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In this paper we present the Session Token Protocol (STOP), a new protocol that can assist in
the forensic analysis of a computer involved in malicious network activity. It has been designed

to help automate the process of tracing attackers who log on to a series of hosts to hide their

identity. STOP utilizes the Identification Protocol (IDENT) infrastructure, improving both its
capabilities and user privacy. On request, the STOP protocol saves user- and application-level

data associated with a particular TCP connection and returns a random token specifically related

to that session. The saved data are not revealed to the requester unless the token is returned
to the local administrator, who verifies the legitimacy of the need for the release of information.

The protocol supports recursive traceback requests to gather information about the entire path of

a connection. This allows an incident investigator to trace attackers to their home systems, but
does not violate the privacy of normal users. This paper details the new protocol and presents

implementation and performance results.

Categories and Subject Descriptors: []:

General Terms: Design, Performance, Security

Additional Key Words and Phrases: Digital Forensics, Digital Investigations, TCP Traceback,

Privacy, Auditing and Intrusion Detection

1. INTRODUCTION

Many times, attackers log on to a series of compromised hosts before they attack
their target. This is shown in Figure 1, where Hi, 0 ≤ i ≤ n, is a set of hosts, and
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Fig. 1. Connection chain example between H0 and Hn

there is a connection Ci between hosts Hi and Hi+1 if there exists an active TCP
session between them. A connection chain, C, between hosts H0 and Hn is the set
of connections Ci, where 0 ≤ i < n.

Use of this technique complicates the determination of the attacker’s location,
and is commonly called stone stepping [Zhang and Paxson 2000]. The first step
in determining an attacker’s location is to contact the previous host, if discernible,
and ask the administrator to investigate his or her own system. To identify the
exact origin of the attack, this process continues recursively across all hosts on the
chain. However, complete forensic investigations are expensive, and at any step of
the chain, administrator may lack the skill, resources, knowledge, trust, or data to
continue the investigation.

In this paper we present a protocol named the Session Token Protocol (STOP)
[Carrier and Shields 2002; Carrier 2001], based on the Identification Protocol
(IDENT) [Johns 1993], which is designed to help automate forensics investigations
that determine attacker location while protecting user privacy. It allows individual
hosts or firewalls to request data about inbound and outbound TCP connections.
A daemon on the host that receives these requests can save application-level data
about the process and user that opened the TCP connection, and can send re-
cursive traceback requests to identify previous hosts. At each stage, only a hashed
token is returned so that at no point in the protocol does the requester ever directly
learn user or process data. Instead, the requester must contact the system admin-
istrator to redeem the token for the saved information. While STOP is limited by
deployment issues and limitations in operating systems and will not always identify
the complete connection chain, it can significantly reduce the amount of expensive
forensic investigation needed to locate the source of an attack.

In the next section we describe related traceback work and the original Iden-
tification protocol. Section 3 describes the design goals and specification of the
new protocol, along with examples of protocol operation. Section 4 provides a de-
scription of the Linux, OpenBSD, and Solaris implementations, and is followed in
Section 5 by performance analysis of the implementations.

2. BACKGROUND

There are currently two major categories of network traceback. The one that has
received more research attention is the problem of IP traceback, which pursues the
goal of locating the source of spoofed IP packets. The relative wealth of research
in this area was motivated by the problem of determining the source of denial-of-
service attacks, which tend to use spoofed packets. The other area of research is
locating the source of an attack hidden by the use of a connection chain. The use
of TCP connections generally precludes the use of spoofed packets, making the two
areas discrete but complimentary.
ACM Journal Name, Vol. V, No. N, Month 20YY.



The Session Token Protocol for Forensics and Traceback · 3

Section 2.1 briefly describes work on IP traceback, while Section 2.2 and Sec-
tion 2.3 describe the approaches to connection chain traceback that have been
attempted. The Identification Protocol is described in Section 2.4, as STOP is
designed to inter-operate and be backwards compatible with it.

2.1 IP Traceback

IP Traceback work attempts to locate the source of spoofed IP packets. The ideal
solution to locating the source of spoofed IP packets would be to prevent them
from being sent, so that the source address was always correct. Universal ingress
filtering would accomplish this [Ferguson and Senie 2000; 1998], but such filtering
is not as widespread as necessary. Other work has examined placing filters in a
few key points in the network to limit IP spoofing [Park and Lee 2001b] or using
automated methods to locate the path by which packets are arriving and placing
filters along those paths [Yaar et al. 2003; Ioannidis and Bellovin 2002], but any
common implementation also lies in the future.

A solution that has been proposed in a number of forms as a solution to dis-
tributed denial-of-service (DDoS) attacks is to probabilistically add markings to IP
packets [Savage et al. 2000; Song and Perrig 2001; Park and Lee 2001a; Dean et al.
2001; Doeppner et al. 2000; Adler 2002]. Because of the limited space available to
insert information into the packet headers, these schemes generally require that a
large number of packets be sent along the same set of paths to ensure precision.
Other solutions to DDoS attacks rely on routers counting an abnormal number
of packets at an interface to trace the source of those packets [Inc. 2003]. This
method is also imprecise and inaccurate without sufficient attack traffic. Another
method of tracing continuous streams of attack traffic involves launching counter-
attacks, which is of dubious legality [Burch and Cheswick 2000]. Techniques that
create overlay networks across which packets can be tracked have also been pro-
posed [Stone 2000; Chang et al. 1999]. All of the solutions are ineffective against
reflector attacks [Paxson 2001], in which the attack spoofs the victim’s IP address
in a request to a non-compromised system, which responds to the victim according
to some common protocol, such as DNS.

A variation of a probabilistic approach that can be somewhat effective against
reflector attacks is Itrace [Bellovin 2000]. Modifications to this scheme were pro-
posed to improve performance with fewer packets [Mankin et al. 2001], and to
allow traceback of reflector attacks by occasionally sending ICMP packets to the
source of the selected packet, rather than the destination [Barros 2000]. The prob-
abilistic nature of the scheme still requires a large flow of traffic to allow source
identification.

A proposed solution that allows location of a single spoofed packet is called
SPIE [Snoeren et al. 2001]. Because the memory of the devices used in SPIE is
expensive and limited, the information is only available for a short time before being
overwritten, unless it is requested in a timely manner, in which case it is saved.

No solution exists that allows source determination of all reflector attacks, nor
one that allows forensic recovery and source location of packets, as would be needed
for traceback, however the breadth of research is promising.
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2.2 Network-Based Connection Chain Traceback

Network-based connection chain traceback uses network traffic analysis to match
streams in a connection chain. The earliest work in stream matching proposed using
network monitoring devices to compute thumbprints based on the contents of the
stream [Staniford-Chen and Heberlein 1995]. Other work also examined matching
streams by altering their content [Wang et al. 2001]. Both schemes are easily
defeated by hop-by-hop compression or encryption, and would likely be illegal to
use without a warrant in the United States [Lee and Shields 2001], as it is against
US law for ISPs to examine the contents of packets.

Another method proposed to compare the rate at which the TCP sequence num-
bers increase in a connection [Yoda and Etoh 2000]. The results indicate that
streams in a small data set can be matched effectively, though false positives occur
in a larger data set. What is unclear is if the connections that are being matched
have experienced any significant congestion effects, as might be expected in an at-
tack chain that traverses a large network like the Internet, or if the streams were
subjected to compression at hosts which would alter the byte count significantly on
different links, as can occur when using different versions of secure shell. Work has
also appeared that uses timing information as an intrusion detection (ID) mech-
anism to find interactive streams arriving and departing a single domain over a
single link [Zhang and Paxson 2000]. The use of timing information is an improve-
ment because it is unaffected by content changes resulting from compression or
encryption, as other work has shown that attackers are limited in their ability to
effectively disguise such information [Donoho et al. 2002]. The authors also pro-
pose an architecture using their intrusion detection system as a means of forensic
traceback.

While these results show that stream matching is possible in some circumstances,
the reliability of this technique has not been demonstrated. The effects of network
delay and packet loss have not been investigated, and there has been no work done
on determining the error rates, in terms of false matches or missed matches, in a
larger network like the Internet. Notice that an attack path may cross the network
a number of times, so such effects can become significant.

2.3 Protocol-Based Connection Chain Traceback

The only published protocol-based solution is the Caller Identification System
(Caller ID) [Jung et al. 1993]. While its primary purpose is for authentication,
the data it gathers could be used to trace an attacker. The system consists of
two pieces of software that must run on each host, the Extended TCP Wrapper
(ETCPW) and the Caller Identification Server (CIS).

The typical sequence of events is as follows:

(1) A user attempts to log in to Hi from Hi−1.

(2) The log in attempt is processed by a daemon on Hi, which passes the informa-
tion to the local Extended TCP Wrapper application, ETCPWi.

(3) ETCPWi sends a request to the local CIS, CISi. The request includes the
local port, remote port, and remote address.

(4) CISi sends a request to the CIS on Hi−1, CISi−1, which is identified by the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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<CL_PORT> <SV_PORT>
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Fig. 2. Identification Protocol request

data from ETCPWi. The request includes the remote and local ports numbers.
(5) CISi−1 identifies the user session and returns a list of user id and IP address

pairs of the previous hosts through which the user logged in.
(6) CISi verifies the list by sending a request to each IP address on it. The request

includes only the user id. The remote host will return ’yes’ if the user has a
process running and will return ’no’ if the user does not.

(7) If any CIS responds with ’no’ then the user is not allowed to log in to Hi.
Otherwise, CISi saves the list, to return it when contacted by CISi+1, and
notifies ETCPWi that the user is authorized.

This system requires every host to run a CIS daemon and requires some overhead
because it must save the previous host list for all active connections. This is most
practical in an university or large corporate network but not across the entire
Internet. This protocol may also add considerable delay to the login time, especially
if a host is unreachable and the CIS must wait to timeout.

A problem that the Caller ID does not address is that of mapping a given process
with the incoming network connection that was used by the process owner to gain
access to the system. Instead, it verifies only that a process with that name is
running. Because proper checking is not done, CISi−1 can select random hosts
and common users like nobody or root. Similarly, the CIS could finger random
hosts for a list of active users and return them in the list. This scenario can be
prevented by sending the port numbers of the network connection when verifying
the list.

The Caller ID system also does not protect a user’s privacy. The system tells
every host in the connection chain which other hosts the user is logged into. This
allows hosts to create profiles of their users and maintain a list of other accounts
their users hold.

2.4 The Identification Protocol

The Identification Protocol (IDENT) [Johns 1993] is a simple 2-way protocol that
was designed to allow a server to identify the client-side user name of a network
connection. The Identification Protocol was previously called the Authentication
Server Protocol [Johns 1985] and was later renamed because of its actual function-
ality. The protocol, as shown in Figure 2, works as follows:

(1) User Ui−1 on host Hi−1 establishes a TCP connection from port <CL PORT> to
port <SV PORT> with host Hi.

(2) To determine the identity of Ui−1, Hi establishes a connection to TCP port
113 on Hi−1 and sends the following message:

ACM Journal Name, Vol. V, No. N, Month 20YY.
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<request> ::= <port-pair> <EOL>

<port-pair> ::= <integer> "," <integer>

<EOL> ::= "015 012" ; CR-LF End of Line Indicator

<reply> ::= <port-pair> ":" <reply-text> <EOL>

<reply-text> ::= <ident-reply> | <error-reply>

<ident-reply> ::= "USERID" ":" <os> ["," <charset>]

":" <user-id>

<error-reply> ::= "ERROR" ":" <error-type>

<error-type> ::= "INVALID-PORT" | "UNKNOWN-ERROR" |

"NO-USER" | "HIDDEN-USER" | <error-token>

<os> ::= "OTHER" | "UNIX" | <token> | as defined in RFC 1340

<charset> ::= "US-ASCII" | as defined in RFC 1340

<user-id> ::= <octet-string>

<token> ::= 1*64<token-characters> ; 1-64 characters

<error-token> ::= "X"1*63<token-characters>

<integer> ::= 1*5<digit> ; 1-5 digits

<digit> ::= [0-9]

<token-characters> ::= All printable ASCII except ":"

<octet-string> ::= 1*512<octet-characters>

<octet-characters> ::= <any octet from 00 to 177 except

NULL (000), CR (015) and LF (012)

Fig. 3. Identification Protocol grammar

<CL PORT>,<SV PORT>

(3) Hi−1 determines which, if any, process has a connection from port <CL PORT>
to port <SV PORT> using the source IP address of the request

(4) If the process is found, it returns a message such as:
<CL PORT>,<SV PORT>:USERID:UNIX:<USER ID>

where <USER ID> is Ui−1. In the case of error, the following is sent:
<CL PORT>,<SV PORT>:ERROR:<ERROR MSG>

The grammar for the protocol is given in Figure 3.
An Identification Protocol daemon comes with most UNIX systems and is used

for several applications, including:

Internet Relay Chat (IRC). Resolves a handle to a user name. Many IRC servers
require that a client be running an IDENT daemon. Some IRC clients contain
IDENT daemons that return false user information.

Electronic Mail. Sendmail sends an IDENT request when it receives mail to
trace forged mail. The response is placed in the email header.

Anonymous FTP. FTP servers can be configured to use the Identification Pro-
tocol to determine the user name of those who use the anonymous login.

Port Filters. Applications such as TCP Wrappers [Venema 1992] can log and
filter network requests based on IDENT replies.

As the Identification Protocol returns user information to untrusted sources, it
is not surprising that it can be used for other purposes besides security-based user
identification. Dave Goldsmith showed that RFC 1413 did not specify that the
daemon should only return the identity of connections that originated on the local
ACM Journal Name, Vol. V, No. N, Month 20YY.
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host [Goldsmith 1996]. By exploiting this, an attacker can learn as what user a
service is running. The attacker establishes a connection to the service and sends
an IDENT request for the connection. If the IDENT daemon does not distinguish
between inbound and outbound connections, it will respond with the user name of
the service.

Another undesirable consequence of running an IDENT daemon is that email
addresses can be gathered to create bulk email lists, or spam. This can occur when
a user is using the World Wide Web and connects to a web server. Once the TCP
connection is established between the HTML browser and the server, the server can
query for the user name.

Several IDENT implementations take additional steps to protect user privacy.
The daemon that ships with the OpenBSD operating system returns a string of
80 random bits in hexadecimal instead of the user name. The random string can
be translated to a user name via log entries after proper identification and need
have been presented to the system administrator. Similarly, the pidentd IDENT
daemon [Eriksson 2000] can return the user name encrypted using DES. When an
investigator needs to know the actual user, he or she can send the encrypted string
to the system administrator and he or she can decrypt it.

In theory, the Identification Protocol is useful, but in practice it has many short-
comings. These shortcomings are because of issues with trust. This protocol re-
quires a host running it to give sensitive data to an untrusted host. Furthermore,
the host receiving the data cannot trust it and therefore should not make any de-
cisions based on it. For these reasons, this protocol provides little benefit and yet
leaks private data.

The S/Ident Protocol [Morgan 1998] is an extension to the Identification protocol.
It uses IDENT to provide authentication for application protocols that do not offer
it. For example, this could be used by an HTTP server to authenticate a user before
a sensitive HTML document is sent. This protocol relies on an authentication
infrastructure, such as Kerberos, and therefore is not applicable to our needs.

3. THE SESSION TOKEN PROTOCOL

The protocol that is proposed in this paper, the Session Token Protocol (STOP),
provides additional functionality to what is offered by the Identification Protocol
(IDENT) [Johns 1993]. STOP operates using TCP to prevent a potential denial-
of-service attack. It can be run on any host with no modification of protocols,
network topology, or kernel. It saves user-level and application-level data and can
send recursive requests to trace connection chains. It can also be run in parallel
with network analysis tools like those described in Section 2.2.

3.1 Protocol Design

Design Goals
The original protocol design goals were:

(1) Must be backward compatible with the Identification Protocol as specified in
RFC1413 [Johns 1993] because of its widespread usage and implementation.

(2) Must not release any user, application, or system data until proper credentials
have been provided to an administrator.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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<request> ::= <port-pair> ":" <request-type> [":" <ip>]<EOL>

<port-pair> ::= <integer> "," <integer>

<request-type> ::= "ID" | "ID REC" ":" <sid> | "SV" |

"SV REC" ":" <sid>

<ip> ::= <byte> "." <byte> "." <byte> "." <byte>

<sid> ::= <int>

<EOL> ::= "015 012" ; CR-LF End of Line Indicator

<reply> ::= <port-pair> ":" <reply-text> <EOL>

<reply-text> ::= <ok-reply> | <error-reply>

<ok-reply> ::= "USERID" ":" "OTHER" ["," <charset>]

":" <user-token>

<error-reply> ::= "ERROR" ":" <error-type>

<error-type> ::= "INVALID-PORT" | "UNKNOWN-ERROR" |

"NO-USER" | <error-token>

<charset> ::= "US-ASCII" | as defined in RFC 1340

<user-token> ::= 1*512<token-characters>

<error-token> ::= "X"1*63<token-characters>

<byte> ::= integer values 0 to 28 in ASCII

<int> ::= integer values 0 to 232 in ASCII

<token-characters> ::= All printable ASCII except ":"

Fig. 4. Session Token Protocol grammar

(3) Must provide a mechanism to request that a daemon implementing this protocol
save additional user- and application-level data.

(4) Must provide a mechanism such that the protocol can trace a user’s path
through previous hosts.

(5) Must not release any data to eavesdroppers that they could not have determined
from other traffic on the network segment.

(6) Must be configurable to comply with the system security and privacy policies.
(7) Should be efficient and not add considerable load to the daemon host or delay

to the requester.
(8) Should allow a host that is not on the connection chain to make requests on

behalf of a host.

The standard Identification Protocol satisfies goals 1 and 7. Some implementa-
tions satisfy goals 2, 5, and 6 by returning random strings instead of user names
and returning "OTHER" instead of the actual operating system. The Identification
Protocol offers nothing similar to goals 3, 4, or 8.

Specification
The Identification Protocol satisfied many of the design goals and was used as a

basis for the additional features. The new protocol modifies the request message to
provide more options and modifies the response message to protect privacy. The
new grammar can be found in Figure 4. The request message has the following
format:

<CL PORT>,<SV PORT>:<REQ TYPE>[:<SID>][:<CL IP>]
<CL PORT> and <SV PORT> are the TCP ports of the requested connection and

the <REQ TYPE> entry specifies the request type. Its values are given in Table I.
<CL IP> is an optional IP address in the standard X.X.X.X format that can be
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table I. Session Token Protocol request types

Type Description

ID This request has the same behavior as the original Identification Protocol. The daemon saves
the user name in a log file and returns a random token.

ID REC This request will cause the daemon to log the user name and return a token. The daemon

then sends ID REC requests to the host from which the user logged in. This option requires

a random session identifier, <SID>, to identify cycles in the traceback.

SV This request will cause the daemon to not only log the user name, but also save data asso-

ciated with the process that opened <CL PORT>.

SV REC This request saves the same information as SV and also has the traceback property as de-
scribed with ID REC. This type also requires a session identifier, <SID>.

used as the remote address, instead of the address of the host that connected
to the daemon. This is intended to be used by gateways, firewalls, or Intrusion
Detection Systems (IDS). By using this, gateways can collect tokens on all outbound
or inbound connections. To prevent information gathering by attackers, no error
messages will be returned when <CL IP> is specified in the request.

The protocol uses the same response messages as the Identification Protocol,
with three exceptions. "OTHER" is always returned as the operating system type to
satisfy design goals 2 and 5 and because the operating system value is not required
to identify a session. The second exception is that "HIDDEN-USER" is no longer
required as an error message. The original intent of this message was to allow
users to specify that their user name not be sent to other systems. This protocol
only returns random tokens and therefore does not need this error type. The last
change is that only printable ASCII is allowed in the user token. The original
protocol allowed the return token to be any octet value except NULL, CR, and LF.
This protocol returns random tokens that will be later redeemed for actual data,
and it will be easier if tokens are generated using only printable ASCII.

This protocol returns a random token instead of a user name, because of the
second design goal. In some implementations, the user may ‘opt-in’ to have his or
her user name sent, to satisfy the requirements by some Internet Relay Chat (IRC)
networks.
A daemon that implements this protocol must have the following properties:

(1) Return a random token for all established outbound connections.

(2) Random tokens need not be cryptographically random, but must not contain
any obvious values related to the request, such as UID, time, or IP address.
The tokens must also be the same length for all request types and responses.

(3) Return an error for requests of TCP sessions that were not initiated by the
local host (i.e. inbound connections).

(4) Return a random token to all requests that specify the remote IP address of
the connection; this includes replacing error messages.

(5) Process requests in the original RFC 1413 format as ID type requests.

(6) Save additional user- and application-level data when SV or SV REC requests are
received (see Section 3.3).

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · Brian Carrier and Clay Shields

(7) Send requests with the same type and session identifier to the hosts that a user
logged in from when ID REC or SV REC requests are received (see Section 3.1).

(8) Save tokens from recursive traceback requests with the returned random token.
The recursive-based tokens must not be sent to the original requester.

(9) Do not process more than one request of type ID REC or SV REC from the same
host with the same session identifier for a specified number of seconds, 120 for
example. If a second request is received within the specified number of seconds
of the first, a random token is returned and the event is logged.

A daemon that implements this protocol should have the following properties:

(1) Provide an option to return a random token instead of error messages.
(2) Provide an user-based option to return the actual user name instead of a token

for an ID type request. All other request types must return a token.
(3) Provide options for what user, application, and host data to save on behalf of

SV and SV REC requests to satisfy policies or resources such as disk space.

Traceback Requests
The ID REC and SV REC request types allow tokens to be generated along an

entire path of hosts. Unfortunately, the standard UNIX environment saves little
about the previous host address. The only records of the previous host are typically
entries in wtmp or utmp files, which on many systems are host names truncated
to 16 characters. Furthermore, there is not always a clear correlation between a
process and a specific login. To solve the problem without modifying the kernel,
the process and its parent processes are analyzed and requests are sent to any host
connected to them via a TCP socket. The details of doing this are not outlined
here, but are in one author’s thesis [Carrier 2001]. Buchholz and Shields [Buchholz
and Shields 2002] have proposed a better solution to this problem by including the
previous host IP address in every process structure.

The random token should be sent back to the requester before the recursive
requests are sent. This is so the requester does not have to wait for all responses to
be received. When the responses from the previous host are received, they should
be saved with the original token. If any of the responses are sent to the requester,
then the daemon would be violating design goal 2 because the requester would learn
that the previous host is not the end of the chain.

Loop Detection Recursive traceback requests must contain a random session
identifier to prevent cycles and a denial of service situation. The daemon must
keep track of the ID REC and SV REC requests that it has seen within a specified
number of seconds. The number of seconds should be chosen such that it is larger
than the time required to trace a connection and smaller than the expected cycle
time of the 32-bit random session identifier. 120 seconds was used in the prototype
implementation. If the daemon receives a duplicate request for a TCP session with
the same session identifier and from the same host within the specified time, it must
not process the request and return a <user-token> type message. The daemon uses
all bits of the source and destination addresses and ports identify duplicate requests.

If recursive requests are sent to determine previous hosts along the connection
chain, the scenario shown in Figure 5 will cause a loop. H2 has a process that runs
the following pseudo code:
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 5. Process trees of 4 hosts in a network loop

listen (Port1);
connect (H3, Port2);
listen (Port3);

H3 has a process that runs the following pseudo code:
listen (Port2);
connect (H2, Port3);
connect (H4, Port4);

H4 runs the following pseudo code:
listen (Port4);

The attacker connects to port Port1 on H2 from H1. This will cause H2 to connect
to H3, who will then connect back to H2 and then connect to H4. Now, let the
following events occur:

(1) H4 sends a SV REC request to H3 with random session identifier SID.
(2) H3 sends a SV REC request with identifier SID to H2 because of the inbound

connection to Port2.
(3) H2 sends SV REC requests with identifier SID to H1 for the connection to Port1

and to H3 for the connection to Port3.
(4) H3 sends a SV REC request with identifier SID to H2 for the connection to

Port2. The loop is not detected on H3 because it has not previously seen a
request from H2.

(5) H2 notices that it has already processed a request from H3 with identifier SID
and does not send any more requests.

3.2 Resolving Interprocess Communication

Performing a simple ‘walk’ up the process tree may not be adequate when tracing
malicious users. As shown in Figure 6, if an attacker ran the following simple
command to ‘pass through’ host Hi, the daemon could not determine host Hi−1.

# nc -l -p 8888 | nc <Hi+1> 8889
This command uses netcat [Hobbit 1996] to listen on port 8888 of host Hi and pipes
data received on that port to another netcat process that sends the data to port
8889 on host Hi+1. When the daemon ‘walks’ up the process that connects to Hi+1

it does not encounter any other sockets. Therefore, if Hi+1 sent a request of type
SV REC the daemon would not be able to send a recursive request. By resolving the
pipe and determining which process was at the other end of the pipe, it is able to
determine the identity of Hi−1.

It is therefore important that the daemon resolve as many types of Interprocess
Communication (IPC) as possible. This includes pipes, local domain sockets (also
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INIT

SCHED

CSH

Fig. 6. Process tree of command: # nc -l -p 8888 | nc HOST 8889

Table II. User, application, and system state variables
per process per request

Process name Host name

Process identifier (PID) Boot time

Parent PID OS/version/kernel

Real and effective UID Address of requesting host

Start time Address and port of remote end of socket

Terminal device Address and port of local end of socket

Priority Type of request

Open sockets and pipes Entries in utmp for users in report

called UNIX domain sockets), and Internet domain sockets connected to localhost
or a local interface. IPC techniques such as shared memory are not addressed in
this paper.

The processes that are identified from resolving IPC must have their process tree
expanded and their sockets and pipes resolved. This continues until all sockets and
pipes have been resolved.

3.3 Saving User and Application Data

A distinct feature of this protocol is the ability to save user-level and application-
level state data. This functionality is achieved by sending an SV or SV REC request
to the daemon. Upon receiving this request, the daemon will save additional data
to a file in a directory such as /var/stop.

Table II lists data that is important to save. The first column lists those variables
that should be saved for every process that is analyzed. This includes the process
with the socket open and the parents of that process as the tree is ‘walked’. These
values could give investigators information regarding the type of software that was
being used in the attack. Furthermore, the values listed are easy to determine.
Some data, such as open files, could be useful to an investigator but is expensive to
save because the daemon would have to translate an inode number to an actual file
name. The second column lists variables that should be saved with every request.
It includes data that can help an investigator verify what operating system was
used and who made the request. This data is recommended for completeness, but
if storage space is an issue then this data may not be saved.
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Fig. 7. Simple process structure process tree

Primary Processes

1: telnet [8339] parent: 8338

Sockets:

INET TCP: 2.2.2.2:968 -> 3.3.3.3:23

2: csh [8338] parent: 8337

3: sshd [8337] parent: 8000

Sockets:

INET TCP: 2.2.2.2:22 <- 1.1.1.1:616

4: sshd [8000] parent: 1

Sockets:

INET TCP: localhost:22 <- any:0

5: init [1] parent: 0

6: swapper [0] parent: N/A

Fig. 8. Simple process structure process data

3.4 Case Studies

This section provides three examples of process trees that could exist and be an-
alyzed by a daemon that implements this protocol. Each example provides an
explanation and a possible procedure that the daemon could use to resolve the
process structure. The first example is a simple and common scenario, the second
is much more complex and unlikely to typically occur, and the third is a method
used by attackers to control a compromised system.

3.5 Simple Process Structure

The most basic traceback scenario is if a user logs into a system, gets a shell, and
then logs into another host. An example of the process trees in this scenario are
shown in Figure 7.

In this example, Alice is logged into H1. She then uses the ssh protocol to log
into H2 and from there uses the telnet protocol to log into H3. Using STOP, H3

sends a SV REC request to H2. A summary of the data saved is shown in Figure 8,
where Hi−1 has IP address 1.1.1.1, Hi has IP address 2.2.2.2, and Hi+1 has IP
address 3.3.3.3.
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The request for the socket between 2.2.2.2 port 968 and 3.3.3.3 port 23 is
sent from 3.3.3.3 to 2.2.2.2 with session id 92847523456:

968, 23: SV REC: 92847523456
The daemon on 2.2.2.2 identifies that process 8339 has that Internet socket

open. The other file descriptors are analyzed, but there are no other open sockets
or pipes. The parent of 8339 is identified as 8338, csh, and its file descriptors are
also analyzed. It is found to have no open sockets or pipes. The parent of csh is
the SSH daemon child process, 8337. It is found to have an Internet domain socket
from 1.1.1.1 using local port 22 and remote port 616. The SSH daemon parent
process, 8000, is analyzed and found to have an Internet domain socket listening
on port 22 with no connections. The parent of sshd is init and neither it nor its
parent, swapper, have any open sockets or pipes.

The list of processes and file descriptors are analyzed for Internet sockets to
localhost, local sockets, or pipes. None of these exist. The data is saved to a file,
the SHA-1 hash of the file is calculated and returned to the requester, and the list
is once again analyzed for Internet domain sockets. Process 8337 has an Internet
domain socket with host 1.1.1.1, so the following message is sent to 1.1.1.1:

616, 22: SV REC: 92847523456
The daemon on 1.1.1.1 will process the request and identify the ssh process as

having the socket open. The ssh, bash, sshd, init, and swapper processes will be
analyzed, saved to a file, and a token will be returned to 2.2.2.2. The host with
the address 1.1.1.1 will send a request to the host that connected to it through
the sshd process.

3.6 Complex Process Structure

A more complex process structure can be found in Figure 9. This process structure
contains 14 unique processes, three process groups, and six forms of interprocess
communication that must be resolved. This structure starts as only process P1

listening on an Internet domain socket. When it receives a connection, it spawns
off process P2 into its own process group and they connect with an Internet domain
socket. Process P3 is then spawned, an Internet domain connection is made, and P3

creates 9 children that can communicate via pipes. Process P4 creates an Internet
domain socket and connects to Hi+1 and a one-way communication path between
P4 and P1 exists (through P8, P5, and P2).

If this structure was running on a system, the STOP request would come from
Hi+1 for the connection to process P4 and eventually resolve to process P1. A
summary of the state data on an OpenBSD system from this lookup is given in
Figure 10. The actual numeric process identifiers have been replaced with the
process labels shown in Figure 9. Pipes are saved and resolved in OpenBSD by
using the kernel memory addresses of pipe data structures and Internet domain
sockets are resolved by comparing the local and remote address and port tuples.

When a STOP request is sent from Hi+1, P4 is identified as having the socket
to Hi+1 open. It is analyzed and found to have a pipe whose data structure at
the local end is at kernel memory address 0xE07F2600 and the data structure at
the remote end is at kernel memory address 0xE08CA780. The parent of P4, P3, is
analyzed but does not contain open sockets or pipes. The init process and swapper
processes are analyzed next, but neither have open sockets or pipes.
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Fig. 9. Complex process structure process trees

The pipe on P4 is resolved by looking for processes with a local pipe structure
at 0xE08CA780. P12 and P8 are both found with a pipe structure at this kernel
memory address.

Process P12 is analyzed and a new pipe with local address 0xE08CAE80 and
remote address 0xE0801880 is identified. The parent of P12, P10, is analyzed and a
pipe with local address 0xE0801C00 and remote address 0xE0801400 is found. The
parent of P10, P7, is analyzed, but does not contain any open sockets or pipes. The
parent of P7, P4, has already been analyzed.

The pipe that P12 has open is resolved to P11, which contains no additional file
descriptors. The parent of P11, P10, has already been analyzed.

The pipe that P10 has open is resolved to P9. It is analyzed as is the parent
process, P6. Neither of them have additional open sockets or pipes and the parent
of P6, P4, is the original process.

P8 is analyzed next, because of the pipe with P4, and a new pipe is found with
local address 0xE08CA380 and remote address 0xE07E8080. The parent of P8, P5,
is analyzed and found to have the same pipe open. It also has an Internet domain
socket on port 8012, which is connected to localhost. The parent of P5, P3, has
already been analyzed. The pipe that P8 and P5 has open is searched for, but no
other processes are identified.

The Internet domain socket connection on P5 to localhost was resolved to
process P2, which also had an Internet domain socket on port 8011 to localhost.
The parent of P2 is init. The TCP connection on P2 is resolved to P1, which is
found to have an Internet domain socket on port 8010 to host 1.1.1.1. The parent
of P1 is also init. At this point, all IPC methods have been resolved.

If the original request had type ID REC or SV REC, then a traceback request would
have been sent to 1.1.1.1 because of the connection with P1.
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Primary Processes

1: resolve [P4] parent: P3

Sockets:

INET TCP: 2.2.2.2:8526 -> 3.3.3.3:9010

Pipes:

E07F2600 -> E08CA780

2: resolve [P3] parent: 1

3: init [1] parent: 0

4: swapper [0] parent: N/A

Resolved Processes

5: resolve [P12] parent: P10

Pipes:

E08CA780 -> E07F2600

E08CAE80 -> E0801880

6: resolve [P10] parent: P7

Pipes:

E0801C00 -> E0801400

7: resolve [P7] parent: P4

8: resolve [P11] parent: P10

Pipes:

E0801880 -> E08CAE80

9: resolve [P9] parent: P6

Pipes:

E0801400 -> E0801C00

10: resolve [P6] parent: P4

11: resolve [P8] parent: P5

Pipes:

E08CA780 -> E07F2600

E08CA380 -> E07E8080

12: resolve [P5] parent: P3

Sockets:

INET TCP: localhost:8012 <- any

INET TCP: 127.0.0.1:8012 <- 127.0.0.1:32145

Pipes:

E07E8080 -> E08CA380

13: resolve [P2] parent: 1

Sockets:

INET TCP: localhost:8011 <- any

INET TCP: 127.0.0.1:8011 <- 127.0.0.1:39352

INET TCP: 127.0.0.1:32145 -> 127.0.0.1:8012

14: resolve [P1] parent: 1

Sockets:

INET TCP: localhost:8010 <- any

INET TCP: 2.2.2.2:8010 <- 1.1.1.1:1874

INET TCP: 127.0.0.1:39352 -> 127.0.0.1:8011

Fig. 10. Complex process structure process data
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Fig. 11. Reverse telnet process trees

3.7 Reverse Telnet

Reverse telnet [Scambray et al. 2001] is a technique that an attacker can use to
execute commands on a compromised system behind a restrictive firewall. For
example, a firewall may allow only port 80 and STOP traffic to the HTTP server.
The server has a Common Gateway Interface (CGI) script with a vulnerability such
that attackers can execute an arbitrary command. To gain control of the host, the
attacker must either kill the HTTP server and replace it with a shell listening on
port 80, or get the host to make an outbound connection to his or her machine.

The reverse telnet technique creates two one-way communication channels, both
of which start on the compromised host and connect to the attacker’s host. The
attacker first executes the following netcat command on his or her machine, Hi−1 :

# nc -l -p 8000
and in a different terminal:

# nc -l -p 8001
The attacker exploits the server vulnerability such that the server executes the

following command:
# /bin/telnet Hi−1 8000 | /bin/sh | /bin/telnet Hi−1 8001

A figure of this can be seen in Figure 11. The attacker is running two netcat
servers that are listening on ports 8000 and 8001 for connections. The command
that is run on the compromised host uses two telnet sessions to connect to the
two netcat servers. The firewall will not block the connections because they are
outbound. The data received on the compromised server from the telnet connection
to port 8000 is passed to /bin/sh through a pipe. The output from /bin/sh is
then passed via pipe to the second telnet session, which sends the data to port 8001
on the attacker’s system. The result of this is that the attacker can type commands
in the window with the server listening on port 8000, they will be executed by the
/bin/sh process, and the output will be sent to the other window with the second
netcat server.

The attacker, Hi−1, has IP address 1.1.1.1, the compromised server, Hi, has
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Primary Processes

1: telnet [10212] parent: 9818

Sockets:

INET TCP: 2.2.2.2:1885 <> 1.1.1.1:8000

Pipes:

0 -> 38AB64

2: server [9818] parent: 1

Sockets:

INET TCP: 2.2.2.2:80 <> any

3: init [1] parent: 0

4: sched [0] parent: N/A

Resolved Processes

5: sh [10213] parent: 9818

Pipes:

0 -> 38AB64

0 -> 38AB65

6: telnet [10214] parent: 9818

Sockets:

INET TCP: 2.2.2.2:1886 <> 1.1.1.1:8001

Pipes:

0 -> 38AB65

Fig. 12. Reverse telnet process data

IP address 2.2.2.2, and there is an IDS system on the victim’s network that sends
a request to the victim. There are two possible requests, the port 8000 connection
will be examined first. The IDS system sends the following request to the daemon
on 2.2.2.2:

1885, 8000 : SV REC : 1485730682 : 1.1.1.1
A summary of the daemon output on a Linux box is shown in Figure 12. The

daemon determines that process 10212 has the socket open and also identifies a pipe
with inode 0x38AB64. The parent process is the vulnerable server, which has an
Internet socket open on port 80. The parent of the server is init and sched, which
do not have any sockets or pipes. When the pipe with inode 0x38AB64 is resolved,
the /bin/sh process is identified, which also has a pipe with inode 0x38AB65. The
parent of the /bin/sh process is the server program, which has already been seen.
The 0x38AB65 pipe is resolved to process 10214. Process 10214 is analyzed and
found to have an Internet socket to host 1.1.1.1. The state data is saved and a
token is returned to the IDS.

The daemon will analyze the process data for Internet domain sockets to which
to send requests. The daemon cannot determine socket direction, because it is
running on a Linux system, and will send a request for the connection in process
10214 to 1.1.1.1.

If the machine that the attacker is using is also running a STOP daemon, it may
not process the request because it is an inbound connection. If the daemon cannot
determine direction, then the netcat session will be saved and a request will be sent
to the previous host.

If a request was sent for the connection to port 8001, then the same process data
would have been saved, but in the opposite order.
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4. IMPLEMENTATION

The protocol as described in Section 3 was implemented on three operating sys-
tems: Linux, OpenBSD, and Solaris. Each platform had a trait that made the
implementation distinct. The Linux implementation used the process pseudo file
system to extract detailed information about processes. The OpenBSD implemen-
tation used the KVM library and read the process table and file descriptor tables
directly from kernel memory. The Solaris implementation also used the KVM li-
brary to read kernel memory, but Solaris uses a stream design for its in-memory
network structures. This design makes it more complex to gather information than
the OpenBSD design. Space limitations preclude an in-depth discussion of these
differences, but they are available elsewhere [Carrier 2001].

The STOP daemon was based on the oidentd IDENT daemon [McCabe 2000]
and had several run-time options including:

—Always return random tokens instead of errors.
—Always return "UNKNOWN-ERROR" for all error types.
—Select what state data to save for SV and SV REC requests.
—Allow users to ‘opt-in’ to releasing their user name.
—Restrict the number of active lookups to limit the amount of resources the daemon

takes.

If users are allowed to ‘opt-in’ to their user name being released, then they can
create a file called ~/.ident that contains a list of hosts to which their user name
can be sent. All other hosts are sent a random token.

The implementation resolves all pipes, local domain sockets, and Internet domain
sockets to localhost or ones that have the same local and remote IP addresses.
The implementation also assumes that only one process has a socket open, but that
many processes would have a pipe open. The reason for this is that Internet sockets
are traditionally used for communication between hosts, but pipes are always used
for Interprocess Communication and are more likely to be used by more than one
process. IPC methods such as shared memory were not resolved.

For request types SV and SV REC, the state data was stored in a file. The SHA-1
hash of the data was computed and sent to the requester as the random token. The
SHA-1 hash is sent as the token to detect any tampering the attacker may do to
the data file. Our implementation saved all variables mentioned in Section 3.3. For
a typical process tree with six processes, the output file was roughly 1600 bytes.
If the tokens are saved to a small disk, an attacker could cause the drive to fill
with token files before the actual attack. The data files could also be compressed
to roughly 700 bytes.

For request types ID REC and SV REC, the process data is analyzed for open
Internet domain stream sockets. We tried to limit ourselves to sending requests for
inbound sockets only, but this was unsuccessful. One reason it was unsuccessful is
that only OpenBSD socket structures save data about direction. When the direction
is known, then requests are only sent to inbound sockets, but when direction is not
known requests are sent to all sockets.

Cycles among recursive requests are detected by keeping a hash table of ID REC
and SV REC requests. The hash function uses bits from the random session id,
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remote address, remote port, and local port.

4.1 Assumptions

Several assumptions were made while implementing the STOP protocol. It is as-
sumed that only one process has a socket open, but that many processes may have
a pipe open. This makes the typical scenario faster, because the program will stop
searching after identifying a process that has the socket in the initial request and
when resolving connections to the local host. Pipes are used only for IPC, while
Internet domain sockets are primarily used for communication between hosts. A
child process may have the same socket as its parent, but usually one of them closes
it after the child is created. The implementation can be easily modified if this as-
sumption is found to be invalid. This implementation did not take advantage of
the reference count value of a socket or pipe, which could be used to identify the
number of processes to search for.

An attacker could exploit this assumption by creating two processes with the
same socket and letting the child process create its own process group. If the
daemon resolves the socket to the child process, its parent is init and the previous
host will not be determined. This will only work if the daemon analyzes the child
process before the parent, which could be difficult for the attacker to ensure.

This implementation also assumes that files will not be used for interprocess com-
munication. It is possible for communication to be performed using this method,
but files are typically used for storage and not as a communication channel. This
assumption was made to make the typical scenario more efficient. If this assump-
tion is shown to be invalid, the reference count could be used to identify files that
are open by more than one process.

When sending recursive traceback requests, it is assumed that the services that
accept incoming network connections and provide a method to make outbound
network connections are creating child processes for each inbound connection. It
is further assumed that the parent is closing its copy of the socket. When these
assumptions are not true, the STOP daemon may send recursive traceback requests
to every host that is connected to the service. This could generate an avalanche
effect of traceback requests. These assumptions are made to simplify the traceback
process. Otherwise, a file descriptor flow analysis must be performed to identify an
inbound socket that can communicate with the requested outbound socket.

Finally, this implementation does not include a daemon for devices that do Net-
work Address Translation (NAT). A NAT device that runs this protocol would re-
turn a token for a STOP request, identify the internal host that has the requested
connection, and send a request to it. The response from the internal host would be
logged with the token that was sent to the original request. This implementation
was out of the scope of this project.

5. PERFORMANCE

The Linux and OpenBSD systems that were used to implement this protocol have
identical hardware and were tested for performance results. The systems had 600
MHz Intel Pentium III processors and 128MB of RAM. Though our Solaris im-
plementation was successful, we did not take performance measurements because
we lacked a modern Solaris system in our testing facility, and felt that the results
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on the old systems available would not provide an accurate representation of the
implementation. We would expect the Solaris performance to be similar to that of
the BSD system given the same hardware.

The daemon was first tested to determine how long requests would take to com-
plete. This was performed in several environments and the results are given in
Section 5.1. The system impact was also tested to determine how much a system’s
performance would be impacted by running this daemon. These results are found
in Section 5.2.

5.1 Request Processing Times

The implementation code was tested to determine how long a request would take to
complete. To simulate an actual daemon, the public interface was used. The test
program created a child process, waited for it to finish, and repeated for a specified
number of times. Each child process parsed a request string and processed it. The
time it took to process the specified number of requests was recorded and divided
by the number of requests to determine the average lookup time. The number of
lookups was varied depending on the environment so that each test took around 90
minutes to complete.

This procedure was performed on two process structures, one simple and one
complex. The results are given in the following two sections.

Simple Process Structure The test program was first run on a simple process
tree that contained six unique processes and no forms of IPC. It is the process tree
shown in Figure 7. It is assumed that a STOP daemon would process this type of
structure the most frequently.

Table III shows the average number of milliseconds per lookup from the tests.
The first data column shows the lookup time for an ID type request. As described
in Section 3.1, an ID type request is equivalent to the traditional Identification
protocol request. This was run to compare how much longer a new SV type request
takes over the original IDENT lookup. The results show that Linux is the most
efficient at determining the UID of a socket. This operation was performed in Linux
by parsing the /proc/net/tcp file and in OpenBSD by using the sysctl() system
call. Linux adds entries to the /proc/net/tcp file as a stack and the most recent
socket is on top. Typically, a request will be made for the socket shortly after it is
opened and it will therefore be one of the first entries in the file. The OpenBSD
sysctl() function uses a hash table to find the protocol control block entry for the
socket.

The second and third data columns contain the times for performing a SV type
request. The third column includes the time to save the data to a file, while the
second does not. As described in Section 3.1, a SV type request saves state data for
the process tree that has the requested socket open. From the second data column,
it is clear that it is faster to directly access kernel memory in OpenBSD than by
searching and parsing the /proc/ files in Linux. OpenBSD has a 201% increase in
lookup time between a traditional ID request and the new SV request and Linux
has nearly a 973% increase in lookup time. On average, Linux spends 136% more
time performing an SV lookup than OpenBSD does. This is because OpenBSD can
do more in kernel space and Linux must do file IO and use scanf() to determine
process data. When both platforms write the process data to file, Linux takes only
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Table III. Average lookup time for six unique processes
Platform ID SV SV with file

Linux 0.533 mS 5.718 mS 8.243 mS

OpenBSD 0.803 mS 2.421 mS 7.871 mS

Table IV. Average lookup time for 14 unique processes
Platform SV SV with 100 procs

Linux 63.354 mS 224.589 mS

OpenBSD 10.256 mS 32.059 mS

slightly longer.
Complex Process Structure The test program was then run on the 14-process

structure described in Section 3.6 and shown in Figure 9. This structure resolves
to 14 unique processes, three process groups, and contains six instances of IPC to
resolve using pipes and Internet domain sockets. This structure is not typical and
is used as an extreme example.

The testing program performed lookups on the socket from process P4 on a system
with no other users and the results can be found in data column one of Table IV.
These results show that the OpenBSD lookup time for the 14-processes structure
is 324% longer than for the six process structure. Linux had a 1008% increase over
the six process structure and was 518% longer than OpenBSD.

To simulate a loaded system, the tests were repeated with the addition of 100
processes that had two open pipe descriptors, one open file descriptor, standard
input, standard output, and standard error open. Therefore, each lookup had to
examine 600 additional file descriptors when resolving pipes. The testing program
was run again and the results can be found in the second data column. This shows
that the average OpenBSD lookup had a 213% increase with the 100 additional
processes, Linux had a 254% increase, and Linux took 600% longer than OpenBSD.

While these increases sound substantial, they are for an non-typical example. As
will be shown next, the system impact of processing requests is minimal.

5.2 System Performance

The system impact was measured to identify how much system performance would
be impacted by running this daemon versus not running the daemon. To perform
this test, a memory intensive program was written where each round took roughly
10 minutes to run with no load. The program creates an array of 1,000,000 floating
point entries. It then performs a series of floating point calculations on elements
within the array. To cause non-sequential memory accesses, operations are per-
formed on random elements in the array.

The execution time of the benchmark program was measured on the OpenBSD
and Linux systems with no other processes running to get a base time. The test
program used in the previous lookup tests was modified such that it slept for a
specified number of seconds between lookups. The test program and benchmark
program were then run simultaneously and timed. The benchmark base time was
divided by the execution time to calculate the performance impact. The impact
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Table V. System performance data
requests per minute

Platform 6 20 60 120 600 3000 6000

Linux 99.88% 99.74% 99.21% 98.45% 92.99% 75.85% 64.08%

OpenBSD 99.99% 99.90% 99.61% 99.17% 96.11% 86.96% 80.80%
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Fig. 13. Performance impact graph

percentage was compared with the number of lookups per minute being performed.
This benchmark was designed to measure both the CPU and memory access load.

Table V shows the performance percentages that were found by running the
daemon at intervals of 6, 20, 60, 120, 600, 3000, and 6000 lookups per minute.
Each lookup was a SV type request on a 6-process basic process tree with the
output printed to a file. Figure 13 shows these values in a graph.

This data shows that the daemon does not pose a significant threat to system
performance under typical operation. For a reference value, the average number
of logins per minute was calculated from the main student computer at Purdue
University. The computer, expert.cc.purdue.edu, is run by the Purdue Univer-
sity Computing Center and all graduate and undergraduate students are given an
account on it. Over a seven hour period, there were 2499 logins, or almost six per
minute. If we use this value as an upper bound for the number of requests a host
like expert would receive a minute, the daemon impact would be negligible. The
upper bound is the extreme case that every user logged into another system after
logging into expert. Few users do this on a regular basis.

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · Brian Carrier and Clay Shields

Clearly, resolving processes is an expensive operation, but the complex structure
as shown in Section 5.1 is not typical. The lookup times with the additional 100
processes shows that on a multiple user system, significant time could be spent on
these lookups and possibly result in a denial of service scenario if enough requests
are being serviced. As shown in Section 5.2, a system can process 100 requests per
second for basic process trees and only see an 20% or 36% performance decrease.
This high number of requests will most likely only occur when the host is under
attack. The daemon restricted the number of active lookups to prevent it from
consuming all of the system resources. The data presented here also shows that by
only using a process pseudo file system, as Linux does, the daemon does not scale
as well.

6. LIMITATIONS

Partial Deployment
Traceback will occur across the entire length of the connection chain only if every

intermediate host is running a STOP daemon, otherwise the chain of hosts will be
identified to the first host not running the protocol. If every intermediate host in
the chain is running the protocol, then the attacker’s IP address can be identified
even if the attacker is not running it.

When a connection chain is closed before the traceback is complete, the remaining
hosts cannot be determined, and only a partial result will be available. Most
operating systems do not save a socket’s data after it has been closed, so the
previous host cannot be identified. A feature to cache socket data would require
a kernel modification, and has been proposed in other work [Buchholz and Shields
2002].

While a trace of the entire connection chain would be optimal, partial results are
still potentially useful. STOP is not intended to be a complete traceback solution
in and of itself. Instead, it is designed to make it easier for a forensic investigator
to complete an investigation of the connection chain. At each host running STOP,
the investigator may only need to verify the integrity of the STOP daemon and
its records (as described below) instead of performing a complete analysis of the
system. Because forensic investigation is an expensive process, this will reduce the
cost and improve the efficiency of investigation.

STOP can be useful in making investigations of internal systems more efficient,
even if it only achieves limited deployment. Organizations, like governmental agen-
cies and large corporations, could have a policy that requires STOP to be run on
internal networks, and perhaps could mandate that incoming connections to their
domain honor STOP requests. These organizations, which currently have internal
networks and intranets consisting of many thousands of systems, could improve
their capability for response and decrease their investigative costs even if STOP
was not adopted across the whole Internet.

Covert Channels
Covert channels have been a concern in operating systems research for many

years [Gligor 1993], though the results of that research have yet to be applied to
the general-purpose operating systems currently in use. STOP is designed to trace
internal data flow across most of the standard IPC mechanisms, as described in
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Section 3.2. It is possible for an attacker to create an environment where processes
communicate using other forms of IPC. For example, one process may open a file,
write data to it, and close it. Another process may open the same file, read the
data from it, and close it. This is a simple form of a covert storage channel and one
that will halt an automated traceback process using STOP. It may be impossible to
prevent or detect all covert channels in a general-purpose operating system, though
recent work has proposed adding mechanisms to the kernel to trace the flow of
information through a system [Buchholz and Shields 2002].

If a covert channel exists that STOP does not detect, then a partial traceback will
exist to the host. In addition, STOP will have identified at least one process that
was involved in the covert channel and may provide clues to help the investigation
locate the channel. In the previous example, the STOP daemon would identify one
of the applications that was using the file for communications. Looking for similar
applications may identify the other process, logs, and STOP information relating
to where the user connected from. More complicated covert channels might leave
more evidence for the investigator.

Effects on Network Devices
While STOP is an end-to-end protocol, it can have an impact on a variety of

network devices that forward traffic within the network.
A device that might be impacted by STOP is a proxy. If the proxy only forwards

connections and does not allow the user to run processes, it is very easy to design
a STOP proxy that stores all user information and tokens itself and which does
not need to parse any operating system data structures to match incoming and
outgoing connections. Such a STOP proxy could be made highly efficient.

If the proxy is a firewall of the bastion host type, all connections that cross it will
require a login, and a STOP daemon will need to run on that firewall. If users cannot
run arbitrary process on the host but only connect out, the more efficient proxy
described above can be used. Otherwise, the host will need to process the STOP
requests like other systems do. Servicing a large number of STOP requests can
cause a load on the system and that excessive load might cause a denial-of-service
situation. However, as we show through measurement of our implementation, the
overhead does not seem excessive enough that this will be a more effective attack
than attacking many other services that will likely be available on the host. This
is particularly true because the lookup process is brief if the connection being
requested does not exist, and replies are rate limited for existing connections.

If a packet-filtering firewall is being used, it will have to be configured to al-
low STOP requests through transparently. Therefore, the system may have some
increased load from forwarding the STOP traffic, though the extra load from for-
warding STOP traffic would likely be negligible given the relative proportion of
interactive connections to other types of traffic in the network. The possibility
would exist for an attacker to map active IP addresses behind the firewall by at-
tempting to connect to the STOP TCP port, 113. This is no different than the
many other services that network mapping can target, and the same defenses can
be used. The simplest is to configure the firewall as a network address translation
device, which would require a daemon on the firewall that can translate STOP
requests as described in Section 4.1. Like the proxy daemon, this daemon would
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not need to analyze the local processes and could be very efficient. Some packet
filtering firewalls examine traffic and change their rules in response to what they
observe on the network. Such a firewall could be programmed to only pass STOP
requests associated with an active connection, further reducing the overhead and
the ability of attackers to use STOP for network mapping.

Another problem exists in that some network devices, such as routers and switches,
allow remote logins and can be used as stepping stones themselves. To allow STOP
to conduct traceback across these devices, the daemon would need to be ported to
them. Unfortunately, these devices have limited processing and storage resources,
but there are several possibilities for addressing these limitations. To reduce CPU
load, the lookup mechanism could be simplified to reflect that there are fewer mech-
anisms for IPC and fewer user processes. To reduce the storage requirements, the
data could be sent to a remote log server. In general, these devices present a sig-
nificant impediment to any forensic investigation because of their heavy load and
natural limitations.

Compromised STOP Daemons
This protocol may not trace every connection chain, because the daemon can be

killed on any system for which the attacker has gained root privileges. It is impor-
tant to remember that the logs of any system that has had root access compromised
cannot be fully trusted.

If the attacker kills the daemon, the situation is the same as though the host was
never running it. Therefore, Hi+1 will have a log message indicating that Hi has
rejected the network connection and the attacker’s path can be traced back to only
Hi.

If the attacker replaces the daemon with a rogue version, several situations can
occur:

—The daemon could not save any data. This is the same as if it were not running
and the path would be known to Hi, though a forensic examination might reveal
Hi−1, and the STOP trace could continue from there.

—The daemon could not send recursive requests, which would cause the path to
also end at Hi if it does not save the previous host data or at Hi−1 if it does save
the previous host data.

—The daemon could save false application and traceback data. For example, the
daemon could pick another user session at random, and claim that it was the
attacker’s session. This scenario could lead an investigator away from the true
path, but the compromised host would be investigated for malicious activity.

Because the data from a STOP daemon cannot always be trusted, the validity
of the daemon and saved data must be determined during an investigation.

Integrity of Saved Data
If the attacker has gained root access to the system, he or she can easily modify

or delete the process state files and log file entries. It is far outside the scope of
this work to prevent this, but measures can be taken to detect it.

The log entries can be protected by sending them to a log server. An attacker
must gain root access to the log server to modify the logs. An alternative is to
use cryptography to detect when a log entry has been modified [B. Schneier and J.
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Kelsey 1999; Bellare and Yee 1997]. These methods will not prevent the log from
being modified, but will identify when an entry has been changed or deleted. Using
write-once media will protect the log entries from remote intrusion and require an
attacker to be present to remove the information.

The easiest way to protect the process data files is to generate a one-way hash of
them using SHA-1 [Laboratory 1995]. The hash value is returned to the requester
as the token. When the requester redeems his or her token for the data file, the
hash can again be calculated for the file to verify it is the same value as when it
was originally created. This will show that a modification has occurred, but not
what was modified.

7. CONCLUSION

The Session Token Protocol (STOP) provides data that is commonly missing during
forensic investigations. It provides a record of socket activity and allows an attacker
who is using a series of hosts to be traced. By returning only random tokens, a user’s
privacy is protected, though other systems cannot rely on replies for authentication.

We have implemented the protocol for several different operating systems and
shown that it is effective in saving data about a network session and tracing con-
nection chains. Performance analysis shows that overhead is very low in the most
common case, and that it is not prohibitive in other cases. STOP can be used in
parallel with other traceback techniques such as network traffic analysis to provide
application-level data to investigators.

This protocol is most effective when many hosts are running it. While it could
be used for tracing TCP chains across the Internet it is more likely to be useful in
more constrained environments in which there are enforceable policies that require
the STOP daemon to be run. This could be a single network or an intranet, as the
ability to make requests on behalf of other machines provides border gateways and
intrusion detection systems with a method to request data on suspicious inbound
and outbound traffic.

STOP is the first protocol that addresses in implementation the problem of cor-
relating incoming network connections with outgoing ones in existing operating
systems, and allows it to be saved in a privacy-preserving manner. While it is clear
that STOP will not solve the problem of TCP connection-chain traceback in all
situations, it is a further step towards a solution.
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