itively as the path a packet would take in a core based
tree might not be the shortest to each receiver since
it must detour to pass through a core. The actual de-
lay from a source to a receiver is dependent on core
placement, as no additional delay will be incurred if
the core lies on the shortest path. With poor core
placement in an OCBT tree, this could be exacer-
bated as the packet may be routed further off the
shortest path to pass through several cores. In our
simulation, the delays experienced by data packets in
OCBT were on average about 43% greater than the de-
lay experienced by a packet from a source-based tree.
Data packets sent over the tree formed by CBT expe-
rienced an average delay about 46% greater than the
source based tree. Using OCBT, it is possible that
this could be reduced by making each source a lower
level core. Nearby nodes would then connect directly
to the source, while nodes further away would receive
the multicast over the shared backbone.

Both CBT and OCBT construct and operate a fixed
tree. This has the clear drawback of requiring all data
packet transmissions to traverse specific links in the
network, regardless of congestion. This can create hot
spots at cores that must handle an excessive amount
of traffic. CBT is more susceptible to hot spots, par-
ticularly at the primary core which must receive and
reply to each passive rejoin request. Using more cores
can alleviate hot spots somewhat, as this spreads the
traffic over more cores, though this does not reduce
the traffic at CBT’s primary core. OCBT is more
amenable to use of additional cores, and does not re-
quire any single core to answer messages from the en-
tire multicast group. Another partial solution to con-
gestion over fixed links is to allow children to quit

from their parents and connect on a shorter path to
the core if one becomes available. This in fact was
first suggested by Ballardie for CBT [7], but has not
yet been included in our simulation. Another improve-
ment to be investigated will be to make each source a
local core so that near by nodes can join directly to it,
reducing the delay to those nodes.

The slightly increased number of messages required
in the construction of the tree is a very small price
to pay for OCBT compared to its major advantage:
it works correctly. CBT, in contrast, is incorrect and
does not always form a complete multicast tree during
construction or following a link failure. Permanent,
undetected loops can form in CBT that can cause com-
plete saturation of every link on the tree containing the
loop. This is clearly an undesirable characteristic of
CBT; OCBT suffers from no similar detrimental traits
and can be used safely. In addition, in a tree with
many link failures, OCBT’s reduced repair costs ac-
tually makes the amortized cost of construction lower
than CBT.

6 Core Placement

There are a number of issues concerning the place-
ment of cores in the network and the distribution of
information about the core location. Currently, we
assume that some mechanism for distributing core in-
formation is universally available and that each router
can find the address and level of any core. In reality,
this is neither desirable nor possible. A leaf router
within the United States has little use for information
about local cores in other countries, nor does it have
the space to maintain what could be large core lists.
Instead, some mechanism for leaf nodes to discover lo-
cal cores and for lower-level cores to become aware of
nearby higher-level cores is needed. This could take
the form of a multicast group server able to respond
with the identities of local cores, similar to the DNS
service.

Alternatively, cores could follow a distributed
scheme for disseminating their location and level,
broadcasting or flooding their identity and location
with an increasing time-to-live over each of their inter-
faces, or they could join a multicast group that existed
solely for the purpose of core location dissemination.
Cores need only know the addresses of the same level
and next higher-level cores, so some method of limiting
the core information that gets distributed is desirable.
Multicast distribution schemes could also work well in
a situation in which the multicast was being limited
to a particular scope, that is, limiting the area of the
network in which the multicast tree forms. Each level
of cores in the scoped area could have its own local

10

multicast address. A scheme similar to this was pro-
posed in HPIM [10]. The issue of core information
distribution is an area of future work for OCBT and
other protocols based on shared trees.

After the cores are identified and a means of deter-
mining the location of nearby cores is established, the
issue arises of whether or not to build a backbone of
cores prior to allowing any leaf nodes or lower level
to connect. In OCBT this is not strictly necessary,
although it can help prevent some worst case behav-
ior, in which the highest-level cores are forced to break
many existing links if other connections are made be-
fore the backbone forms. In CBT it is not necessary
unless one wants to be certain that secondary cores
can join the tree. In OCBT the backbone is formed
by choosing one core of the highest-level to be a con-
nection point for all of the other highest-level cores.
This core undergoes a temporary promotion to one
level higher then the rest of the highest level cores.
The other highest-level cores then join the promoted
core.

The core placement in OCBT has an important ef-
fect on the performance of the protocol in terms of
the amount of control traffic generated and the delay
imposed on data packet delivery. This is true in CBT
and PIM-SM as well. While determining optimal core
placement remains an open problem, there have been
suggestions made as to methods of migrating cores to
provide better service [11] [10]. We believe that core
placement can be made a matter of policy rather than
optimality if the scope of the multicast is limited at
each level. The flexibility of adding additional cores in
OCBT supports this approach. Core placement and
migration are important issues for our future work.

7 Conclusions

We have described an ordered extension to CBT,
called OCBT, that increases scalability, reduces re-
pair latency, completely eliminates loops, and is prov-
ably correct in forming a multicast tree. By distribut-
ing cores throughout the network and by maintaining
logical level information, OCBT allows for a flexible
multicast group in which the core structure does not
have to be fixed in advance. The distribution of cores
reduces the amount of repair traffic by limiting the
distance over which repair messages have to travel to
within the logical level.

OCBT eliminates the loops and disconnected sub-
trees that occur in the CBT protocol [9]; our simu-
lation results corroborate our verification work. The
cost of OCBT is a slight increase in the initial num-
ber of messages required to construct the multicast
tree. This is somewhat balanced by a reduction in the

amount of traffic required to repair the tree following
a link failure, and a guarantee that the tree will reform
correctly. The increase in tree construction traffic is
a result of the mechanism that breaks lower-level tree
branches to allow formation of a higher-level branch;
in some cases, this mechanism also adversely affects
the number of messages it takes to repair a failure in
the tree. On average, however, OCBT reconstructs
the tree with less traffic than CBT and does so cor-
rectly; in all cases the multicast tree will be formed
correctly and will reform correctly following a link or
node failure.

The delay induced in end-to-end packet delivery by
OCBT is comparable to that of CBT: both increase
the average delay by about 50% over the delay of a
source-based tree. The actual delay incurred is depen-
dent on the location of the cores. It may be possible to
reduce the delay in OCBT trees by making each source
a local core. Nearby nodes would then be able to con-
nect directly to the source, minimizing their perceived
delay, while more remote receivers would connect via
the shared tree.

The relative number of messages and delay induced
by CBT and OCBT are hardly indicative of the over-
all performance of each protocol. The Core Based
Tree protocol is incorrect; it does not prevent or detect
looping nor does it consistently build a correct mul-
ticast tree. The correct construction of the multicast
tree in all instances and the guarantee of loop free-
dom in the Ordered Core Based tree protocol make
it superior in operation to CBT; it is only an added
bonus that it does so with a reduced amount of con-
trol traffic. The changes that make OCBT perform
correctly and more efficiently than CBT are simple
and extensible; work done on the placement of cores
and security mechanisms for CBT are applicable to
OCBT with little or no modification. The need for a
scalable multicast routing protocol in the Internet of
the future highlights the importance of a shared tree
protocol; OCBT meets that need with correct and ef-
ficient performance.

References

[1] S. Deering, Multicast routing in a datagram internet-
work. PhD thesis, Stanford University, Palo Alto, Cal-
ifornia, Dec. 1991.

[2] S. Deering, D. Estrin, D. Farinacci, V. Jacobson,
A. Helmy, and L. Wei, “Protocol Independent Mul-
ticast Version 2, Dense Mode Specification,” internet

draft, May 1997. Work in progess.

A. Ballardie, P. Francis, and J. Crowcroft, “Core
Based Trees (CBT): An Architecture for Scalable

11

[4]

[7]

[10]

[11]

Inter-Domain Multicast Routing,” in Proc. ACM

SIGCOMM’93, pp- 85-95, October 1993.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deer-
ing, M. Handley, V. Jacobson, C. Liu, P. Sharma,
and L. Wei, “Protocol Independent Multicast-Sparse
Mode (PIM-SM):Protocol Specification,” internet
draft, September 1997. Work in progress.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson,
C. Liu, and L. Wei, “An Arcitecture for Wide-
Area Multicast Routing,” in Proc.of the ACM SIG-
COMMY4, (London, UK), pp. 126-135, Sept. 1994.

A. Ballardie, S. Reeve, and N. Jain, “Core Based
Trees (CBT) Multicast Protocol Specification,” in-
ternet draft, University College London, April 1996.
Work in progress.

A. Ballardie, A New Approach to Multicast Communi-
cations in a Datagram Internetwork. PhD thesis, Uni-
versity College London, University of London, Lon-
don, U.K., 1995.

A. Ballardie, “Core Based Trees (CBT) Multicast Ar-
chitecture,” internet draft, University College Lon-
don, February 1996. Work in progress.

C. Shields, “Ordered Core Based Trees,” Master’s
thesis, University of California, Santa Cruz, Santa
Cruz, California, June 1996.

M. Handley, J. Crowcroft, and I. Wakeman, “Hierar-
chical Protocol Indepenent Multicast (HPIM).” Uni-
versity College London, November 1995.

K. Calvert, R. Madhavanand, and E. Zegura, “A
Comparison of Two Practical Multicast Routing
Schemes,” Tech. Rep. GIT-CC-94/25, College of
Computing, Georgia Institute of Technology, Atlanta,
Georgia 30332-0280, February 1994.

