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ABSTRACT 

In the field of network defense, very little research is 
directed toward locating the source of network attacks. This 
paper models the technical aspects of attack traceback. By 
analyzing the model of attack traceback, two fundamental 
technical problems can be identified: determining the 
immediate source of packets (which may be disguised 
through IP spoofing) and determining causality for packets 
arriving at and issuing from a host. The past and on-going 
research efforts that either directly address or are applicable 
to attack traceback are tied to the traceback technical 
model, to show the extent to which they address the 
problem, and to highlight research gaps. The paper also 
discusses some of the legal and societal roadblocks to a 
technical solution 

 
Keywords: Traceback, IP Spoofing, Network Forensics 

INTRODUCTION 

In the field of network defense, a large body of work 
addresses myriad aspects of attack prevention, detection 
and reaction. One preventive technique that is seldom 
addressed is deterrence. Most attackers are risk adverse. A 
high rate of discovery and punishment would discourage 
many would-be attackers; unfortunately, today it is easy to 
carry out attacks anonymously. Similar problems exist with 
many types of computer fraud and, in an information 
warfare scenario, locating the source of a network attack 
provides information about attackers’ identity, physical 
location, and capabilities.   

To date, there has been very little work that is intended 
to locate the source of network attacks. While there is some 
past work that attempted to identify the source of 
interactive streams [1], most recent work addresses the 
problem of locating the source of packets used for a denial-
of-service attack [2, 3, 4] - not with the intention of holding 
the attacker accountable, but instead with the intention of 
halting the attack. 

This paper explores the technical, social, and legal 
problems faced by designers of traceback systems that 
attempt to locate the particular host in the network that is 
initiating network attacks, probes, or computer fraud. By 
providing an overview of the problem, we hope to 

encourage active research in the area. Ideally, a traceback 
system would identify the human agent responsible for the 
attack, however identification and authentication of a user 
to a machine will not be addressed in this discussion of 
traceback, since it is a generic problem pervading 
information assurance. Traceback is therefore limited to 
determining the host that is the source of an attack. 
Sometimes, the identification of the attacker host will be 
sufficient to strongly implicate a particular human agent. At 
other times, the attacker host may be so publicly available 
as to make identification of the actual human agent very 
difficult. Traditional methods of crime investigation or 
intelligence gathering can be applied to assign 
responsibility to some individual. 

PROBLEM SPACE 

Attack Traceback Model 

Every active, network-based attack begins with the 
issuance of attack packets from an attacker host, used as the 
entry point into the computer network across which the 
attack occurs. In some cases, a human directly uses the 
attacker host to launch an attack. In other cases, it will be 
the point of entry into the computer network from some 
other communications network, such as a host reached by 
telephone dial-up. The attacker host generates a series of 
packets that eventually cause the arrival of attack packets at 
a victim host, the final point on the path through the 
network that is affected by the attack. The term “host” 
(generally, a human-useable system such as a PC or 
workstation) will be used in this paper, although in some 
cases the attacker or victim may be a network device that is 
usually used to support packet forwarding.  This causes no 
real loss of generality. 

The attack packets seen at the victim contain, in the 
worst case, a single clue to the identity of the attacker: the 
source IP address [5]. Most attackers take advantages of 
one or more techniques to ensure that their identity cannot 
be learned through the packet source address [2]. A network 
traceback system aims to determine this address.   

One technique for hiding the true source of packets is to 
simply forge the source address in the transmitted packets. 
Because IP routing depends on destination address alone, 
the source IP address in a packet has no necessary 
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connection with the actual source of the packet. Forging an 
address in a one-way communication is as simple as putting 
any desired address in the source address field. Forging the 
source of a two-way communication is more difficult 
because the forger may not see the traffic passing from the 
victim to the machine whose addressed is being forged. In 
attacks that exploit trust relationships based on IP 
addresses, for example, the attacker must guess the TCP 
sequence numbers in the response packets. This attack is 
possible, however, because many operating system 
implementations use easily guessable sequence number 
choices in network communication. For a simple, 
predictable two-communication, the attacker can simply 
carry out its part of the communication "in the blind". If the 
attacker lies on the path between two communicating 
parties, it is also possible to conduct a "session hijacking" 
attack that takes over a connection established by a 
legitimate user after authentication has occurred.       

The second technique for hiding the source host is by 
"laundering" the attacker's packets through some 
intermediate host [6]. This technique involves some 
application-level mechanism to transform the type or timing 
of information that leaves the laundering host. 
Schematically, laundering can be depicted as: 

p1(src: attacker, dest: launderer, contents, t) � 
p2(src:launderer, dest: victim, T(contents), t+δt) 

A packet (p1) is issued at time t from the attacker host. 
It has the source address of the attacker host, destination 
address of the laundering host, and some contents. 
Reception of p1 causes the laundering host to issue its own 
packet (p2). P2 contain the source address of the laundering 
host. This change alone disguises the attacker host's 
identity. In addition, the contents of the attacker host's 
packet may undergo some transformation T. Finally, 
issuance of the laundering host's packet may follow 
reception of the attacker host's packets by some time δt. 
The magnitude of the transformation T and the timing delay 
δt may be trivial or profound. In fact, the only connecting 
link between p1 and p2 may be one of causality. That is, the 
arrival of the attacker host's packets in some way causes the 
laundering host to send its packets. While communications 
between the attacker, laundering and victim hosts may be 
two-way, the return communications are not disguised. 

To illustrate the transformation of contents, suppose that 
the attacker host telnets to a laundering host, and then opens 
a secure shell for communication to the victim host. While 

the attacker is opening the shell, his commands to the 
laundering host are executed on that host. These commands 
cause the laundering host to initiate a connection to the 
victim. During this stage of the attack, the laundering host 
transforms the attack packet contents from Unix commands 
(arriving at the launderer) to TCP connection establishment 
(leaving the launderer). Once the connection is established, 
however, the attacker's packets contain commands intended 
for the victim host. The laundering host no longer executes 
(transforms) them; it simply repackages them and passes 
them on.   

A timing delay may be created innocently through 
system processing delays, or be deliberately introduced by 
the attacker to disguise his role in the attack. This could be 
done either to put time between his interaction with the 
laundering host and the laundering host's interaction with 
the victim, or to disguise the timing signature of his real 
time communications with the victim through the 
laundering host. For example, an attacker may introduce a 
script on a laundering host, set to run at a future date. 
Alternately, he could install a program on the laundering 
host to introduce delays in the passage of his attack packets.   

Figure 1 depicts a simple model of an attack that 
incorporates all the elements an attacker might use to hide 
his identity, although not in every possible combination. 
Each box on this diagram represents one (or more) hosts on 
the attack path. These hosts represent the typical ways that 
attackers use laundering hosts to disguise their identity. A 
single attack may not incorporate all different types of hosts 
and obscuration techniques.  

The attacker host may initiate communications with a 
stepping stone host - a compromised host that acts as a 
conduit for the attacker host's communications. By 
definition, the attacker's communications are not 
fundamentally transformed or delayed by a Stepping Stone 
host. Although the communications flowing through the 
stepping stone are unchanged in essence, they may be 
changed in superficial but confounding ways. For example, 
content may appear to change because of encryption. 
Random timing changes may occur as the communications 
pass in and out. An attack may pass through more than one 
stepping stone host before reaching the victim. The classic 
penetration attack is usually conducted through multiple 
stepping stone hosts to prevent identification of the 
attacker. 

 
Malicious Host Compromised Host Uncompromised Host

STEPPING
STONE REFLECTOR VICTIMZOMBIEATTACKER

 
 

Figure 1 – Attack Traceback Model



ISBN 0-7803-9814-9/$10.00 © 2001 IEEE  241 

The attacker host may initiate communications with a 
zombie host, either directly or through one or more 
stepping stone hosts. By definition, a zombie is a 
laundering host that fundamentally transforms and/or 
delays the attacker’s communications before they continue 
down the attack path. For example, the attacker host may 
install a Trojan on the zombie host timed to execute 
minutes, days or even weeks after the attacker's contact. 
Thus the attacker host's communications may not be 
contiguous in time with the downstream attack 
communications. The content of the communications may 
be transformed as well. For example, a single command 
input from the attacker host may trigger execution of a 
planted script that issues a series of entirely different 
commands down the attack path.  The distributed denial-of-
service attack uses zombie hosts in this way [7]. 

The next host in the traceback model depicted in Figure 
1 is a reflector host. Unlike the stepping stone or zombie, 
the reflector is an uncompromised host that cooperates with 
the attack in an innocent manner consistent with its normal 
function. For example, the attacker host (either directly or 
via stepping stones and/or zombies) may send a packet 
designed to elicit a response from the reflector. If the 
victim's source IP is spoofed as the packet source, then the 
reflector will innocently direct its response toward the 
victim. The response packet (or packets) constitutes the 
attack. Because the reflector host does not need to be 
compromised to participate in the attack, the attacker may 
never have communicated with the reflector prior to the 
attack. No trace of the attacker may be present in old log 
files, as will be the case with any compromised laundering 
host.      

Fundamental Traceback Problems 

Analysis of the traceback model shows that there are 
two distinct sub-problems that are fundamental to the 
general problem of tracing an attack back to the attacker 
host. The first is identifying the source of packets. Because 
of the possibility of IP source address forging, the apparent 
source of the packets arriving at any downstream host in the 
traceback model may be incorrect. The first problem in 
traceback, then, is to learn the true identity of the upstream 
host in all the host-to-host communication paths.   

Once the source of a packet stream is identified as a 
laundering host, the second problem arises. That problem is 
one of discovering causality in communications into and 
out of the same host. The stepping stone host represents a 
special case of determining causality. Since the stepping 
stone acts as a mere conduit for the attack, the packets it 
sends have been sent to it from some host further upstream 
on the attack path.  Potentially, the upstream host can be 
identified by matching the two communication streams - 
into and out of the stepping stone. This matching may be 
complicated by apparent changes in content, for example 
through encryption, or timing variations caused by natural 
system delays. To further complicate the problem, the 

stream matching may not take place on either side of a 
single host. If the attack path passes through hosts outside 
the area that can be observed by the traceback, then the 
stream matching may have to be done between streams into 
and out of two hosts separated by an unknown number of 
intermediate stepping stones. In this latter case, not only do 
the streams need to be matched, but also in the general case, 
the matching stream may need to found. In general then, 
traceback through stepping stone hosts requires determining 
if two communications streams, viewed at different points 
in the network, have the same origin and are essentially the 
same stream.   

The zombie host represents the far more general 
causality problem. Here, the upstream communication that 
resulted in the attack is not similar in content and/or 
connected in time to the communications downstream from 
the zombie. All that is known is that, at some point in time, 
a communication into the zombie caused the observed out-
going packet stream. Some intermediate transforming event 
(e.g., expiration of a timer, execution of a Trojan program) 
occurs between the in-bound and out-bound portions of the 
attack.  

Traceback Characterization 

The result of an attack traceback can be characterized 
by three parameters: precision, accuracy, and timeliness. 
Alternative solutions to the attack traceback problem may 
yield results that differ in these characteristics.   

Precision is a measure of the exclusivity of the 
traceback result. The attacker host might be identified as 
one of a group of hosts. For example, a traceback might be 
able to identify the source of an attack to within a particular 
LAN, to a host connected via one particular ISP, or even as 
a host in some particular country. Some methods of 
traceback might even yield a group of hosts that have no 
particular common tie except that they are all consistent 
with the clues followed by the traceback. Some methods 
may yield results of varying precision, depending on the 
traceback environment encountered during each particular 
attempt.   

Accuracy is a measure of correctness of a traceback; 
that is, given that a traceback results in identification, how 
likely is that identification to be correct? Some traceback 
methods may identify a host as consistent with a particular 
attack, but not necessarily the only possible attacking host. 
If a traceback solution can result in a false identification, 
then ideally the solution will also quantify the probability 
that the result is correct.   

Precision and accuracy may also be a function of how 
far back on the attack path the traceback goes. For example, 
some solutions may be able to identify the first in a series of 
stepping stone hosts with 100% accuracy and precision. 
Beyond that point, precision, accuracy or both may 
degrade.   

Timeliness is a measure of when a traceback result can 
be obtained. Some solutions may only give a result while an 
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attack is in progress. Other solutions may require access to 
data that can only be acquired post-attack. Some solutions 
may depend on the existence of data that has a limited 
lifetime. Versatile traceback solutions, usable during, 
immediately following, or long after an attack, are probably 
less tractable than solutions that operate in a specific 
timeframe. 

Environmental Factors 

A number of factors can either simplify or complicate 
the execution of an attack traceback. One of these is the 
network environment. The network environment for 
traceback ranges from completely controlled to totally 
uncontrolled. The controlled environment is a network 
under a single administration that dictates the network and 
desktop configurations. Tools for traceback (e.g., altered 
routers, specific host or network monitoring) can be 
mandated, and the potential sources and types of network 
communications are constrained. An example of traceback 
in a totally controlled environment might be finding the 
source of an insider attack within a highly secure network. 
In this environment, the traceback problems are more 
tractable. Typically, the network environment will be less 
controlled. For example, the typical intranet where the 
administrators control the network but not the desktop 
configurations is a partially controlled environment. The 
Internet today typifies an entirely uncontrolled 
environment. It is possible that the general traceback 
problem cannot be solved in the totally uncontrolled 
environment. This possibility leads to a host of research 
questions regarding the degree of control over the 
environment that is necessary for traceback to succeed, at 
least some substantial portion of the time.   

Another factor that affects traceback is the nature of the 
attack itself. The salient attack features are the amount of 
traffic and time extent of the attack. At one extreme, an 
attack might consist of a single packet originating at the 
attacker host. The general traceback problem might not 
solvable for this case; on the other hand, this extreme may 
not be representative of any real attacks. In general, an 
attack generates a certain amount of traffic along the attack 
path, and is on-going for some time extent. The more 
information that is transferred and the longer that the attack 
is in progress, the more tractable the traceback problem 
becomes. If the usual preparatory period is included in the 
definition of the "attack", then the typical attack may 
involve a substantial amount of traffic and time extent. On 
the other hand, the preparatory period may pass unnoticed 
until the actual attack occurs. If so, not all traceback 
solutions can take advantage of it. 

Traceback Applications 

There are a number of applications for traceback. Each 
of these has unique requirements in terms of traceback 
accuracy, precision, and timeliness. Some of the possible 

applications for traceback are attack reaction (that is, 
stopping an on-going attack), future attack prevention, 
establishment of liability, and prosecution of the attacker.   

For attack reaction, a traceback solution must operate in 
real time, and have good accuracy. The accuracy of the 
identification will, of course, determine how effective the 
reaction is; if the source of the attack is inaccurately 
identified, no action taken against that source can stop the 
attack. High precision may not be required. For example, if 
an on-going attack can be traced back to some particular 
input port on a router, a certain LAN, or even a domain, 
filtering may be used to end the attack. Of course, the 
precision of the traceback and the subsequent filtering 
determines how much impact the attack reaction has on 
nominal traffic.   

For future attack prevention, the traceback does not 
have to operate in real time as long as it can be completed 
in time to take preventive measures before the next attack. 
In general, the precision must be much higher than for 
attack reaction. For example, while it might be acceptable 
to filter traffic from a fairly large segment of the Internet 
for a short time to restore partial operation during an attack, 
such an approach is unacceptable in the long term. If the 
attack can be identified as coming from some relatively 
bounded portion of the network, however, more 
preventative options are available. If a very precise 
identification can be made, selective filtering and possibly 
even arrest and prosecution are viable prevention measures. 
If the attack can be identified as originating from some 
network under a single administration, the evidence could 
persuade the administrators to institute stricter security 
measures. An attack identified as originating from a 
particular country could elicit diplomatic or military 
actions. As with attack reaction, the ultimate effectiveness 
of attack prevention will depend on the accuracy of the 
identification. The penalty for an inaccurate identification 
can be more serious than merely remaining open to further 
attack; for example, a military action against the wrong 
country would have very far-reaching and unfortunate side 
effects.   

For the purpose of establishing liability, the traceback 
must occur in a timeframe consistent with the existence of 
ephemeral data and the statue of limitations that applies to 
each particular case. High precision may not be required; in 
fact, it can be argued that traceback to the first entity with 
"deep pockets" - such as a large corporation intranet or a 
large ISP - is best for in this case. Criminal prosecution 
differs from liability in that high precision is required. In 
general, obtaining a criminal conviction will require 
identification of one or more individual attackers. A high 
probability of accuracy may be enough to obtain a 
favorable verdict in either case.   

Consideration of the various applications for traceback 
leads to several general observations. First, the applications 
for traceback overlap in some areas. For example, criminal 
prosecution is one way to prevent a future attack (at least, 
by that individual). When they do overlap, then the most 
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stringent set of requirements for the traceback apply. 
Second, good to high accuracy is required in every case. 
Thus, accuracy considerations should drive the search for a 
traceback solution. Finally, it should be noted that the 
application requirements for traceback do not need to be 
met completely by any automated or computer-aided 
technical solution. For example, if an automated traceback 
can identify several candidate sources for an attack, then 
the candidates may be winnowed down using "outside" 
information, such as work records, interviews, telephone 
records, etc. 

SOLUTIONS SPACE 

Each of the fundamental traceback problems identified 
above requires a unique solution. Some approaches for each 
are described below. Integration of the individual problem 
solutions into an infrastructure will be needed to perform a 
complete traceback. Pure technical solutions for traceback 
may be possible; however, the technical solutions cannot be 
implemented unless they conform to certain legal and 
societal constraints. Each of these topics is addressed 
briefly below. 

Packet Source Identification 

The problem of identifying the source of any given 
packet arriving at a host is tantamount to tracing the 
passage of the packet backwards through the switching 
fabric of the network. Thus the candidate solutions for this 
fundamental part of a complete traceback rely on detecting 
which routing devices handled the packet. Given enough 
resources, this is the one fundamental traceback problem 
that can be said to have a guaranteed technical solution. 
Suppose for example, that every routing device in use today 
could be instantly replaced with one that implements the 
following process: When receiving a packet from a 
directly-connected host, the router clears out a "route trace 
table" (sized to accommodate the maximum number of 
hops), and places in it the physical address of the directly-
connected host and its own unique router ID. A router that 
receives a packet from another router places its ID into the 
next available slot in the table. At the destination host, the 
entire route is contained within each packet. If implemented 
in the routing device hardware, where it could not be 
subverted by any network-based attack, then at least the 
source router for all packets could be uniquely and securely 
identified. The source host could not be spoofed either, 
without spoofing the physical address of the host, more 
difficult than spoofing the source IP in the packet header.   

The practical drawbacks to this scheme are immediately 
obvious: implementation adds to the routing overhead and 
requires changes to all routing device hardware, the 
network protocol and the minimum size of a packet. The 
current research initiatives in route traceback focus on 
addressing these practical difficulties. Three distinct 
approaches have been developed: 1) identifying the route 
within the packet without increasing the packet size, 2) 

identifying the route using extra packets generated by the 
routing devices, and 3) actively querying routing devices 
about traffic they have handled.   

The first approach requires overload of some field 
already present in the IP packet header with route 
identification material [2]. The essence of this approach is 
to encode a unique route through a potentially large number 
of devices within a strictly limited number of bits, and 
furthermore, to do it in a secure (unspoofable) way. 
Although there is an obvious limit to the amount of 
information that can be contained within a limited field, the 
fact that each router is only connected to a few other routers 
makes the problem potentially solvable. Even if an 
absolutely unique route cannot be specified, the number of 
possible routes may be pruned considerably. One scheme, 
proposed by Dawn Song and Adrian Perrig of the 
University of California at Berkeley [3], uses a variation on 
the Time-Efficient Stream Loss-tolerant Authentication 
(TESLA) protocol to place a code based on the IP addresses 
of the routing devices that sequentially handle a packet into 
the IP identification field. Using a map of the IP addresses 
of all upstream routers, a destination host can reconstruct 
the route of a packet through up to 32 devices with 
reasonable computational efficiency and precision [4].   

The second approach requires routing devices to emit a 
secondary "trace" packet for each packet they handle that is 
to be traced [8]. At the destination host, both the original 
packet and all the associated "trace" packets are collected, 
and a route for the original packet can be reconstructed. The 
advantage to this scheme is that the trace packet can contain 
unambiguous, authenticated identification of the originating 
router. The clear disadvantage is that, if every packet must 
be traced, an enormous increase in network traffic will 
ensue. In a scheme of this type proposed by Steve Bellovin, 
the routing devices emit a trace packet on a probabilistic 
basis (about 1 in 20,000 for Bellovin's scheme) so that the 
increase in traffic is minimized, and it is not possible to 
guess when a trace packet will be issued. It is unlikely that 
any single packet will trigger enough trace packets to 
reconstruct a route, however, a large stream of packets 
continuing for a considerable time (for example, a SYN 
flood DOS attack stream) can almost certainly be traced 
this way.   

The last approach requires a destination host that desires 
to find the true source of a packet to send a query to its 
routing device. This routing device can pass the query 
upstream to any routing devices to which it is connected. 
Routing devices responding positively also repeat the query 
to any upstream routers to which they are connected. 
Examination of the positive and negative responses yields 
the packet route. This scheme also generates additional 
network traffic, however since only suspicious packets are 
traced, the overhead may not be large. It also requires 
routing devices to store information on all packets they 
handle for some period of time. Due to processing and 
memory limitations, this time period is likely to be quite 
short, limiting this approach to a near-real time traceback. 
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Finally, this approach requires a query and response 
protocol that is understood by all the different types of 
routing devices participating in the traceback. One 
implementation of a scheme that uses this approach is the 
Intrusion Detection and Isolation Protocol (IDIP) developed 
by a Network Associates/Boeing/University of California at 
Davis/Silicon Defense collaboration sponsored by DARPA 
[9].   

Although any route-tracing scheme benefits by the 
participation of all routing devices, non-participation by 
some does not necessarily preclude a successful traceback. 
The level of participation required for a successful 
traceback, how the accuracy and precision vary with 
participation level, and how the traceback approach and/or 
algorithm affects the required level of participation are all 
interesting research questions for the traceback community. 

Stream Matching 

The second fundamental traceback problem is to trace 
an attack packet stream through some number of stepping 
stone hosts. Two characteristics have been proposed to 
match attack streams on either side of laundering hosts: the 
packet contents and the inter-packet timing. In addition, 
there are two possible locations for sensing stream 
characteristics: internal to each host (that is, each host 
matches streams entering and leaving itself) and external to 
all hosts (that is, by sniffing network traffic).   

In the mid-1990's, Stuart Staniford-Chen developed a 
content-matching scheme while at the University of 
California at Davis. Called "Thumbprinting" [2], this 
scheme divides the stream into discrete time intervals and 
creates digests of packets within each interval. Two streams 
are compared by computing the similarity of the stream 
digests. The probability that the computed similarity could 
result from two random streams is used to determine a 
match. Staniford-Chen showed that similar thumbprints are 
far more probable to represent the same stream than two 
random streams. Although the scheme works quite well for 
unencrypted streams, encryption makes stream matching by 
this method impossible.   

In on-going research at Purdue, the second approach to 
stream matching has shown some early success. Despite 
random network delays, the characteristic give-and-take of 
network connection protocols and human-computer 
interactions generate a "timing thumbprint". The timing 
thumbprints of a single stream viewed at two points in the 
network are more similar than the timing thumbprints of 
unrelated streams. Of course, timing is not affected by 
encryption, so this method may be more robust than the 
content-based approach. A second method of stream 
matching by inter-packet timing has also been suggested. In 
this approach, the timing of a stream is actively perturbed at 
some location in the network, and streams at other points in 
the network are searched for matching perturbations. There 
may be legal implications to taking this active approach, 
especially if the stream originates outside of the 

administrative domain where the active perturbation is 
applied.   

A system that matches streams into and out of a single 
host has a number of advantages. The host's network stack 
already sorts packets into coherent streams (connections) so 
no extra work is required to perform this association. 
Further, the amount of traffic into and out of a single host is 
restricted, so that the host can probably perform the needed 
computations for matching without undue strain. On the 
other hand, a robust traceback system using host-based 
matching would require control over all hosts in the attack 
path. In general, this is unlikely to be the case. A network-
based stream-sniffing-and-matching system does not 
require control over all of the hosts in the attack path, or 
even a change in the network software on any of them. Any 
time a matching stream is sniffed at two places in the 
network, that part of the attack path is known. On the other 
hand, a network-based system will see a much higher rate 
of traffic than will any single host. It must sort the traffic 
into streams, compute the thumbprint on each, and then 
compute how well each pair of streams sensed at different 
locations match. It may be quite difficult to keep up with 
traffic in a network-based scheme. As with route tracing, 
research into how the number of stream-matching hosts or 
the number of sniffing points in the network affects the 
success, accuracy and precision of the traceback is needed.   

Additional considerations exist if stream matching is not 
part of a real time traceback. If an attack traceback is 
initiated after the attack completes (a common occurrence 
when the attack is subtle and remains undetected until after 
the fact), then the stream matching systems must have 
stored either the thumbprints, or the identifications of 
matching streams. Due to storage limitations, the timeliness 
of any traceback requiring stream matching will be 
affected. 

Causality 

The final fundamental traceback problem is far and 
away the most difficult. With neither markings, contents or 
timing to connect streams into and out of a zombie host, 
automatically determining that one stream is related to the 
other seems difficult if not impossible. If any current 
research addresses this problem, it is not well known in the 
community.   

The bare outlines of a possible solution can be 
discerned. Determining causality will certainly require 
access to and examination of the zombie host. The 
immediate cause of the output stream (e.g., Trojan or script) 
can be determined. Logs may reveal the trigger (e.g., a 
remote command or chron job) for the immediate cause. 
Information about the immediate cause or its trigger can be 
used to set a window in time to look for the source of the 
true causal event. This source must be one of the remote 
connections established within the time window. Clearly, 
the larger the time window, the more difficult the problem 
is. Not only will the set of possible sources be larger, but 
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also the retention of logs may limit the ability to create the 
set. The set of possible sources may be pruned by certain 
means. For example, a clearly suspicious connection (e.g., 
from a source unknown to the host users) would merit close 
attention. Otherwise, each connection must be tracked to its 
source, and eliminated as suspect or traced further back 
along the (potential) attack path. Obviously, fundamental 
thinking is required before any fruitful research can be 
carried out on this part of the traceback problem. 

Traceback Infrastructure 

Because the traceback problem has several independent 
parts, a total solution will require integration of independent 
solutions into an infrastructure that can invoke the 
appropriate tools as needed. In addition to integrating tools 
that address each of the different fundamental aspects of 
traceback, there will need to be tool variants that work in 
different timeframes (e.g., during or after an attack). For the 
foreseeable future, traceback tools will be incomplete; that 
is, they will require supplemental, non-automated 
intervention by human agents, particularly to open 
administrative barriers to traceback, and also to supply 
supplemental information unavailable to automated 
processes.   

One possible approach to this integration is illustrated 
by IDIP, mentioned above in the section on packet source 
identification. The IDIP architecture uses IDIP-enabled 
devices throughout the network - intrusion detection 
systems, firewalls, etc. - to implement its query/response 
protocol for tracing suspect traffic. It uses DARPA's 
Common Intrusion Detection Framework (CDIF) language 
to allow these disparate devices to communicate. Although 
the path of the query itself is controlled by the responses 
(positive responses cause the query to be forwarded; 
negative response do not), all reports are received by a 
central Detection Coordinator. This device correlates the 
information to synthesize a wider view that may already 
allow attack traceback through multiple administrative 
domains, if not from host to host. New traceback tools 
could be incorporated into such an architecture to allow for 
more robust traceback and finer resolution.   

Stuart Staniford-Chen proposes a second possible 
architecture. In this architecture, all requests for traceback 
go to a central coordinator. The central coordinator queries 
the next possible link in the attack chain, processes the 
response, and issues new queries as needed.  The central 
coordinator role is established within law enforcement 
agencies, and may comprise multiple levels of authority, for 
example, local, state, and federal. The queries are passed up 
and down the law enforcement hierarchy as the jurisdiction 
of the traceback developments. This is envisioned as a 
semi-automated interaction, with perhaps automated 
incident reports triggering the initial query and some 
responses generated automatically from system logs, etc. 
This semi-automated approach allows for an initial low 

level of automated capability growing into a more and more 
automated system as tools evolve. 

Solution Constraints 

Unlike passive defense or detection, attack traceback 
enters a realm where legal considerations must be taken 
into account. Even when liability or prosecution are not 
traceback goals, laws to protect privacy may limit the 
technical solutions. The three federal laws that dictate the 
legal considerations for traceback are the Electronic 
Communications Privacy Act (ECPA (18USC2701)), the 
Wiretap Act (18USC2511), and the Trap and Trace Act 
(18USC3121). Unfortunately, none of these statutes were 
written specifically with computer networks in mind, and 
the meaning of their provisions in this venue must be 
interpreted and tested in court. To date, insufficient case 
law exists to provide firm guidance.   

The type of data used in traceback and the means used 
to collect it all have legal implications. For example, 
information gleaned from packet headers alone is fair game 
for traceback; legally, there is no expectation of privacy for 
packet headers. In contrast, packet contents are legally 
protected, and a traceback solution that uses packet contents 
may require lengthy and difficult legal procedures to obtain 
permission each time it is used. Gray areas exist for which 
the statutes themselves provide no guidance. For example, 
the content thumbprinting technique described in the 
section on Stream Matching uses digests of contents. 
Technically, the privacy of the original packet contents is 
protected, however, the legal status of this technique is 
currently undecided. In between packet header and contents 
in legal status is subscriber information (e.g., the name and 
address of an ISP subscriber). This type of information is 
legally protected, but can be obtained by a more simple 
procedure than content information.   

Other legal distinctions are made among data that are 
merely collected versus data that are disclosed to others, 
disclosure of data voluntarily versus data whose disclosure 
is compelled by law, and access to stored data versus 
collection of data in real time. The meaning and impact of 
these distinctions will vary depending on whether the data 
are used in a civil action or a criminal prosecution. It is well 
beyond the scope of a technical paper to explore these 
ramifications thoroughly, however, two examples will serve 
to illustrate the complexity and ambiguity of the legal 
situation. In a state of affairs worthy of Catch-22, evidence 
gathered in anticipation of litigation may not be admissible 
as evidence. Data collected "in the normal course of 
business" is admissible. The exact boundaries of "normal 
course of business" are a gray area currently under-explored 
in case law. For example, is traceback information 
admissible if its routine collection is mandated by policy? 
What if the policy is driven by anticipation of litigating 
cases of intrusion? What if the data collection is not 
continuous, but automatically triggered by intrusive events? 
What if the trigger is not automatic, but via administrator 
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intervention? These and other related questions are 
currently open to interpretation.   

Another legal gray area is encountered by querying 
traceback solutions. The ECPA makes it illegal for any 
government agency (not just those involved in law 
enforcement) to obtain electronic information from non-
government entities without legal process (warrants, etc.). 
Suppose an IDIP query was initiated or passed along by a 
computer system serving a government agency? It is 
possible to interpret the law as forbidding this altogether. 
Another interpretation is that the query must identify its 
source as government/non-government, so that receiving 
devices can decide whether or not to respond. Still another 
interpretation is that as long as the query is confined to 
"have you seen this traffic", it is legal, but if it asks, "where 
does this traffic come from", it is not. The loosest (and most 
sensible) interpretation is that as long as the query arises 
from the system administration (automated or human) in 
the normal course of administering the government 
network, the ECPA does not apply. Eventually case law 
will sort out these options and establish some ground rules, 
but at this time the solution is not known. Another legal 
difficulty with querying systems is that eventually, in court, 
some human must testify as to the continuity of the query 
for each administrative domain it passes through. This 
requirement alone makes prosecuting cases based on a 
query-type traceback extremely expensive and difficult.   

Some aspects of the technical solutions also have 
implications for the legal uses of traceback. Traceback 
solutions must incorporate features that allow time 
synchronization of events recorded at distant locations. 
Secure logging is necessary to protect evidence from attack 
in court. A legal case could be more easily built if all 
pertinent traceback information is captured in a single 
place, rather than having to be assembled from multiple 
logs and data files. Finally, since legal machinery moves 
slowly, the retention time of records is extremely important. 

Perhaps even more daunting than the legal implications 
are the societal barriers to traceback. There is a surprising 
amount of suspicion that drives interactions between 
government and commercial entities, and between 
commercial enterprises. This lack of trust makes privacy of 
information a higher priority than attack traceback for many 
enterprises. As described in the Problem Space section, 
traceback will require additional infrastructure and 
cooperation among entities sharing the network. An 
important question for traceback is what business models 
are likely to cause the compliance needed to perform 
traceback.   

There are two potential drivers towards increasing 
cooperation for traceback. The first is increasing 
government regulation that may force cooperation to some 
extent. The second is the increasing cost of attacks that may 
provide an economic motive for increased cooperation. Part 
of the cost of attack will be liability for the results of 
attacks. Companies may be sued for loss of privacy if 
private customer information is lost due to penetration. E-

businesses may sue ISP's to recover the cost of lost business 
during denial of service attacks. Legally, businesses may 
escape responsibility for harm resulting from occurrences 
that could not be anticipated. Normally, criminal acts fall in 
this "unanticipatable" category, however there have already 
been legal rulings that network attacks are so common that 
they should be anticipated.   

Eventually, the direct cost of attacks and the threat of 
liability for attacks may create demand for an "attack 
insurance" industry. Once insurance companies get 
involved, they will have a cross-enterprise incentive for 
attack traceback to allow for cost recovery. Premium 
incentives and conditions of insurance may be used to 
dictate adoption of standard attack traceback tools and 
techniques. To provide insurance against attack profitably, 
however, the insurance companies must have actuarial data. 
Thus, like so many other information assurance problems, 
the ultimate solution to attack traceback may rest on the 
definition of appropriate metrics and collection of data over 
a broad cross section of society. 
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