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ABSTRACT
Measurements of the Internet for law enforcement pur-
poses must be forensically valid. We examine the prob-
lems inherent in using various network- and application-
level identifiers in the context of forensic measurement,
as exemplified in the policing of peer-to-peer file sharing
networks for sexually exploitative imagery of children
(child pornography). First, we present a five-month mea-
surement performed in the law enforcement context. We
then show how the identifiers in these measurements
can be unreliable, and propose the tagging of remote
machines. Our proposed tagging method marks remote
machines by providing them with application- or system-
level data which is valid, but which covertly has meaning
to investigators. This tagging allows investigators to
link network observations with physical evidence in a
legal, forensically strong, and valid manner. We present
a detailed model and analysis of our method, show how
tagging can be used in several specific applications, dis-
cuss the general applicability of our method, and detail
why the tags are strong evidence of criminal intent and
participation in a crime.

1. INTRODUCTION
The most popular resource for the criminal acquisition

and distribution of images and video of child pornogra-
phy is peer-to-peer (p2p) networks, including BitTorrent
and Gnutella1. Law enforcement (LE) have both an
easy and difficult time policing these networks. On

1Past studies have found that 28% of possessors of child
pornography had images of children younger than 3 years old;
and that 16% of investigations of CP possession ended with
discovery of persons who directly victimized children [22].
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the one hand, it is easy to identify millions of IP ad-
dresses trafficking in known child pornography (CP), as
we demonstrate in Section 3. On the other hand, this
success falls short in several ways. IP addresses and
application identifiers are the foundation of all current
criminal network investigations, yet IP addresses do not
distinguish multiple physical machines behind a NAT
box. Similarly, it is difficult to link the activities of a
single mobile user moving among many IP addresses.
NAT and mobile users represent growing trends.

The value of evidence is the critical difference be-
tween forensics and related security research in incident
response and privacy; moreover, methods and legal pro-
cedures for collecting data differentiate network forensics
from simple network measurement. Making guesses or
inferences may be suitable for discovering the limits
of privacy or advancing incident response, and it may
generate an investigative lead, but on its own it will
not advance a legal case. IP addresses are an excellent
example of the low-value evidence that is in standard use
by criminal forensic practitioners — a recent, scathing
report by the National Academy of Sciences [18] calls
for a scientific overhaul of forensics, including digital
forensics.

In this paper, we introduce new techniques that draw
a bright line between the measurement or surveillance
of these networks and collection of forensically valid
evidence from them. Validating the evidence collected
during a network investigation is difficult because re-
mote users do not maintain a unique and unmodifiable
identifier that can be recovered upon seizure of their
machine with a warrant. We propose a novel method of
subtly tagging a remote computer over the network to
create such an identifier. Our approach is an advance
over previous methods of gathering information about
a remote computer that rely on statistical characteri-
zations, including clock skew [13] or radiometrics [1].
These past characterizations vary with environmental
factors such as temperature or attack [4], leading to
both false positives and false negatives, and crucially,
lack the ability to link together sequential observation
by independent observers. Moreover, we detail why our



approach, which is akin to marking bills, is legal.
For this work, we built a system to gather evidence

of possession of child pornography on a p2p network.
It is in use by law enforcement in 49 U.S. states who
have gathered data for us over a five-month period of
time. To date, the system and its data have been used
to obtain over 1,000 search warrants. We characterize
these measurements in order to motivate our tagging
techniques. In contrast with methods used today, if
our tags were found on a machine during a forensic
exam, it would be strong evidence that the machine
corresponds to observations of a peer made over the
network. Unlike statistical characterization methods,
our method has very strong privacy properties: the
results can be recovered by investigators only after a
search warrant is obtained from a judge. Tags observed
by third parties are meaningless. Our careful analysis
demonstrates that false positive probabilities can be
driven to near zero. The tradeoff is the challenge to
make sure tags are retained by the target, to be later
discovered during an examination.

Specifically, we make several contributions:

• We present five months of investigations into In-
ternet crime, performed with law enforcement. We
show that identifying those trafficking in child
pornography on p2p networks is simple, and that
such trafficking is unfortunately common, with mil-
lions of distinct IP addresses participating.

• We analyze the strength of digital evidence relied
on by investigators in these crimes, demonstrating
that these techniques on their own are insufficient
beyond the standard of probable cause for station-
ary IP addresses. Moreover, such techniques are
insufficient for demonstrating intent and do not
work well for mobile users.

• Based on the study, we propose a novel method
of strengthening network investigations of criminal
activity called tagging. We analyze its design and
demonstrate that the chances of false positives can
be made insignificant with relatively low overhead.

• Finally, we will show how these tags can be used in
several specific applications (including BitTorrent
and DNS), discuss the general applicability of our
method, and detail why the tags are strong evidence
of intent and participation in a crime.

We begin with a statement of the problem, and a
description of the relevant attacker models. We then
present an empirical analysis of measurements collected
on the Gnutella network and among BitTorrent peers,
with a focus on the evidentiary value of these mea-
surements. Finally, we present tagging, our proposed
mechanism for improving such evidence. This work is a
significant extension to our prior work [14,15].

2. PROBLEM AND ATTACKER MODEL
In this section, we present the motivating problem for

our work: network investigations of criminal activity,
and forensic validation of the evidence of such crimes.
We discuss the investigative process, the legal limitations
upon it, and the problem that forensic validation poses.
We also present the relevant attacker models. In later
sections, we present a set of characterizations that em-
pirically show the scope and importance of the problems
we identify here and present a more exact description of
our proposed solution.

2.1 Problem Statement
When investigating Internet crimes such as trafficking

in child pornography on p2p networks, the general ap-
proach of law enforcement is as follows. An investigator
issues queries for likely child pornography and gathers
results. Some results are chosen for further investigation,
and the investigator uses the court system to compel
an ISP to reveal a physical location that corresponds
to the likely source of network traffic that provided the
query results. Under a warrant, the location is searched,
any computer systems and media are seized, and the
media are examined for evidence of the possession or
distribution of CP. We describe the various legal restric-
tions that US investigators operate under in Section 2.2;
these restrictions influence our design decisions.

Our interest lies in effectively identifying the correct
end system. In particular, can investigators strongly link
network measurements with user behavior and intent?
Our goals are twofold: First, we aim to evaluate the
quality of the procedures currently used to perform these
measurements. We present results of our evaluation
in Section 3; in summary, we show that the current
procedure of using IP addresses and certain protocol-
specific identifiers can fail to identify a unique system
in many circumstances.

Thus, our second goal is to improve the quality of
evidence and the range of tools available to investigators.
In particular, we propose the use of tagging. The general
mechanism of tagging is to insert bit patterns that are
unique to each observation, which we call tags, into
stable storage media belonging to a suspect during the
course of the network-based investigation. These tags
can later be recovered from the storage media following a
legal seizure, not unlike marked bills might be recovered
after an undercover transaction involving stolen property
or illegal drugs. The tags can then be used to both link
the observations with the media, and to show a pattern
of behavior, and thus intent, on the part of the suspect.

2.2 Legal and Practical Issues
Data collected during a network investigation can

be used for two distinct, dependent purposes. First,
measurements can establish the identity of a suspect.



By identity, we mean a network or application identifier
that can ultimately be linked to an individual at a given
time and place. Second, measurements can be used
to establish intent to commit a crime: a user might
accidentally download a single CP file, but if they have
a large and growing collection over the course of months,
it is highly unlikely to be accidental. Discovering intent
requires consistency of identifiers over time, a property
that we observe does not always hold.

There are three key considerations for law enforcement
conducting network investigations that relate to, but
differ from, those of the typical disinterested researcher:

Evidentiary standards: Information that does not
meet an evidentiary standard of either probable cause for
warrants or beyond a reasonable doubt for convictions is
merely reasonable suspicion (a lead), and it is of lesser
value. Information collected about a target isn’t strong
evidence if it came from a third party (e.g., from one
peer about another peer). This distinction between
leads and evidence is roughly analogous to the difference
between observation studies used to generate hypotheses,
and controlled studies used to test them. US courts do
not accept evidence that is not observed in plain view,
acquired through a magistrate-approved search warrant
or other valid legal procedures. By design, our technique
leaves tags that are recoverable only via a search warrant.

Generally, investigators use network identifiers, such
as IP addresses, only as part of obtaining a search war-
rant. IP addresses are generally regarded as meeting
only the standard of probable cause — good enough
for a search, but not convincing enough for prosecu-
tion on their own. As we show here, IP addresses can
vary significantly over time, so this level of skepticism
is warranted. Application-level IDs suffer from similar
credibility problems.

Intent is part of the crime: Many crimes include
intent as a requirement for conviction. Possession of CP
is legal when unintentional, such as if it is unknowingly
held in a spam folder. Among other indicia [9], multi-
ple attempts to download CP can demonstrate intent,
as could a growing collection, or the presence of orga-
nized archives. Our proposed technique can be used to
demonstrate intent in these cases.

Public-use technology only: Kyllo v. U.S., 533 U.S.
27 (2001) established that prior to obtaining a search
warrant, investigators cannot collect information us-
ing technology that is not already in “general public
use”. In practice, this means that law enforcement is
limited to working within unmodified protocols; our
technique obeys this limitation. In U.S. v. Gabel, 2010
WL 3927697 it was ruled that software designed to mon-
itor CP sharing on p2p networks does not violate Kyllo.
And, marking bills is a technique unchallenged in courts.

Finally, we note that we define forensically valid tech-

niques based on the standards set by Daubert v. Merrell
Dow Pharma. 509 U.S. 579 (1993): they have a known
error rate, are based on testable hypotheses, are based
on accepted scientific methods, and are peer reviewed.

2.3 Attacker Models and Assumptions
We have two actors in our scenario, and we define

assumptions for both. We define the investigator’s
attacker model as follows: An investigator of a given
p2p system: (i) seeks to identify users of the protocol
in possession of, or distributing, child pornography —
typically, an IP address within their jurisdiction is the
endpoint of the network investigation; (ii) must work
within the protocol, and cannot rely upon criminal ac-
tivity or privilege escalation to gather evidence; (iii)
can consider indirect evidence to generate leads, but
must have direct evidence to succeed (i.e., seeks a di-
rect network-level connection to a remote user’s system).
A criminal’s attacker model and goals are markedly
different. A criminal: (i) will actively attempt to acquire
new CP; (ii) can redistribute and advertise possession of
CP; (iii) can actively manipulate the protocol, violate
laws, or engage in anti-forensics to hide their activities.
Clearly, a criminal actively attempting to hide their trail
will be harder to catch; we discuss the likelihood and
impact of such attempts in Section 4.2.

3. AN EMPIRICAL STUDY OF CRIME AND
IDENTIFIERS ON P2P NETWORKS

Our goal in this section is to demonstrate the low
evidentiary value of IP addresses and application-level
IDs when used on their own in network investigations.
This low value is the result of widespread use of DHCP,
mobile networking, and the presence of botnets, and we
provide some quantification of this problem.

3.1 Collection Methodology
Our empirical results are based on our five-month

measurement study of child pornography (CP) file shar-
ing on p2p networks. Our data was collected using a
tool we wrote for monitoring and investigating sharing
of child pornography on Gnutella networks [15]. As
a consequence of our efforts, our tool RoundUp has
been adopted as a standard for p2p investigations by
the US Internet Crimes Against Children (ICAC) Task
Force [21]. ICAC is a collection of law enforcement
agencies from all 50 states. Data from almost 600 partic-
ipating detectives’ actual investigations of CP trafficking
on Gnutella were stored in a centralized system under
police control; investigations were not automated. We
analyzed an anonymized version of the data.

From 10/5/2009 to 3/2/2010, LE using RoundUp
collected measurements of 3.07 million IP addresses
using 799,556 GUIDs sharing CP in plain view. A GUID
is Gnutella’s application-level identifier that is chosen at



random during installation, and changeable thereafter.
In all, almost 19,000 distinct CP files were observed
at least once on the Gnutella network. These CP files
are checked manually at least once by law enforcement,
and we identify multiple instances by hash value. The
records in the database exist due to the particulars of
the Gnutella protocol and the efforts of our LE partners.
Specifically, records are either the result of a Gnutella
search for filenames matching CP-related keywords, a
direct TCP connection to a remote peer and a browse
list of their shared files, or swarming information from a
remote peer that indicates that a third peer has also been
sharing the same file (identified by SHA-1). In all cases,
these records included remote IP, GUID, software and
version, filename, file size, and SHA-1 hash value, and
were stored with a timestamp. We used MaxMind, Inc.’s
IP-based geolocation service at the time of measurement
to place IPs in a city. The database stored information
only about peers that shared known or suspected CP.

While Gnutella is not the most popular p2p program,
our statistics show it is popular with CP file sharers.
We also characterized BitTorrent measurement data col-
lected by Menasche et al. [16]. While our study focused
on CP, the data collected by Menasche et al. measured
non-contraband content on BitTorrent. Their study
measured torrent activity between 8/2008 and 3/2009.
Their work includes the details of their measurements,
but our focus is on records indicating the IP address and
BitTorrent PeerID of participants sharing pieces of tor-
rents. Measurement of these torrents and the peers was
performed using PlanetLab-based measurement prox-
ies that gathered information from trackers. For this
dataset, all MaxMind queries were performed by us on
one day in spring 2010. Our conclusions about evidence
on Gnutella GUIDs and IP addresses are validated by
observing the same results for BitTorrent PeerIDs and
IP addresses, as we describe below. We begin with a
summary of the success and limitations of the current
investigative approach.

3.2 The Current Investigative Approach
As we stated in Section 2.1, data collected during

network investigations are used only as a stepping stone
to obtain legal authority to search a physical location
for evidence of a crime.

Success of existing approach. In the course of a
search, storage media are examined for CP and evidence
of intent, such as cached search terms. The presence of
this evidence is used to create a case for criminal posses-
sion of CP. This methodology has been used successfully
in thousands of investigations in the U.S.

Limitations of existing approach. There are three
key limitations of the current approach. (i) When net-
work investigations lead to search warrants, it is evidence
found from the search that is used as the basis for crim-
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1: For a given lower bound on the number of IP addresses (or
cities), this plot shows the number of application-level identifiers
observed to meet that bound. For example, in the Gnutella data,
all observed GUIDs (about 800,000) were observed at one or more
IPs, and about 21,000 were observed at 10 or more IPs.

inal prosecution. In fact, there is often no connection
between what is observed on the network and what is
found in the search: users may delete files, or install
new client software. As a result, it is challenging to
prosecute for distribution of CP in the case that some
CP is found during a warrant-based search, but it is not
the same files that were requested and downloaded by
LE from that peer. (ii) Positively identifying a seized
machine as the same one that was investigated remotely
is a challenge. Circumstances such as network address
translation, DHCP lease times, and mobile interfaces
can cause a mismatch. Similarly, many file sharing ap-
plications do not provide a stable unique identifier for
the user. For example, BitTorrent does not require fixed
PeerIDs, and Gnutella does not ensure each client’s self-
assigned Globally Unique ID is, in fact, globally unique.
(iii) Intent is a critical part of the definition of criminal
CP possession and distribution. Intent can be demon-
strated legally in several ways [9]. Unfortunately, a key
form of evidence of intent on p2p networks — sharing
on the network over a long period of time — cannot be
demonstrated easily in court. An even greater challenge
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2: A subset of the data from Figure 1, this plot shows the
minimum number of distinct cities or IPs associated with a given
application identifier, limited to the IDs that were observed only
in a single small geographic region.

is to definitively show that the same person is responsi-
ble for using multiple GUIDs or multiple IPs over time,
particularly over open APs in cafes or campuses.

It can be challenging to find the evidence of a crime:
The subject of investigation might hide it within the
system with encryption or steganography, or might keep
the material on a removable storage device that is phys-
ically concealed. In cases where the investigator does
not locate the material that was seen as being available,
it is not clear whether the wrong system was seized or if
the material simply hasn’t been discovered. A reliable
indication that the correct system was seized, as we
propose in the Section 4, can help resolve this dilemma
and the others above.

3.3 Identity and Intent in P2P Networks
Fig. 1 demonstrates how application IDs can fail as

a unique identifier. The figure plots the number of IP
addresses associated with each ID in the data. For
Gnutella, this consists of GUIDs that have been iden-
tified as trafficking in child pornography. In our data,
about 21,000 GUIDs were each associated with 10 or
more IP addresses. A separate line plots the same data
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3: For a given lower bound on the number of application-level
IDs, this plot shows the number of IPs observed to meet that
bound. For example, in the BitTorrent data, all observed IPs
(about 11,700,000), were observed using one or more PeerIDs,
while about 102,000 were observed using 10 or more PeerIDs.

by geographic location, with about 2,800 GUIDs present
in 10 or more cities. BitTorrent is similar. For example,
there are 5,400 PeerIDs that map to IPs found in more
than 10 cities.

One particular GUID was observed in 329 cities around
the world using 398 IP addresses. We found this GUID
was sharing exactly one file. This file (identified by hash
value) was found throughout the network with many
different filenames. We assert this GUID is actually a
botnet that responds to queries for any term x on the
network with x.mpg, always sharing the same malware
content. The existence of this GUID shows the difficulty
in assuming that GUIDs are unique identifiers for cor-
roborating an investigation with a seized machine, as
this GUID appears to be shared by many users. These
observations point to a weakness in such IDs that may
skew all data points collected, but in a non-obvious way.
Within a legal context, as compared to a network mea-
surement study, the implications are more serious: they
limit the value of evidence.

Another problem is posed by mobile users. Fig. 2
isolates IDs that report from 2 or more IP addresses all
located one state or region of a country. Since these IDs
have IP addresses that map to only one geographic area,
we assert that it is most likely one real user, as botnets
and misconfigurations are unlikely to be contained to a
geographical area. It is unclear to us if these users are
sharing their ID with friends, or driving around using
open WiFi [19,20]. This data suggests either that these
identifiers are weak, or that users actively move around
to avoid detection; either motivates our tagging solution.

Fig. 3 demonstrates the related problem of relying on
a peer’s IP address as a unique identifier of a specific
computer. The figure plots the number of IDs observed
per IP address. For example, 6,250 IP addresses were
each linked to at least 5 different GUIDs in our database.
It is not clear to us whether the GUIDs represent five
or more different users behind one NAT box or if one
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user is responsible for all activity from that IP using five
or more GUIDs. In BitTorrent, this problem is worse,
with 426,425 IPs using at leave five PeerIDs in our study.
Since PeerIDs can be generated per torrent, it is almost
impossible to link the download of a particular torrent
with a specific installation on a computer, or even a
specific user on a single computer.

Fig. 4 shows that GUIDs originating in the US are
only about 37% of all traffickers. Over 10,000 GUIDs
worldwide had 10 or more CP files, and most shared
a single file; the metric underscores the scope of the
problem as it represents only known CP. The users cor-
responding to these GUIDs often share as-yet-unknown
CP or files that have yet to be manually checked by LE,
have archived large collections that aren’t being shared
but found upon execution of a search warrant, or turn
out to be contact offenders. Fig. 5 demonstrates that
many users are observed repeatedly over long periods
of time. The figure also shows that users with larger
collections (some have thousands of files) tend to stay on
the network longer, an indicia of intent. Unfortunately,

with current techniques it is unknown if some of the
GUIDs observed once in these two figures are actually
the same user.

4. REMOTE DEVICE TAGGING
Measurements that attempt to tie observations to-

gether using information provided by an application-
level protocol may be flawed. Identifiers turn out to be
neither unique nor consistent in all cases. We propose a
novel mechanism to remotely tag a device that is under
investigation. We begin by presenting the tagging pro-
cess and follow with a discussion and analytical model
of the process. We then show several tagging opportu-
nities that exist in BitTorrent software such as Vuze,
and in DNS. We end with a discussion of the increase
in investigative power that tagging provides.

4.1 The Tagging Process
We propose the tagging of remote machines by investi-

gators, to leave a record of an observation on the remote
machine for later recovery during warranted search. We
envision the general process in three steps as follows.

First, investigators discover a vector for tags: we de-
fine a vector as a set of bits embedded in a protocol
that can be set within the bounds of the protocol by the
investigator and sent to a remote machine under investi-
gation. Further, these bits or some determinate function
of them must be stored by the remote machine on non-
volatile media. For example, as detailed in Section 4.4,
BitTorrent peers will ask each other their application
name and peer ID, and there are minimal restrictions
on these values; these values may be stored in a file at
the target. These fields can function as tags to uniquely
identify the remote machine. No unauthorized access to
the target’s machine is required; tags are inserted in the
normal function of a system.

Second, when directly connecting to a remote machine
during an investigation, investigators use an appropriate
vector to tag the machine. Tags are selected in such a
way that their meaning is not obvious and to minimize
the likelihood of collision. The investigator records the
tags used to so that they can be validated when recovered.
One method of selecting tags is to take a hash value
of text representing specific details of the investigation.
This hash can be provided as part of the search warrant
request to a judge to commit the investigator to one
or more values. Law enforcement organizations could
release publicly the root of a Merkle tree of all hash
values used for a specific time period.

Finally, upon issuance of a warrant by a magistrate,
investigators seize a machine and look for known tags
on it. These tags may be found in the expected place, or
recovery may require more advanced forensic techniques
such as file carving. Tags that are recovered from a
seized machine validate that it is a specific system that



was investigated over the network. Because recovery
requires a magistrate-approved warrant, and because
the meaning of the tags is hidden, our approach has
robust privacy properties.

There are two ways in which retrieving tags from a
machine can fail. False negatives occur when tags that
were placed by an investigator are unrecoverable, due to
deliberate user action, log rotation, cache eviction, and
so on. In these cases, the tags will not be available as ev-
idence. False positives occur when investigators recover
tags that they did not actually place — in essence, they
recover incorrect evidence. We examine these problems
in sequence below.

4.2 Impact of False Negatives
Given that in our model we allow the criminal to erase

evidence from their own machine, why do we expect our
techniques to work at all? There are several answers.
First, unlike most mechanisms in security, most forensic
mechanisms are not subject to catastrophic failure: even
if one person can and does erase evidence, that does
not imply that everyone will act accordingly, nor does it
mean that one person can erase evidence for everyone
else. Further, it is still worth investigating those that do
not erase evidence. In contrast, if there exists a security
exploit in Windows, then one user can comprise every
Internet-accessible Windows machine.

Secondly, these crimes are not committed by persons
with great savvy — the quantitative proof is the measure-
ment we present in Section 3: we identified 3,069,628 IPs
(using 799,556 GUIDs) sharing known images of con-
firmed child pornography. These observations are based
on a database of hash values. Anyone can trivially
circumvent the hash match, yet millions did not.

Thirdly, we expect that generally application develop-
ers will not help unsavvy criminals nor aim to thwart
tagging mechanisms. Since the tags are impossible to
trace back to investigators, developers will have no sense
of whether they are being used. To be sure they are not
open to any tagging and not just the mechanisms we
propose here, developers would need to perform a covert
channel analysis [7] on their program as well as all OS
libraries in use, likely blocking all caching and similar
output from both. Moreover, our methods are designed
to tag system mechanisms that improve performance
when left enabled (e.g., the DNS cache); we assert that
developers are in general more interested in improving
performance than protecting traders of child sexual ex-
ploitation imagery. Of course, the copyright enforcement
actions of trade groups such as the RIAA and MPAA
are thwarted actively by some p2p developers. However,
the civil torts these groups pursue require only relevance
for subpoena of a target machine (the 4th Amendment
does not apply) and the much lower standard of a pre-
ponderance of evidence at trial. In short, our tagging

techniques would be overkill for supporting civil torts.
Again, there is no incentive to remove tagging vectors.

4.3 Modeling False Positives
Tags are most useful as evidence after a search warrant

has been executed. Therefore, how certain are tags as
evidence? In other words, what is their false positive
(FP) rate? How do different tag sizes, numbers of tags,
and tagging schemes interact with the FP rate? We
probe these questions here.

We define false positives as when a machine that was
never tagged appears to be tagged. The analysis we
carry out to determine false positives applies equally
to the scenario where an adversary places tags on a
third-party victim’s machine in an attempt to frame the
victim, as we assume the attacker doesn’t know which
tags are used by investigators.

Model assumptions. Assume investigators tag tar-
get machines with an n-bit tag each time they are ob-
served on the network (called a session), and they keep
a database of T entries. The number of entries is exactly
the space of all tags that have ever been or will ever be
assigned for a distinct taggable event. Each entry will
include other essential information about the investiga-
tion: the name of the investigator, the date, the tagged
IP address, etc. Here we set T = 2

n
f , and therefore

the chance that a recovered tag (that was not placed
by investigators) is a false positive is T/2n. We assume
f > 1, where f is the fraction of table space used for a
tag, since when f = 1 the chance of a false positive is 1.
We discuss how f affects performance below, and in fact
it is one of two variables that must be decided ahead of
time. We let L be the number of candidate tags that
are discovered.

In the analysis below, we assume a log file is recovered
from a seized machine and that, unbeknownst to inves-
tigators, the machine has never been tagged. In other
words, any bit fields that contain apparently valid tags
contain bit strings drawn from some unknown distribu-
tion, which we assume is independent of the tagging
database. For simplicity, we assume that distribution to
be uniform.

Large tags. The simple case for tagging is when n is
very large; in that case, it is easy to make it improbable
that a tag found on seized machine falsely matches a
tag in the database. The chances that one or more of L
candidate tags match stored values in the database is

Pr{False positive} = 1− Pr{no matches}

= 1− (1− 2n/f

2n
)L (1)

However, the maximum value of n is not chosen by the
investigator; it is a constraint of the tagging vector, as
discussed in Section 4.4. For example, if L = 2000 and



n ≤ 32, the chances of a false positive is greater than
3%, which is most likely too high.

Small tags. In some situations, the tag size n is limited
and we require a low false positive rate. To overcome
this limitation, we have the investigator generate and
use many subtags per session. Subtags are generated
by splitting n-bit tags into k equal-length parts. An
investigator then subtags a remote machine k times in
a session.

There are two scenarios that we must consider.

• Case A. The subtags are stored on the target
machine in a preserved order that can be recovered.

• Case B. The subtags are stored on the target
machine in an unordered set that prevents ordered
recovery. For the unordered case, we offer two
solutions: (B1) tagging the target k times each
session; and (B2) allocating space in the subtags to
denote the order for recovery of the full tag, which
we show below is a better solution.

We derive the false positive rates of the three approaches
below and then compare their performance.

Case A: Order Preserved: Concatenated sub-
tags. In this case, we assume subtags are written to a
sequential log file, and that investigators can reconstruct
the original tag by assembling subtags in the order they
are recovered from the log file. It may be that other
data is inserted into the target’s log between subtags,
which can result in false positives. Here, we model the
most conservative case: we show the number of false
positives given that none of the L candidate subtags
were placed by investigators.

When the machine is recovered, the investigator will
accept the machine as tagged only if k of the L subtags,
when concatenated, appear in the database of T assigned
tags. The problem is that investigators must try every
combination of

(
L
k

)
found, which creates a large number

of potential false positives. Here, T = 2
n
f as before (and

subtags are n/k-bits long). The false positive rate of
the concatenated tags is

Pr{False positive} = 1− Pr{no full tag matches}

≤ 1−
(

1−
(

L

k

)
1
2n

)2
n
f

(2)

Note that this is a conservative upper bound, not an
equality, as we have elided the inclusion-exclusion terms.

Case B1: Unpreserved Order: Multiple subtags.
In this case, the target machine does not store tags in
a preserved order. In this solution to the problem, we
have investigators tag the machine with k subtags that
share the same database. Therefore, there is a limit of
T = 2

2
fk tags that can be assigned.

The false positive rate for the case of k subtags of
bn/kc-bits each is given by a Binomial distribution.

Pr{F.P.} = Pr{k or more of L subtags match}

=1−
k−1∑
i=0

(
L

i

)
(2

n
fk−

n
k )i(1− (2

n
fk−

n
k ))L−i (3)

Eq. 3 quantifies the tradeoff between using one tag of
n bits and k subtags of one bit each, and all cases in
between.

Case B2: Unpreserved Order: Labeled subtags.
When the tagged machine stores the subtags in an un-
ordered set, a better solution is to give each subtag
its own database, or to otherwise label each subtag to
constrain the set of possible databases it could be in.
For example, we can reserve log2 k bits in each subtag
to denote which database it is in. In that case, each
subtag has length r = bn/kc−dlog2 ke bits, and we have
T = 2rk/f tags possible. To determine the false positive
probability, we assume that the L candidate tags are
equally divided among the k subtag databases. There-
fore, there are (L/k)k candidate full tags to evaluate;
each must not match an assigned value.

In this case, the false positive probability is modifica-
tion of Eq. 1:

Pr{F.P.} = 1− Pr{none of (L
k )k subtags match}

= 1−
(

1− 2rk/f

2rk

)( L
k )k

(4)

As we discuss in Section 4.4.2, specific ranges of IP
addresses such as CIDR blocks can be used as tags. In
this case, the fixed prefix of the CIDR block serves in
place of the log2 k bits that would otherwise be reserved
to denote the sub-database. The no-cost nature of these
prefix bits explains the improved performance of this
method in the comparison below.

4.3.1 Sessions Taggable by Each Method
To compare these three methods, we assume the inves-

tigator knows the vector-specific length of each subtag
and value of L, and has a desired FP rate. Her job
is to select f and k such that the false positive rate is
achieved and the number of sessions that can be tagged
is maximized. In general, larger values of f and k lower
the FP rate but reduce the number of sessions that can
be tagged. We assume the goal is to minimize k, since
if more tags are required to be stored, it is more likely
that in general that the tags may be removed by normal
operation of the machine.

Accordingly, we evaluate three questions: (i) For a
desired FP rate ρ, what is the minimal value of f? (ii)
How does the number of sessions, T , that can be tagged
vary with f? (iii) What is an acceptable FP rate? We
explore these questions in several ways.
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6: The false positive rate as a function of the number of bits per
subtag, corresponding to k = 4, f = 3, and L = 2000. The exact
values plotted are from on Equations 2, 3, and 4.
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7: The number of sessions that can be tagged as a function of
the number of bits per subtag corresponding to k = 4, f = 3, and
L = 2000.

First, as quantitative examples, we compute the FP
rate ρ and number of sessions for each method when
k = 4, f = 3, and L = 2000 based on Equations 2, 3,
and 4. The false positive rates for the three techniques
is shown in Fig. 6. Note the x-axis is the subtag size
and not n. In all cases, the probability of a false positive
decreases exponentially with the subtag size, and it is less
than 10−6 when subtags are at least 22 bits. Similarly,
Fig. 7 compares the number of sessions that can be
tagged by each method, including the CIDR variant of
Case B2, based on the definitions of T for each. The
number of sessions offered by Case B1 is many orders of
magnitude lower than the other solutions.

Second, we address the broader question of how to
choose f and T for a given FP rate ρ. While Figs. 6
and 7 used the subtag size as the independent variable,
here we assume the subtag size is fixed and that L is
given.

For Case A, we solve for a minimal value of f from
Eq. 2 as

f = n/log2

 
log(1− ρ)/log (1−

`L
k

´
2n

)

!
(5)

Since T = 2n/f , we can state T in terms of ρ as

T = log(1− ρ)/ log (1−
`L

k

´
2n

) (6)

For Case B2, we have from Eq. 4

f = rk/
“
log2(1− (1− ρ)1/( L

k
)k

) + rk
”

(7)

and since T = 2rk/f , we can state T in terms of ρ as

T = (1− (1− ρ)1/( L
k

)k
)2rk (8)

Second, we offer the following simple algorithm that
allows an investigator to set f and k. (1) Select a desired
false positive rate ρ, and set k = 1, which determines
the subtag length. (2) Calculate f and the maximum
number of taggable sessions, T , using either Eqs. 5 and 6
(Case A) or Eqs. 7 and 8 (Case B2). (3) If T is too
small, increase k (which implies an increase to n), and
goto Step 2.

The question remains as to what FP rate is appropri-
ate. Historically, law enforcement around the US have
made about A = 2000 arrests per year. We use this
number as an example, however in practice, we can keep
one set of tables per available tagging channel. To set
ρ, we assume that all the arrests are mistakes, and let
ρ = 0.1A such that the expected number of arrests that
have a false positive tag is 0.1. If a more conservative
estimate is desired, Chernoff bounds can be used to
ensure that values above the expected mean occur with
very low probability.

4.4 Available Tagging Vectors
For tagging to be practicable and of maximum value,

several conditions must hold. First, a machine under
investigation must be able to receive data from a remote
source. Second, that data must be stored in a fashion
that can be retrieved by investigators if the machine is
physically seized. Third, investigators must be able to
manipulate this data in such a way that it is specific to
a single investigation — re-using tags dilutes or nullifies
their evidentiary value, violating the assumptions we
make in our security analysis. The information will only
be recovered when legal authorization by means of a
search warrant so allows. Here, we discuss the general
manner by which such opportunities can be found and
present several specific tagging vectors.

4.4.1 Discovering available vectors
In our experience, tags ultimately reside in one of two

places: log (or audit) files, and cache files. Across many



systems, log files record both regular and exceptional
events. Log files exist for audit and debugging reasons,
and typically include many details of triggering events.
Cache files exist to improve performance or reliability
of systems. For example, most p2p applications store
data about remote peers for several purposes: to allow
for decentralized operation and bootstrapping; to enable
efficient load distribution; or to enable optimizations
such as tit-for-tat. In such cases, the removal of the
taggable files would be detrimental to the performance
of the system that creates them, and therefore these are
the best candidates, as we discuss later.

There are several ways in which tagging opportunities
can be discovered. We used a manual, ad hoc process
to discover the tagging opportunities we describe below.
We conjecture that both static and dynamic analysis
techniques can be applied to applications to find tagging
vectors and we believe this is an interesting problem for
future work.

4.4.2 Specific tagging vectors
Here we give three specific examples of vectors that

currently exist in the regular functioning of p2p file
sharing software, as well as mentioning other possible
opportunities. We present these opportunities as proofs-
of-concept, and not as fully developed tagging systems.
A limitation of our work is that we do not evaluate the
churn of these systems quantitatively.

Peer caches. In BitTorrent, peers may actively down-
load and upload a torrent for long periods of time. Files
are large, and the culture of BitTorrent users is such that
continuing to provide upload bandwidth for a torrent
is encouraged, while disconnecting immediately after
finishing your own download, possibly while throttling
your own uploads is discouraged. To maintain state for
these active torrents across application restarts and ma-
chine power-offs or suspensions, most BitTorrent clients
write relevant information to a cache file of some sort.
Were this caching disabled the performance of BitTorrent
would be worse, as clients would have to re-discover all
peers after application restarts. As we discussed in Sec-
tion 2.3, removing this functionality from the program
is a poor defense.

The µTorrent client stores, per user-account and per
torrent, the IP addresses and ports of remote peers shar-
ing that torrent. (The same client, rebranded, is also the
BitTorrent client distributed by BitTorrent, Inc.) These
IPs and ports are stored in a file named resume.dat,
which is a bencoded2 dictionary (associative array). This
dictionary is keyed by the each active torrent’s infohash.
An infohash uniquely identifies the content of a torrent.
Each value associated with a torrent’s infohash is an-
other dictionary. In this dictionary, the key “peers6”
2Bencoding is a data serialization technique specified by the
BitTorrent protocol.

encodes 128-bit IPv6 addresses and 16-bit ports of peers.
IPv4 addresses are encoded as backwards-compatible
IPv6 addresses. Crucially, these addresses and ports can
be provided not just from the tracker, but from other
peers through the peer-exchange extensions to the Bit-
Torrent protocol. In our observations, these values need
not represent reachable or even valid peers to be entered
into the peer cache, presumably because well-behaved
BitTorrent clients may ignore incoming connections.

In a similar fashion, Vuze stores, per user-account, a
cache file for each active torrent, named <infohash>.dat.
These bencoded dictionaries contain a key explicitly
describing the “tracker cache”, including entries for
“tracker peers” formatted as follows:
[ { ’ip’: ’83.253.52.14’,

’port’: 6886,
’prot’: 1,
’src’: ’Tracker’},

{ ’ip’: ’87.7.101.196’,
’port’: 54650,
’prot’: 1,
’src’: ’PeerExchange’}, ...

]

Here, even the source of the remote peer is listed,
so we can exclude all non-“PeerExchanged” addresses
from consideration when recovering tags, eliminating a
potential source of false positives.

In both cases, the address and port serve as a tag,
though we have observed that the order of the entries
in the peer cache is not preserved in either case. In-
vestigators can use CIDR blocks of address space as
tags for IPv4 (e.g., leaving 24-bit subtags for /8 blocks;
see Figs. 6 and 7) and equivalent mechanisms in IPv6.
Investigators can rent small blocks of address space from
many different ISPs to prevent any particular address
range from appearing as obviously enforcement-related.

As currently implemented, neither peer caching mech-
anism requires the investigator to answer BitTorrent
protocol messages sent to the addresses that may be
stored, so the investigator can insert tags chosen from
the IPv6 or v4 address space as appropriate through the
peer exchange mechanism. If the implementation were
changed to require these remote tags to be valid, the
investigator could limit the tags to addresses under their
control, running appropriately modified p2p software.

DNS cache entries. By default, µTorrent performs
reverse DNS lookups on peer IPs once it has connected to
them, and Vuze can be configured to do likewise. Many
p2p applications include this feature. By performing
this lookup, a p2p application likely causes the host OS
to cache the returned DNS entry (supplied by LE with
unique values). The existence of this entry, and possibly
the textual value of the DNS entry itself, serve as a tag.

Other tagging opportunities. Depending upon the
p2p system and implementation, there are other targets
of opportunity. An obvious potential target is the pay-



load data being transmitted by the p2p users. Most
systems use some sort of hashing scheme to prevent
the deliberate poisoning of exchanges with bad data.
Still, if this data is ever written to disk, for example as
either as a temporary file or through the VM system,
traces of it may persist and be recoverable through stan-
dard forensic means. Relative to the tag sizes derived
earlier, the immense size of even a relatively small file
system allocation unit could provide a definitive tagging
opportunity.

Vuze log files. Vuze (formerly Azureus) is among
the most popular of BitTorrent clients. It creates user-
account-specific log files for several purposes, including
debugging. One such log file, named debug.log (or a
variation thereof, when rotated), contains at least two
obvious candidates for tagging.

The first arises from the evolving nature of the Bit-
Torrent protocol specification. In particular, the format
by which BitTorrent peers are identified, the peerID,
is not fully specified. To aid developers in discovering
and naming new BitTorrent implementations, peerIDs
in unrecognized formats are saved to the log. As these
peerIDs can be arbitrarily chosen 120-bit strings, they
present an ideal tagging target. Similarly, when peers
give longer-form identifiers, as permitted in both the
LibTorrent Extension Protocol and the Azureus Mes-
saging Protocol, unknown or mismatched identifiers are
written to the log file. Below is an example real entry,
demonstrating a large number of available tagging bits:
- [2009] Log File Opened for Vuze 4.2.0.2
- [0406 09:16:22] unknown_client [LTEP]:

"Unknown KG/2.2.2.0" / "KGet/2.2.2"
[4B4765742F322E322E32],
Peer ID: 2D4B47323232302D494775533761494E45425245

- [0406 09:22:14] mismatch_id [LTEP]:
"BitTorrent SDK 2.0.0.0" / "BitTorrent SDK 2.0"
[426974546F7272656E742053444B20322E30],
Peer ID: 2D4245323030302D275951473141595027646262

The second tagging opportunity arises from a more
subtle side channel present in the log. In particular
events for protocol errors can be triggered at timed
intervals, such that the inter-event timing forms a side
channel. As a simple example, one second between log
entries could represent an encoded 0, and two second
delays a 1. Our past work has shown that channels of
this kind are not difficult to implement and that data
can be encoded and sent reliably even in the absence
of feedback about the time on the receiving system [2].
This is made easier by the fact that BitTorrent files are
often large and clients tend to stay on the network for a
long period of time [10].

In both cases, these events are logged, but no infor-
mation is given to the user through the GUI. Both cases
clearly allow for tagging, as the log includes informa-
tion chosen by the remote peer. Further, these tags
preserve sequencing information, due to their explicit
timestamps.

4.5 Tagging to Improve Forensic Investigation
While tagging can be used by one investigator to later

identify a particular system, it becomes a more powerful
tool for law enforcement when used collaboratively by
different investigators. By providing a central repository
of tags placed on systems along with a history of when
and why the system was tagged, tagging can support a
broader and more effective investigation. This approach
mirrors the very successful database currently provided
by our RoundUp tool, which records when a particular
user, identified by IP address or p2p client GUID, was
seen sharing contraband in plain view.

Using the tag database, investigators who seize a sys-
tem can retrieve tags from the system and use them
to identify other times the system was seen and tagged
online. This can help identify the same system that was
seen with different IP addresses or that was participat-
ing in different p2p networks. The ability to recognize
the same system in different contexts provides new en-
forcement opportunities currently unavailable to LE. In
particular, it will allow LE to better understand the
proclivities of the owner of the system and allow better
understanding of the overall community of offenders.
For example, if a system is found that has been tagged
while sharing contraband frequently or over different
networks, the user may be more likely to be a serious
offender than the owner of a system that has fewer tags.

The use of tagging can also help law enforcement
understand the scope of the overall problem of CP on
p2p networks. While it is possible to count how many
users are sharing contraband over time, it is not possible
to tell which are users that are reappearing and which
are new users coming online. The tags found on seized
computer will allow better estimates of the problem
by enabling methods similar to the mark-and-release
method of estimating animal population in the wild.

5. RELATED WORK
Existing methods of matching traffic to end systems

rely heavily on mutable identifiers such as IP addresses.
Alternatives available to investigators use statistical
properties that also are both protean and easily fal-
sified. For example, a remote peer’s clock skew can be
measured based on TCP headers [13, 17], but this value
is both affected by temperature and easily falsified by
modifying the TCP header. Even radiometric identi-
fiers [1] can be attacked [4]. To our knowledge, these
statistical measures of a remote peer are not used by
practitioners because of these problems. Xie et al. [23]
also note that the ephemeral assignment of IP addresses
presents accountability problems in network security
and incident response. In contrast, our focus is on law
enforcement who would be unable to subpoena evidence
from a myriad ISPs and web sites to deploy Xie et al’s
solution. Moreover, our approach has a tunable error



rate. Their approach has the advantage of distinguishing
many hosts at once.

Our user-centric approach differs from past measure-
ment and characterization of deployed p2p networks [3,
11, 16]. These past works have focused primarily on
performance-related metrics, with an eye toward im-
proving typical user experience in file sharing networks.
In contrast, our focus is on forensic investigation and
criminal conduct. Finally, our work employs well-known
steganographic, watermarking techniques, though we
apply them to a novel scenario.

6. CONCLUSION
In this paper, we have made two major contributions.

First, we have shown through analysis of large-scale, real-
world data sets that both network- and application-level
identifiers are not reliable evidence on their own for more
than probable cause. Second, we have presented tagging,
a mechanisms for the active creation of reliable, verifiable
identifiers that easily meet the standard of beyond a
reasonable doubt. We have provided a strong analytical
model demonstrating the applicability of tagging to this
problem, and we have presented several distinct avenues
for tagging across applications and the OS.

Our work in forensics exists at the intersection of
network measurement and security, and it is informed
by our practical experience in this area with law en-
forcement colleagues. In general, the best method of
approaching real problems is often risk mitigation rather
than perfect security, and criminal investigation is no
exception. Even though evidence such as tags can be
erased or lost, catastrophic failure is not present in foren-
sics to the degree that it is in security as no one user
can erase all evidence for all users. Moreover, erasing
specific data from a machine is much harder than erasing
all data, and the latter is still an indication of some-
thing. This mode is true for other areas of practical
security. For example, despite power monitoring attacks
on cryptosystems [6,12] most people do not use tamper-
proof hardware. Although their system is not proof
against these attacks, there is still value in defeating
most other attackers. Similarly, the Tor privacy network
is architected to provide reasonable performance instead
of perfect security against known attacks [5]. And the
TSA admits it cannot defeat all terrorists, and instead
simply mitigates risks [8].
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