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ABSTRACT
We propose a demonstration of DeDoS, a platform for mitigat-
ing asymmetric DDoS attacks. These attacks are particularly chal-
lenging since attackers using limited resources can exhaust the
resources of even well-provisioned servers. DeDoS resolves this
by splitting monolithic software stacks into separable components
called minimum splittable units (MSUs). If part of the application
stack is experiencing a DDoS attack, DeDoS can massively replicate
only the affected MSUs, potentially across many machines. This
allows scaling of the impacted resource separately from the rest
of the application stack so that resources can be precisely added
where needed to combat the attack. Our demonstration will show
that DeDoS incurs reasonable overheads in normal operations and
that it significantly outperforms naïve replication when defending
against a range of asymmetric attacks.

CCS CONCEPTS
• Networks → Denial-of-service attacks; Data center networks;
• Software and its engineering→ Scheduling;
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1 INTRODUCTION
Distributed denial-of-service (DDoS) attacks have matured from
simple flooding to pernicious asymmetric attacks that amplify the
attacker’s strength by exploiting asymmetries in protocols [8–10].
These attacks typically involve clients launching attacks that con-
sume the computational resources or memory on servers in data
centers. Types of asymmetric DDoS vary, and are often targeted at a
specific protocol. An invariant of these attacks is that they exploit a
fixed resource. For example, the SlowLoris/SlowPOST attacks func-
tion by establishing HTTP connections with the victim webserver;
requests are sent at a very slow rate to inflate their lifetime, con-
suming connection resources at the target [11]. The ReDoS attack
uses specially crafted regular expressions that are slow to evaluate,
amplifying the cost of serving malicious clients’ requests [7]. Rene-
gotiation attacks exploit an asymmetry in the SSL/TLS protocol:
the server’s cost of engaging in a SSL/TLS handshake is ten times
that of a client’s [3].

A straightforward defense mechanism against asymmetric at-
tacks is simply to deploy more resources within the data center.
This is often the de facto defense deployed in production systems:
during the course of an attack, the service is automatically repli-
cated as virtual machines (VMs) on multiple machines to scale
“elastically” to support the extra load. However, this approach is
enormously costly and, as we will show, rather inefficient. When a
virtual machine comes under the load of a DDoS attack, the entire
machine is replicated. This causes replication of all resources of
the VM, regardless of which are being consumed. For example, if
only a TCP state table is being exhausted (e.g., due to a SYN flood),
the replication of the entire monolithic software stack mitigates
the attack, but does so at enormous overhead (since presumably
the TCP state table represents a minuscule portion of the system’s
overall footprint).

We present the demonstration of a radically different approach,
calledDeDoS, which aims to defuseDDoS attacks via fine-granularity
replication. DeDoS is the next version of our initially proposed
SplitStack architecture [1]. DeDoS has two key elements. First, we
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Figure 1: Example use case of DeDoS. The monolithic software (a) is transformed into a dataflow graph (b) with smaller com-
ponents, called MSUs, which are then scheduled on the available machines (c). When an attacker attempts to overload one of
the components (d), DeDoS disperses the attack by generating additional instances on other machines (e).
propose to break up the monolithic network stack into small com-
ponents that can be moved and replicated independently. This is
inspired by the current trend towards micro-services, but our vision
goes much further: we aim to operate at a much smaller granular-
ity with composable components, each of which can handle some
small, focused aspect of an application that may be vulnerable to
resource exhaustion. Example components include code specifi-
cally for performing TCP or TLS handshakes. Second, we propose
an adaptive controller that makes real-time decisions on placing
these components within physical resources in a data center, and
then adaptively clones, merges, or migrates these components in
order to meet service-level agreement (SLA) objectives. When SLA
objectives are violated, this is treated as a potential attack, and
individual components that are overloaded due to a DDoS attack
are replicated.

The DeDoS architecture offers two benefits for defending against
asymmetric attacks. First, the fine-grained components make it eas-
ier for the defender to deploy all available resources on all machines
against the attacker, exactly as needed. For instance, DeDoS could
respond to a TLS renegotiation attack by temporarily enlisting
other machines with spare CPU cycles to help with TLS handshakes.
Second, and more importantly, the reactive replication approach
is not attack-specific and can thus potentially mitigate unknown
asymmetric attacks. Once DeDoS recognizes that a component is
overloaded or its throughput appears to drop, it can respond by
replicating that particular component – without having seen the
attack before, and without knowing the specific vulnerability that
the attacker is targeting. This allows a flexible and automatic re-
sponse against mixed attacks – which is especially useful because
DDoS attacks today tend to use multiple attack vectors [4].

2 DEDOS DESIGN
In DeDoS, each application consists of several small components
that we call minimum splittable units (MSUs). Each MSU is respon-
sible for some particular functionality: for instance, a web server
might contain an HTTP MSU, a TLS MSU, a page cache MSU, and
several other MSUs of a similar size (Figure 1a). Even the TCP/IP
stack itself could be a MSU, or it could be broken into even smaller
components, such as MSUs for congestion control, buffering, or the
three-way handshake.

Related MSUs can and do frequently communicate with each
other. For instance, the packets of an incoming HTTPS connection
might enter the system at a network MSU; from there, the data
might flow through the TCP/IP MSUs, it might be decrypted by

the TLS MSU, the request might be decoded by the HTTP MSU,
etc. Collectively, the MSU form a dataflow graph that contains a
vertex for each MSU and an edge for each pair of MSUs that can
communicate (Figure 1b). This dataflow graph is usually in the form
of a directed acyclic graph (DAG).

Each DeDoS deployment contains a central controller that de-
cides how many instances of each MSU should exist, and which
nodes they should run on. Initially, the controller makes a normal
scheduling decision, based on the application’s performance re-
quirements. For instance, it might decide that a certain number of
HTTP MSUs—along with the corresponding TLS MSUs, page cache
MSUs, etc.—is needed to answer each web request within 50ms,
and it might then instantiate this many MSUs and place them on
different physical machines (Figure 1c).

However, at runtime, the controller keeps collecting statistics
about the available resources and the performance of each MSU.
If it detects that some MSU instances are overloaded due to an
unknown attack (Figure 1d), it creates additional instances of the
MSUs that are under attack, and places them on machines where
the relevant resources are still available (Figure 1e).

DeDoS does not require applications to be written from scratch:
it is possible to split existing codebases into MSUs, although the
necessary (manual) effort depends on the codebase. In some cases,
the modular nature of the code lends itself naturally to splitting;
this was the case for the user-level TCP library that we use in our
demo. There are other networking codebases – such as Click [5] –
that already have a modular architecture and could presumably be
split easily. Even for legacy applications where full-scale manual
splitting is impractical, DeDoS can still be useful if a few particu-
larly vulnerable components can be split out, moved and replicated
independently.

Another possible approach is to – partially or fully – automate
the partitioning. Some domain-specific languages are already writ-
ten in a structured manner that lends itself naturally to this ap-
proach; for instance, a declarative networking [6] application can
be compiled to a MSU graph that consists of database relational
operators and operators for data transfer across machines. Work in
the OS community [2] has shown that even very complex software,
such as the entire Linux kernel, can be split in a semi-automated
fashion. We are developing ways to further automate this process
in our ongoing work.
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