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Abstract. We present “Ouroboros”, the first blockchain protocol based
on proof of stake with rigorous security guarantees. We establish secu-
rity properties for the protocol comparable to those achieved by the bit-
coin blockchain protocol. As the protocol provides a “proof of stake”
blockchain discipline, it offers qualitative efficiency advantages over
blockchains based on proof of physical resources (e.g., proof of work).
We also present a novel reward mechanism for incentivizing Proof of
Stake protocols and we prove that, given this mechanism, honest behav-
ior is an approximate Nash equilibrium, thus neutralizing attacks such
as selfish mining.

1 Introduction

A primary consideration regarding the operation of blockchain protocols based
on proof of work (PoW)—such as bitcoin [18]—is the energy required for their
execution. At the time of this writing, generating a single block on the bitcoin
blockchain requires a number of hashing operations exceeding 260, which results
in striking energy demands. Indeed, early calculations indicated that the energy
requirements of the protocol were comparable to that of a small country [20].

This state of affairs has motivated the investigation of alternative blockchain
protocols that would obviate the need for proof of work by substituting it with
another, more energy efficient, mechanism that can provide similar guarantees.
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It is important to point out that the proof of work mechanism of bitcoin facili-
tates a type of randomized “leader election” process that elects one of the miners
to issue the next block. Furthermore, provided that all miners follow the pro-
tocol, this selection is performed in a randomized fashion proportionally to the
computational power of each miner. (Deviations from the protocol may distort
this proportionality as exemplified by “selfish mining” strategies [10,25].)

A natural alternative mechanism relies on the notion of “proof of stake”
(PoS). Rather than miners investing computational resources in order to partic-
ipate in the leader election process, they instead run a process that randomly
selects one of them proportionally to the stake that each possesses according to
the current blockchain ledger.

In effect, this yields a self-referential blockchain discipline: maintaining the
blockchain relies on the stakeholders themselves and assigns work to them (as
well as rewards) based on the amount of stake that each possesses as reported
in the ledger. Aside from this, the discipline should make no further “artificial”
computational demands on the stakeholders. In some sense, this sounds ideal;
however, realizing such a proof-of-stake protocol appears to involve a number of
definitional, technical, and analytic challenges.

Previous Work. The concept of PoS has been discussed extensively in the bitcoin
forum.1 Proof-of-stake based blockchain design has been more formally studied
by Bentov et al., both in conjunction with PoW [4] as well as the sole mechanism
for a blockchain protocol [3]. Although Bentov et al. showed that their protocols
are secure against some classes of attacks, they do not provide a formal model
for analysing PoS based protocols or security proofs relying on precise defini-
tions. Heuristic proof-of-stake based blockchain protocols have been proposed
(and implemented) for a number of cryptocurrencies.2 Being based on heuris-
tic security arguments, these cryptocurrencies have been frequently found to be
deficient from the point of view of security. See [3] for a discussion of various
attacks.

It is also interesting to contrast a PoS-based blockchain protocol with a clas-
sical consensus blockchain that relies on a fixed set of authorities (see, e.g.,
[8]). What distinguishes a PoS-based blockchain from those which assume sta-
tic authorities is that stake changes over time and hence the trust assumption
evolves with the system.

Another alternative to PoW is the concept of proof of space [1,9], which has
been specifically investigated in the context of blockchain protocols [21]. In a
proof of space setting, a “prover” wishes to demonstrate the utilization of space
(storage/memory); as in the case of a PoW, this utilizes a physical resource but
can be less energy demanding over time. A related concept is proof of space-time
(PoST) [16]. In all these cases, however, an expensive physical resource (either
storage or computational power) is necessary.
1 See “Proof of stake instead of proof of work”, Bitcoin forum thread. Posts by user

“QuantumMechanic” and others. (https://bitcointalk.org/index.php?topic=27787.
0.).

2 A non-exhaustive list includes NXT, Neucoin, Blackcoin, Tendermint, Bitshares.

https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
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The PoS Design Challenge. A fundamental problem for PoS-based blockchain
protocols is to simulate the leader election process. In order to achieve a fair
randomized election among stakeholders, entropy must be introduced into the
system, and mechanisms to introduce entropy may be prone to manipulation
by the adversary. For instance, an adversary controlling a set of stakeholders
may attempt to simulate the protocol execution trying different sequences of
stakeholder participants so that it finds a protocol continuation that favors the
adversarial stakeholders. This leads to a so called “grinding” vulnerability, where
adversarial parties may use computational resources to bias the leader election.

Our Results. We present “Ouroboros”, a provably secure proof of stake system.
To the best of our knowledge this is the first blockchain protocol of its kind with
a rigorous security analysis. In more detail, our results are as follows.

First, we provide a model that formalizes the problem of realizing a PoS-based
blockchain protocol. The model we introduce is in the spirit of [12], focusing on
persistence and liveness, two formal properties of a robust transaction ledger.
Persistence states that once a node of the system proclaims a certain transaction
as “stable”, the remaining nodes, if queried and responding honestly, will also
report it as stable. Here, stability is to be understood as a predicate that will
be parameterized by some security parameter k that will affect the certainty
with which the property holds. (E.g., “more than k blocks deep”.) Liveness
ensures that once an honestly generated transaction has been made available for
a sufficient amount of time to the network nodes, say u time steps, it will become
stable. The conjunction of liveness and persistence provides a robust transaction
ledger in the sense that honestly generated transactions are adopted and become
immutable. Our model is suitably amended to facilitate PoS-based dynamics.

Second, we describe a novel blockchain protocol based on PoS. Our protocol
assumes that parties can freely create accounts and receive and make payments,
and that stake shifts over time. We utilize a (very simple) secure multiparty
implementation of a coin-flipping protocol to produce the randomness for the
leader election process. This distinguishes our approach (and prevents so called
“grinding attacks”) from other previous solutions that either defined such values
deterministically based on the current state of the blockchain or used collective
coin flipping as a way to introduce entropy [3]. Also, unique to our approach is
the fact that the system ignores round-to-round stake modifications. Instead, a
snapshot of the current set of stakeholders is taken in regular intervals called
epochs; in each such interval a secure multiparty computation takes place utiliz-
ing the blockchain itself as the broadcast channel. Specifically, in each epoch a
set of randomly selected stakeholders form a committee which is then responsible
for executing the coin-flipping protocol. The outcome of the protocol determines
the set of next stakeholders to execute the protocol in the next epoch as well as
the outcomes of all leader elections for the epoch.

Third, we provide a set of formal arguments establishing that no adver-
sary can break persistence and liveness. Our protocol is secure under a number
of plausible assumptions: (1) the network is synchronous in the sense that an
upper bound can be determined during which any honest stakeholder is able to
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communicate with any other stakeholder, (2) a number of stakeholders drawn
from the honest majority is available as needed to participate in each epoch,
(3) the stakeholders do not remain offline for long periods of time, (4) the adap-
tivity of corruptions is subject to a small delay that is measured in rounds
linear in the security parameter (or alternatively, the players have access to a
sender-anonymous broadcast channel). At the core of our security arguments is
a probabilistic argument regarding a combinatorial notion of “forkable strings”
which we formulate, prove and also verify experimentally. In our analysis we also
distinguish covert attacks, a special class of general forking attacks. “Covertness”
here is interpreted in the spirit of covert adversaries against secure multiparty
computation protocols, cf. [2], where the adversary wishes to break the protocol
but prefers not to be caught doing so. We show that covertly forkable strings are
a subclass of the forkable strings with much smaller density; this permits us to
provide two distinct security arguments that achieve different trade-offs in terms
of efficiency and security guarantees. Our forkable string analysis is a natural
and fairly general tool that can be applied as part of a security argument the
PoS setting.

Fourth, we turn our attention to the incentive structure of the protocol.
We present a novel reward mechanism for incentivizing the participants to the
system which we prove to be an (approximate) Nash equilibrium. In this way,
attacks like block withholding and selfish-mining [10,25] are mitigated by our
design. The core idea behind the reward mechanism is to provide positive payoff
for those protocol actions that cannot be stifled by a coalition of parties that
diverges from the protocol. In this way, it is possible to show that, under plausible
assumptions, namely that certain protocol execution costs are small, following
the protocol faithfully is an equilibrium when all players are rational.

Fifth, we introduce a stake delegation mechanism that can be seamlessly
added to our blockchain protocol. Delegation is particularly useful in our con-
text as we would like to allow our protocol to scale even in a setting where the
set of stakeholders is highly fragmented. In such cases, the delegation mechanism
can enable stakeholders to delegate their “voting rights”, i.e., the right of par-
ticipating in the committees running the leader selection protocol in each epoch.
As in liquid democracy, (a.k.a. delegative democracy [11]), stakeholders have the
ability to revoke their delegative appointment when they wish independently of
each other.

Given our model and protocol description we also explore how various attacks
considered in practice can be addressed within our framework. Specifically,
we discuss double spending attacks, transaction denial attacks, 51% attacks,
nothing-at-stake, desynchronization attacks and others. Finally, we present evi-
dence regarding the efficiency of our design. First we consider double spending
attacks. For illustrative purposes, we perform a comparison with Nakamoto’s
analysis for bitcoin regarding transaction confirmation time with assurance
99.9%. Against covert adversaries, the transaction confirmation time is from
10 to 16 times faster than that of bitcoin, depending on the adversarial hashing
power; for general adversaries confirmation time is from 5 to 10 times faster.
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Moreover, our concrete analysis of double-spending attacks relies on our combi-
natorial analysis of forkable and covertly forkable strings and applies to a much
broader class of adversarial behavior than Nakamoto’s more simplified analysis.3

We then survey our prototype implementation and report on benchmark exper-
iments run in the Amazon cloud that showcase the power of our proof of stake
blockchain protocol in terms of performance. Due to lack of space we present
the above in the full version [14].

Related Work. In parallel to the development of Ouroboros, a number of other
protocols were developed targeting various positions in the design space of dis-
tributed ledgers based on PoS. Sleepy consensus [5] considers a fixed stakeholder
distribution (i.e., stake does not evolve over time) and targets a “mixed” cor-
ruption setting, where the adversary is allowed to perform fail-stop and recover
corruptions in addition to Byzantine faults. It is actually straightforward to
extend our analysis in this mixed corruption setting, cf. Remark 2; nevertheless,
the resulting security can be argued only in the “corruptions with delay” set-
ting that we introduce, and thus is not fully adaptive. Snow White [6] addresses
an evolving stakeholder distribution and uses a corruption delay mechanism
similar to ours for arguing security. Nevertheless, contrary to our protocol, the
Snow White design is susceptible to a “grinding” type of attack that can bias
high probability events in favor of the adversary. While this does not hurt secu-
rity asymptotically, it prevents a concrete parameterisation that does not take
into account adversarial computing power. Algorand, [15], provides a distributed
ledger following a Byzantine agreement per block approach that can withstand
adaptive corruptions. Given that agreement needs to be reached for each block,
such protocols will produce blocks at a rate substantially slower than a PoS
blockchain (where the slow down matches the length of the execution of the
Byzantine agreement protocol). In this respect, despite the existence of forks,
blockchain protocols enjoy the flexibility of permitting the clients to set the level
of risk that they are willing to undertake, allowing low risk profile clients to enjoy
faster processing times. Finally, Fruitchain, [23], provides a reward mechanism
and an approximate Nash equilibrium proof for a PoW-based blockchain. We use
a similar reward mechanism at the blockchain level, nevertheless our underlying
mechanics are different since we have to operate in a PoS setting. The core of
the idea is to provide a PoS analogue of “endorsing” inputs in a fair proportion
using the same logic as the PoW-based byzantine agreement protocol for honest
majority from [12].

2 Model

Time, Slots, and Synchrony. We consider a setting where time is divided into
discrete units called slots. A ledger, described in more detail below, associates
3 Nakamoto’s simplifications are pointed out in [12]: the analysis considers only the

setting where a block withholding attacker acts without interaction as opposed to a
more general attacker that, for instance, tries strategically to split the honest parties
in more than one chains during the course of the double spending attack.
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with each time slot (at most) one ledger block. Players are equipped with (roughly
synchronized) clocks that indicate the current slot. This will permit them to
carry out a distributed protocol intending to collectively assign a block to this
current slot. In general, each slot slr is indexed by an integer r ∈ {1, 2, . . .},
and we assume that the real time window that corresponds to each slot has the
following properties.

– The current slot is determined by a publicly-known and monotonically
increasing function of current time.

– Each player has access to the current time. Any discrepancies between parties’
local time are insignificant in comparison with the length of time represented
by a slot.

– The length of the time window that corresponds to a slot is sufficient to
guarantee that any message transmitted by an honest party at the beginning
of the time window will be received by any other honest party by the end of
that time window (even accounting for small inconsistencies in parties’ local
clocks). In particular, while network delays may occur, they never exceed the
slot time window.

Transaction Ledger Properties. A protocol Π implements a robust transac-
tion ledger provided that the ledger that Π maintains is divided into “blocks”
(assigned to time slots) that determine the order with which transactions are
incorporated in the ledger. It should also satisfy the following two properties.

– Persistence. Once a node of the system proclaims a certain transaction tx
as stable, the remaining nodes, if queried, will either report tx in the same
position in the ledger or will not report as stable any transaction in conflict
to tx. Here the notion of stability is a predicate that is parameterized by a
security parameter k; specifically, a transaction is declared stable if and only
if it is in a block that is more than k blocks deep in the ledger.

– Liveness. If all honest nodes in the system attempt to include a certain
transaction, then after the passing of time corresponding to u slots (called the
transaction confirmation time), all nodes, if queried and responding honestly,
will report the transaction as stable.

In [13,22] it was shown that persistence and liveness can be derived from
the following three elementary properties provided that protocol Π derives the
ledger from a data structure in the form of a blockchain.

– Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 pos-
sessed by two honest parties at the onset of the slots sl1 < sl2 are such that
C�k
1 � C2, where C�k

1 denotes the chain obtained by removing the last k blocks
from C1, and � denotes the prefix relation.

– Chain Quality (CQ); with parameters μ ∈ (0, 1] → (0, 1] and � ∈
N. Consider any portion of length at least � of the chain possessed by an
honest party at the onset of a round; the ratio of blocks originating from the
adversary is at most 1 − μ. We call μ the chain quality coefficient.
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– Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the
chains C1, C2 possessed by two honest parties at the onset of two slots sl1, sl2
with sl2 at least s slots ahead of sl1. Then it holds that len(C2)−len(C1) ≥ τ ·s.
We call τ the speed coefficient.

Some remarks are in place. Regarding common prefix, we capture a strong
notion of common prefix, cf. [13]. Regarding chain quality, the function μ satisfies
μ(α) ≥ α for protocols of interest. In an ideal setting, μ would be the identity
function: in this case, the percentage of malicious blocks in any sufficiently long
chain segment is proportional to the cumulative stake of a set of (malicious)
stakeholders.

It is worth noting that for bitcoin we have μ(α) = α/(1 − α), and this bound
is in fact tight—see [12], which argues this guarantee on chain quality. The same
will hold true for our protocol construction. As we will show, this will still be
sufficient for our incentive mechanism to work properly.

Finally chain growth concerns the rate at which the chain grows (for honest
parties). As in the case of bitcoin, the longest chain plays a preferred role in our
protocol; this provides an easy guarantee of chain growth.

Security Model. We adopt the model introduced by [12] for analysing security
of blockchain protocols enhanced with an ideal functionality F . We denote by
VIEWP,F

Π,A,Z(κ) the view of party P after the execution of protocol Π with adver-
sary A, environment Z, security parameter κ and access to ideal functionality
F . We note that multiple different “functionalities” can be encompassed by F .

We stress that contrary to [12], our analysis is in the “standard model”, and
without a random oracle functionality. Nevertheless we do employ a “diffuse”
and “Key and Transaction” functionality with the following interfaces described
below.

– Diffuse functionality. It maintains a incoming string for each party Ui that
participates. A party, if activated, is allowed at any moment to fetch the
contents of its incoming string hence one may think of this as a mailbox.
Furthermore, parties can give the instruction to the functionality to diffuse
a message. The functionality keeps rounds (called slots) and all parties are
allowed to diffuse once in a round. Rounds do not advance unless all parties
have diffused a message. The adversary, when activated, can also interact with
the functionality and is allowed to read all inboxes and all diffuse requests
and deliver messages to the inboxes in any order it prefers. At the end of
the round, the functionality will ensure that all inboxes contain all messages
that have been diffused (but not necessarily in the same order they have
been requested to be diffused). The current slot index may be requested at
any time by any party. If a stakeholder does not fetch in a certain slot the
messages written to its incoming string, they are flushed.

– Key and Transaction functionality. The key registration functionality is ini-
tialized with n users, U1, . . . , Un and their respective stake s1, . . . , sn; given
such initialization, the functionality will consult with the adversary and will
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accept a (possibly empty) sequence of (Corrupt, U) messages and mark the
corresponding users U as corrupt. For the corrupt users without a public-key
registered the functionality will allow the adversary to set their public-keys
while for honest users the functionality will sample public/secret-key pairs
and record them. Public-keys of corrupt users will be marked as such. Subse-
quently, any sequence of the following actions may take place: (i) A user may
request to retrieve its public and secret-key, whereupon, the functionality will
return it to the user. (ii) The whole directory of public-keys may be required
in whereupon, the functionality will return it to the requesting user. (iii) A
new user may be requested to be created by a message (Create, U, C) from the
environment, in which case the functionality will follow the same procedure
as before: it will consult the adversary regarding the corruption status of U
and will set its public and possibly secret-key depending on the corruption
status; moreover it will store C as the suggested initial state. The functionality
will return the public-key back to the environment upon successful comple-
tion of this interaction. (iv) A transaction may be requested on behalf of a
certain user by the environment, by providing a template for the transaction
(which should contain a unique nonce) and a recipient. The functionality will
adjust the stake of each stakeholder accordingly. (v) An existing user may be
requested to be corrupted by the adversary via a message (Corrupt, U). A user
can only be corrupted after a delay of D slots; specifically, after a corruption
request is registered the secret-key will be released after D slots have passed
according to the round counter maintained in the Diffuse interface.

Given the above we will assume that the execution of the protocol is with
respect to a functionality F that is incorporating the above two functionalities
as well as possibly additional functionalities to be explained below. Note that
a corrupted stakeholder U will relinquish its entire state to A; from this point
on, the adversary will be activated in place of the stakeholder U . Beyond any
restrictions imposed by F , the adversary can only corrupt a stakeholder if it
is given permission by the environment Z running the protocol execution. The
permission is in the form of a message (Corrupt, U) which is provided to the
adversary by the environment. In summary, regarding activations we have the
following.

– At each slot slj , the environment Z is allowed to activate any subset of
stakeholders it wishes. Each one of them will possibly produce messages that
are to be transmitted to other stakeholders.

– The adversary is activated at least as the last entity in each slj , (as well as
during all adversarial party activations).

It is easy to see that the model above confers such sweeping power on the
adversary that one cannot establish any significant guarantees on protocols of
interest. It is thus important to restrict the environment suitably (taking into
account the details of the protocol) so that we may be able to argue security.
With foresight, the restrictions we will impose on the environment are as follows.
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Restrictions Imposed on the Environment. The environment, which is responsi-
ble for activating the honest parties in each round, will be subject to the following
constraints regarding the activation of the honest parties running the protocol.

– In each slot there will be at least one honest activated party (independently
of whether it is a slot leader).

– There will be a parameter k ∈ Z that will signify the maximum number of
slots that an honest shareholder can be offline. In case an honest stakeholder is
spawned after the beginning of the protocol via (Create, U, C) its initialization
chain C provided by the environment should match an honest parties’ chain
which was active in the previous slot.

– In each slot slr, and for each active stakeholder Uj there will be a set Sj(r) of
public-keys and stake pairs of the form (vki, si) ∈ {0, 1}∗×N, for j = 1, . . . , nr

where nr is the number of users introduced up to that slot. Public-keys will be
marked as “corrupted” if the corresponding stakeholder has been corrupted.
We will say the adversary is restricted to less than 50% relative stake if it
holds that the total stake of the corrupted keys divided by the total stake∑

i si is less than 50% in all possible Sj(r). In case the above is violated an
event Bad

1/2 becomes true for the given execution.

We note that the offline restriction stated above is very conservative and our
protocol can tolerate much longer offline times depending on the way the course
of the execution proceeds; nevertheless, for the sake of simplicity, we use the
above restriction. Finally, we note that in all our proofs, whenever we say that a
property Q holds with high probability over all executions, we will in fact argue
that Q ∨ Bad

1/2 holds with high probability over all executions. This captures
the fact that we exclude environments and adversaries that trigger Bad

1/2 with
non-negligible probability.

3 Our Protocol: Overview

We first provide a general overview of our protocol design approach. The proto-
col’s specifics depend on a number of parameters as follows: (i) k is the number
of blocks a certain message should have “on top of it” in order to become part
of the immutable history of the ledger, (ii) ε is the advantage in terms of stake
of the honest stakeholders against the adversarial ones; (iii) D is the corruption
delay that is imposed on the adversary, i.e., an honest stakeholder will be cor-
rupted after D slots when a corrupt message is delivered by the adversary during
an execution; (iv) L is the lifetime of the system, measured in slots; (v) R is the
length of an epoch, measured in slots.

We present our protocol description in four stages successively improving the
adversarial model it can withstand. In all stages an “ideal functionality” FD,F

LS is
available to the participants. The functionality captures the resources that are
available to the parties as preconditions for the secure operation of the protocol
(e.g., the genesis block will be specified by FD,F

LS ).
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Stage 1: Static stake; D = L. In the first stage, the trust assumption is static
and remains with the initial set of stakeholders. There is an initial stake distri-
bution which is hardcoded into the genesis block that includes the public-keys
of the stakeholders, {(vki, si)}n

i=1. Based on our restrictions to the environment,
honest majority with advantage ε is assumed among those initial stakeholders.
Specifically, the environment initially will allow the corruption of a number of
stakeholders whose relative stake represents 1−ε

2 for some ε > 0. The environ-
ment allows party corruption by providing tokens of the form (Corrupt, U) to the
adversary; note that due to the corruption delay imposed in this first stage any
further corruptions will be against parties that have no stake initially and hence
the corruption model is akin to “static corruption.” FD,F

LS will subsequently sam-
ple ρ which will seed a “weighted by stake” stakeholder sampling and in this way
lead to the election of a subset of m keys vki1 , . . . , vkim

to form the committee
that will possess honest majority with overwhelming probability in m, (this uses
the fact that the relative stake possessed by malicious parties is 1−ε

2 ; a linear
dependency of m to ε−2 will be imposed at this stage). In more detail, the com-
mittee will be selected implicitly by appointing a stakeholder with probability
proportional to its stake to each one of the L slots. Subsequently, stakeholders
will issue blocks following the schedule that is determined by the slot assignment.
The longest chain rule will be applied and it will be possible for the adversary to
fork the blockchain views of the honest parties. Nevertheless, we will prove with
a Markov chain argument that the probability that a fork can be maintained
over a sequence of n slots drops exponentially with at least

√
n, cf. Theorem 1

against general adversaries.

Stage 2: Dynamic state with a beacon, epoch period of R slots, D = R � L.
The central idea for the extension of the lifetime of the above protocol is to
consider the sequential composition of several invocations of it. We detail a
way to do that, under the assumption that a trusted beacon emits a uniformly
random string in regular intervals. More specifically, the beacon, during slots
{j · R + 1, . . . , (j + 1)R}, reveals the j-th random string that seeds the leader
election function. The critical difference compared to the static state protocol is
that the stake distribution is allowed to change and is drawn from the blockchain
itself. This means that at a certain slot sl that belongs to the j-th epoch (with
j ≥ 2), the stake distribution that is used is the one reported in the most recent
block with time stamp less than j · R − 2k.

Regarding the evolving stake distribution, transactions will be continuously
generated and transferred between stakeholders via the environment and players
will incorporate posted transactions in the blockchain based ledgers that they
maintain. In order to accommodate the new accounts that are being created, the
FD,F

LS functionality enables a new (vk, sk) to be created on demand and assigned
to a new party Ui. Specifically, the environment can create new parties who will
interact with FD,F

LS for their public/secret-key in this way treating it as a trusted
component that maintains the secret of their wallet. Note that the adversary can
interfere with the creation of a new party, corrupt it, and supply its own (adver-
sarially created) public-key instead. As before, the environment, may request
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transactions between accounts from stakeholders and it can also generate trans-
actions in collaboration with the adversary on behalf of the corrupted accounts.
Recall that our assumption is that at any slot, in the view of any honest player,
the stakeholder distribution satisfies honest majority with advantage ε (note that
different honest players might perceive a different stakeholder distribution in a
certain slot). Furthermore, the stake can shift by at most σ statistical distance
over a certain number of slots. The statistical distance here will be measured
considering the underlying distribution to be the weighted-by-stake sampler and
how it changes over the specified time interval. The security proof can be seen
as an induction in the number of epochs L/R with the base case supplied by the
proof of the static stake protocol. In the end we will argue that in this setting, a
1−ε
2 −σ bound in adversarial stake is sufficient for security of a single draw (and

observe that the size of committee, m, now should be selected to overcome also
an additive term of size ln(L/R) given that the lifetime of the systems includes
such a number of successive epochs). The corruption delay remains at D = R
which can be selected arbitrarily smaller than L, thus enabling the adversary to
perform adaptive corruptions as long as this is not instantaneous.

Stage 3: Dynamic state without a beacon, epoch period of R slots, R = Θ(k) and
delay D ∈ (R, 2R) � L. In the third stage, we remove the dependency to the
beacon, by introducing a secure multiparty protocol with “guaranteed output
delivery” that simulates it. In this way, we can obtain the long-livedness of the
protocol as described in the stage 2 design but only under the assumption of the
stage 1 design, i.e., the mere availability of an initial random string and an initial
stakeholder distribution with honest majority. The core idea is the following:
given we guarantee that an honest majority among elected stakeholders will hold
with very high probability, we can further use this elected set as participants to
an instance of a secure multiparty computation (MPC) protocol. This will require
the choice of the length of the epoch to be sufficient so that it can accommodate
a run of the MPC protocol. From a security point of view, the main difference
with the previous case, is that the output of the beacon will become known to the
adversary before it may become known to the honest parties. Nevertheless, we
will prove that the honest parties will also inevitably learn it after a short number
of slots. To account for the fact that the adversary gets this headstart (which it
may exploit by performing adaptive corruptions) we increase the wait time for
corruption from R to a suitable value in (R, 2R) that negates this advantage and
depends on the secure MPC design. A feature of this stage from a cryptographic
design perspective is the use of the ledger itself for the simulation of a reliable
broadcast that supports the MPC protocol.

Stage 4: Input endorsers, stakeholder delegates, anonymous communication. In
the final stage of our design, we augment the protocol with two new roles for the
entities that are running the protocol and consider the benefits of anonymous
communication. Input-endorsers create a second layer of transaction endorsing
prior to block inclusion. This mechanism enables the protocol to withstand devi-
ations such as selfish mining and enables us to show that honest behaviour is an
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approximate Nash equilibrium under reasonable assumptions regarding the costs
of running the protocol. Note that input-endorsers are assigned to slots in the
same way that slot leaders are, and inputs included in blocks are only acceptable
if they are endorsed by an eligible input-endorser. Second, the delegation feature
allows stakeholders to transfer committee participation to selected delegates that
assume the responsibility of the stakeholders in running the protocol (including
participation to the MPC and issuance of blocks). Delegation naturally gives rise
to “stake pools” that can act in the same way as mining pools in bitcoin. Finally,
we observe that by including an anonymous communication layer we can remove
the corruption delay requirement that is imposed in our analysis. This is done
at the expense of increasing the online time requirements for the honest parties.
Due to lack of space we refer to the full version for more details, [14].

4 Our Protocol: Static State

4.1 Basic Concepts and Protocol Description

We begin by describing the blockchain protocol πSPoS in the “static stake” set-
ting, where leaders are assigned to blockchain slots with probability proportional
to their (fixed) initial stake which will be the effective stake distribution through-
out the execution. To simplify our presentation, we abstract this leader selection
process, treating it simply as an “ideal functionality” that faithfully carries out
the process of randomly assigning stakeholders to slots. In the following section,
we explain how to instantiate this functionality with a secure computation.

We remark that—even with an ideal leader assignment process—analyzing
the standard “longest chain” preference rule in our PoS setting appears to
require significant new ideas. The challenge arises because large collections of
slots (epochs, as described above) are assigned to stakeholders at once; while
this has favorable properties from an efficiency (and incentive) perspective, it
furnishes the adversary a novel means of attack. Specifically, an adversary in
control of a certain population of stakeholders can, at the beginning of an epoch,
choose when standard “chain update” broadcast messages are delivered to hon-
est parties with full knowledge of future assignments of slots to stakeholders.
In contrast, adversaries in typical PoW settings are constrained to make such
decisions in an online fashion. We remark that this can have a dramatic effect
on the ability of an adversary to produce alternate chains; see the discussion on
“forkable strings” below for detailed discussion.

In the static stake case, we assume that a fixed collection of n stakeholders
U1, . . . , Un interact throughout the protocol. Stakeholder Ui possesses si stake
before the protocol starts. For each stakeholder Ui a verification and signing key
pair (vki, ski) for a prescribed signature scheme is generated; we assume without
loss of generality that the verification keys vk1, . . . are known by all stakehold-
ers. Before describing the protocol, we establish basic definitions following the
notation of [12].
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Definition 1 (Genesis Block). The genesis block B0 contains the
list of stakeholders identified by their public-keys, their respective stakes
(vk1, s1), . . . , (vkn, sn) and auxiliary information ρ.

With foresight we note that the auxiliary information ρ will be used to seed
the slot leader election process.

Definition 2 (State). A state is a string st ∈ {0, 1}λ.

Definition 3 (Block). A block B generated at a slot sli ∈ {sl1, . . . , slR} con-
tains the current state st ∈ {0, 1}λ, data d ∈ {0, 1}∗, the slot number sli and
a signature σ = Signski

(st, d, sl) computed under ski corresponding to the stake-
holder Ui generating the block.

Definition 4 (Blockchain). A blockchain (or simply chain) relative to the
genesis block B0 is a sequence of blocks B1, . . . , Bn associated with a strictly
increasing sequence of slots for which the state sti of Bi is equal to H(Bi−1),
where H is a prescribed collision-resistant hash function. The length of a chain
len(C) = n is its number of blocks. The block Bn is the head of the chain,
denoted head(C). We treat the empty string ε as a legal chain and by convention
set head(ε) = ε.

Let C be a chain of length n and k be any non-negative integer. We denote by
C�k the chain resulting from removal of the k rightmost blocks of C. If k ≥ len(C)
we define C�k = ε. We let C1 � C2 indicate that the chain C1 is a prefix of the
chain C2.

Definition 5 (Epoch). An epoch is a set of R adjacent slots S =
{sl1, . . . , slR}.
(The value R is a parameter of the protocol we analyze in this section.)

Definition 6 (Adversarial Stake Ratio). Let UA be the set of stakeholders
controlled by an adversary A. Then the adversarial stake ratio is defined as

α =

∑
j∈UA sj

∑n
i=1 si

,

where n is the total number of stakeholders and si is stakeholder Ui’s stake.

Slot Leader Selection. In the protocol described in this section, for each 0 < j ≤
R, a slot leader Ej is determined who has the (sole) right to generate a block at
slj . Specifically, for each slot a stakeholder Ui is selected as the slot leader with
probability pi proportional to its stake registered in the genesis block B0; these
assignments are independent between slots. In this static stake case, the genesis
block as well as the procedure for selecting slot leaders are determined by an ideal
functionality FD,F

LS , defined in Fig. 1. This functionality is parameterized by the
list {(vk1, s1), . . . , (vkn, sn)} assigning to each stakeholder its respective stake,
a distribution D that provides auxiliary information ρ and a leader selection
function F defined below.
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Definition 7 (Leader Selection Process). A leader selection process with
respect to stakeholder distribution S = {(vk1, s1), . . . , (vkn, sn)}, (D,F) is a pair
consisting of a distribution and a deterministic function such that, when ρ ← D
it holds that for all slj ∈ {sl1, . . . , slR}, F(S, ρ, slj) outputs Ui ∈ {U1, . . . , Un}
with probability

pi =
si∑n

k=1 sk

where si is the stake held by stakeholder Ui (we call this “weighing by stake”);
furthermore the family of random variables {F(S, ρ, slj)}R

j=1 are independent.

We note that sampling proportional to stake can be implemented in a
straightforward manner. For instance, a simple process operates as follows. Let
p̃i = si/

∑n
j=i sj . For each i = 1, . . . , n− 1, provided that no stakeholder has yet

been selected, the process flips a p̃i-biased coin; if the result of the coin is 1, the
party Ui is selected for the slot and the process is complete. (Note that p̃n = 1,
so the process is certain to complete with a unique leader.) When we imple-
ment this process as a function F (·), sufficient randomness must be allocated
to simulate the biased coin flips. If we implement the above with λ precision
for each individual coin flip, then selecting a stakeholder will require n�log λ�
random bits in total. Note that using a pseudorandom number generator (PRG)
one may use a shorter “seed” string and then stretch it using the PRG to the
appropriate length.

Fig. 1. Functionality FD,F
LS .

A Protocol in the FD,F
LS -Hybrid Model. We start by describing a simple PoS

based blockchain protocol considering static stake in the FD,F
LS -hybrid model, i.e.,

where the genesis block B0 (and consequently the slot leaders) are determined
by the ideal functionality FD,F

LS . The stakeholders U1, . . . , Un interact among
themselves and with FD,F

LS through Protocol πSPoS described in Fig. 2.
The protocol relies on a maxvalidS(C,C) function that chooses a chain given

the current chain C and a set of valid chains C that are available in the network.
In the static case we analyze the simple “longest chain” rule. (In the dynamic
case the rule is parameterized by a common chain length; see Sect. 5.)
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Function maxvalid(C,C): Returns the longest chain from C∪ {C}. Ties are
broken in favor of C, if it has maximum length, or arbitrarily otherwise.

Fig. 2. Protocol πSPoS.

4.2 Forkable Strings

In our security arguments we routinely use elements of {0, 1}n to indicate which
slots—among a particular window of slots of length n—have been assigned to
adversarial stakeholders. When strings have this interpretation we refer to them
as characteristic strings.

Definition 8 (Characteristic String). Fix an execution with genesis block
B0, adversary A, and environment Z. Let S = {sli+1, . . . , sli+n} denote a
sequence of slots of length |S| = n. The characteristic string w ∈ {0, 1}n of
S is defined so that wk = 1 if and only if the adversary controls the slot leader
of slot sli+k. For such a characteristic string w ∈ {0, 1}∗ we say that the index
i is adversarial if wi = 1 and honest otherwise.

We start with some intuition on our approach to analyze the protocol. Let
w ∈ {0, 1}n be a characteristic string for a sequence of slots S. Consider two



372 A. Kiayias et al.

observers that (i) go offline immediately prior to the commencement of S, (ii)
have the same view C0 of the current chain prior to the commencement of S, and
(iii) come back online at the last slot of S and request an update of their chain.
A fundamental concern in our analysis is the possibility that such observers
can be presented with a “diverging” view over the sequence S: specifically, the
possibility that the adversary can force the two observers to adopt two different
chains C1, C2 whose common prefix is C0.

We observe that not all characteristic strings permit this. For instance the
(entirely honest) string 0n ensures that the two observers will adopt the same
chain C which will consist of n new blocks on top of the common prefix C0. On
the other hand, other strings do not guarantee such common extension of C0; in
the case of 1n, it is possible for the adversary to produce two completely different
histories during the sequence of slots S and thus furnish to the two observers two
distinct chains C1, C2 that only share the common prefix C0. In the remainder
of this section, we establish that strings that permit such “forkings” are quite
rare—indeed, we show that they have density 2−Ω(

√
n) so long as the fraction of

adversarial slots is 1/2 − ε.
To reason about such “forkings” of a characteristic string w ∈ {0, 1}n, we

define below a formal notion of “fork” that captures the relationship between
the chains broadcast by honest slot leaders during an execution of the protocol
πSPoS. In preparation for the definition, we recall that honest players always
choose to extend a maximum length chain among those available to the player
on the network. Furthermore, if such a maximal chain C includes a block B pre-
viously broadcast by an honest player, the prefix of C prior to B must entirely
agree with the chain (terminating at B) broadcast by this previous honest player.
This “confluence” property follows immediately from the fact that the state of
any honest block effectively commits to a unique chain beginning at the gene-
sis block. To conclude, any chain C broadcast by an honest player must begin
with a chain produced by a previously honest player (or, alternatively, the gen-
esis block), continue with a possibly empty sequence of adversarial blocks and,
finally, terminate with an honest block. It follows that the chains broadcast
by honest players form a natural directed tree. The fact that honest players
reliably broadcast their chains and always build on the longest available chain
introduces a second important property of this tree: the “depths” of the various
honest blocks added by honest players during the protocol must all be distinct.

Of course, the actual chains induced by an execution of πSPoS are comprised of
blocks containing a variety of data that are immaterial for reasoning about fork-
ing. For this reason the formal notion of fork below merely reflects the directed
tree formed by the relevant chains and the identities of the players—expressed
as indices in the string w—responsible for generating the blocks in these chains.

Forks and Forkable Strings. We define, below, the basic combinatorial structures
we use to reason about the possible views observed by honest players during a
protocol execution with this characteristic string.
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Fig. 3. A fork F for the string w = 010100110; vertices appear with their labels
and honest vertices are highlighted with double borders. Note that the depths of the
(honest) vertices associated with the honest indices of w are strictly increasing. Two
tines are distinguished in the figure: one, labeled t̂, terminates at the vertex labeled
9 and is the longest tine in the fork; a second tine t terminates at the vertex labeled
3. The quantity gap(t) indicates the difference in length between t and t̂; in this case
gap(t) = 4. The quantity reserve(t) = |{i | �(v) < i ≤ |w| and wi = 1}| indicates the
number of adversarial indices appearing after the label of the last honest vertex v of
the tine; in this case reserve(t) = 3. As each leaf of F is honest, F is closed.

Definition 9 (Fork). Let w ∈ {0, 1}n and let H = {i | wi = 0} denote the set
of honest indices. A fork for the string w is a directed, rooted tree F = (V,E)
with a labeling � : V → {0, 1, . . . , n} so that

– each edge of F is directed away from the root;
– the root r ∈ V is given the label �(r) = 0;
– the labels along any directed path in the tree are strictly increasing;
– each honest index i ∈ H is the label of exactly one vertex of F ;
– the function d : H → {1, . . . , n}, defined so that d(i) is the depth in F of

the unique vertex v for which �(v) = i, is strictly increasing. (Specifically, if
i, j ∈ H and i < j, then d(i) < d(j).)

As a matter of notation, we write F � w to indicate that F is a fork for the
string w. We say that a fork is trivial if it contains a single vertex, the root.

Definition 10 (Tines and height). A path in a fork F originating at the root
is called a tine. For a tine t we let length(t) denote its length, equal to the
number of edges on the path. The height of a fork (as usual for a tree) is defined
to be the length of the longest tine. For two tines t1 and t2 of a fork F , we write
t1 ∼ t2 if they share an edge. Note that ∼ is an equivalence relation on the set
of nontrivial tines; on the other hand, if tε denotes the “empty” tine consisting
solely of the root vertex then tε �∼ t for any tine t.

If a vertex v of a fork is labeled with an adversarial index (i.e., w�(v) = 1) we
say that the vertex is adversarial ; otherwise, we say that the vertex is honest. For
convenience, we declare the root vertex to be honest. We extend this terminology
to tines: a tine is honest if it terminates with an honest vertex and adversarial
otherwise. By this convention the empty tine tε is honest.
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See Fig. 3 for an example, which also demonstrates some of the quantities
defined above and in the remainder of this section. The fork shown in the figure
reflects an execution in which (i) the honest player associated with the first slot
builds directly on the genesis block (as it must), (ii) the honest player associated
with the third slot is shown a chain of length 1 produced by the adversarial
player of slot 2 (in addition to the honestly generated chain of step (i)), which it
elects to extend, (iii) the honest player associated with slot 5 is shown a chain of
length 2 building on the chain of step (i) augmented with a further adversarial
block produced by the player of slot 4, etc.

Definition 11. We say that a fork is flat if it has two tines t1 �∼ t2 of length
equal to the height of the fork. A string w ∈ {0, 1}∗ is said to be forkable if there
is a flat fork F � w.

Note that in order for an execution of πSPoS to yield two entirely disjoint
chains of maximum length, the characteristic string associated with the execution
must be forkable. Our goal is to establish the following upper bound on the
number of forkable strings.

Theorem 1. Let ε ∈ (0, 1) and let w be a string drawn from {0, 1}n by indepen-
dently assigning each wi = 1 with probability (1− ε)/2. Then Pr[w is forkable] =
2−Ω(

√
n).

In subsequent work, Russell et al. [24] improved this bound to 2−Ω(n).

Structural Features of Forks: Closed Forks, Prefixes, Reach, and Margin. We
begin by defining a natural notion of inclusion for two forks:

Definition 12 (Fork prefixes). If w is a prefix of the string w′ ∈ {0, 1}∗,
F � w, and F ′ � w′, we say that F is a prefix of F ′, written F � F ′, if F
is a consistently-labeled subgraph of F ′. Specifically, every vertex and edge of F
appears in F ′ and, furthermore, the labels given to any vertex appearing in both
F and F ′ are identical.

If F � F ′, each tine of F appears as the prefix of a tine in F ′. In particular,
the labels appearing on any tine terminating at a common vertex are identical
and, moreover, the depth of any honest vertex appearing in both F and F ′ is
identical.

In many cases, it is convenient to work with forks that do not “commit”
anything beyond final honest indices.

Definition 13 (Closed forks). A fork is closed if each leaf is honest. By con-
vention the trivial fork, consisting solely of a root vertex, is closed.

Note that a closed fork has a unique longest tine (as all maximal tines ter-
minate with an honest vertex, and these must have distinct depths). Note, addi-
tionally, that if w is a prefix of w′ and F ′ � w′, then there is a unique closed
fork F � w for which F � F ′.
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Definition 14 (Gap, reserve and reach). Let F � w be a closed fork and let
t̂ denote the (unique) tine of maximum length in F . We define the gap of a tine
t, denoted gap(t), to be the difference in length between t̂ and t; thus

gap(t) = length(t̂) − length(t).

We define the reserve of a tine t to be the number of adversarial indices appearing
in w after the last index in t; specifically, if t is given by the path (r, v1, . . . , vk),
where r is the root of F , we define

reserve(t) = |{i | wi = 1 and i > �(vk)}|.
We remark that this quantity depends both on F and the specific string w asso-
ciated with F . Finally, for a tine t we define

reach(t) = reserve(t) − gap(t).

Definition 15 (Margin). For a closed fork F � w we define λ(F ) to be the
maximum reach taken over all tines in F :

λ(F ) = max
t

reach(t).

Likewise, we define the margin of F , denoted μ(F ), to be the “penultimate” reach
taken over edge-disjoint tines of F : specifically,

margin(F ) = μ(F ) = max
t1 �∼t2

(
min{reach(t1), reach(t2)}

)
. (1)

We remark that the maxima above can always obtained by honest tines. Specif-
ically, if t is an adversarial tine of a fork F � w, reach(t) ≤ reach(t), where t is
the longest honest prefix of t.

As ∼ is an equivalence relation on the nonempty tines, it follows that there
is always a pair of (edge-disjoint) tines t1 and t2 achieving the maximum in the
defining Eq. (1) which satisfy reach(t1) = λ(F ) ≥ reach(t2) = μ(F ).

The relevance of margin to the notion of forkability is reflected in the following
proposition.

Proposition 1. A string w is forkable if and only if there is a closed fork F � w
for which margin(F ) ≥ 0.

Proof. If w has no honest indices, then the trivial fork consisting of a single root
node is flat, closed, and has non-negative margin; thus the two conditions are
equivalent. Consider a forkable string w with at least one honest index and let î
denote the largest honest index of w. Let F be a flat fork for w. As mentioned
above, there is a unique closed fork F � w obtained from F by removing any
adversarial vertices from the ends of the tines of F . Note that the tine t̂ containing
î is the longest tine in F , as this is the largest honest index of w. On the other
hand, F is flat, in which case there are two edge-disjoint tines t1 and t2 with
length at least that of t̂. The prefixes of these two tines in F must clearly have
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reserve no less than gap (and hence non-negative reach); thus margin(F ) ≥ 0 as
desired.

On the other hand, suppose w has a closed fork with margin(F ) ≥ 0, in which
case there are two edge-disjoint tines of F , t1 and t2, for which reach(ti) ≥ 0.
Then we can produce a flat fork by simply adding to each ti a path of gap(ti) ver-
tices labeled with the subsequent adversarial indices promised by the definition
of reserve().

In light of this proposition, for a string w we focus our attention on the
quantities

λ(w) = max
F
w,

F closed

λ(F ), μ(w) = max
F
w,

F closed

μ(F ),

and, for convenience,
m(w) = (λ(w), μ(w)).

Note that this overloads the notation λ(·) and μ(·) so that they apply to both
forks and strings, but the setting will be clear from context. We remark that the
definitions do not guarantee a priori that λ(w) and μ(w) can be achieved by the
same fork, though this is established by the full treatment in [14]. In any case,
it is clear that λ(w) ≥ 0 and λ(w) ≥ μ(w) for all strings w; furthermore, by
Proposition 1 a string w is forkable if and only if μ(w) ≥ 0. We refer to μ(w) as
the margin of the string w.

With these definitions in place, we are prepared to survey the proof of
Theorem 1.

Proof (of Theorem 1; high level survey). The proof proceeds by establishing a
recursive description of m(w0) and m(w1) in terms of m(w) and providing an
analysis of the Markov chain that arises by considering m(·) for strings drawn
from a binomial distribution. This yields an upper bound on the probability that
μ(w) ≥ 0 and hence the event that w is forkable. The full proof appears in the
e-print version of the paper [14].

Covert Adversaries. Observe that an adversary that broadcasts two distinct
blocks for a particular slot leaves behind a suspicious “audit trail”—multiple
signed blocks for the same slot—which conspicuously deviates from the protocol.
This may be undesirable for certain practical adversaries, who wish to maintain
the facade of honesty. We say that such an adversary is “covert” and note that
such adversaries have reduced power to disrupt the protocol. We discuss this in
detail and consider the probability of forkability with these weakened adversaries
in the full version of the paper [14].

4.3 Common Prefix

Recall that the chains constructed by honest players during an execution of πSPoS

correspond to tines of a fork, as defined and studied in the previous sections.
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The random assignment of slots to stakeholders given by FD,F
LS guarantees that

the coordinates of the associated characteristic string w follow the binomial
distribution with probability equal to the adversarial stake. Thus Theorem 1
establishes that no execution of the protocol πSPoS can induce two tines (chains)
of maximal length with no common prefix.

In the context of πSPoS, however, we wish to establish a much stronger com-
mon prefix property: The chains reported by any two honest players must have
a “recent” common prefix, in the sense that removing a small number of blocks
from the shorter chain results in a prefix of the longer chain.

Theorem 2. Let k,R ∈ N and ε ∈ (0, 1). The probability that the πSPoS protocol,
when executed with a (1−ε)/2 fraction of adversarial stake, violates the common
prefix property with parameter k throughout an epoch of R slots is no more than
exp(−Ω(

√
k)+ln R); the constant hidden by the Ω() notation depends only on ε.

Proof (sketch). The full proof (see [14]) proceeds by showing that if common
prefix with parameter k is violated for a particular fork, then the underlying
characteristic string must have a forkable substring of length k. Thus

Pr[common prefix violation] ≤ Pr
[
∃α, β ∈ {1, . . . , R} so that α+k−1 ≤ β
and wα . . . wβ is forkable

]

≤
∑

1≤α≤R

∑

α+k−1≤β≤R

Pr[wα . . . wβ is forkable]

︸ ︷︷ ︸
(∗)

.

Recall that the characteristic string w ∈ {0, 1}R for such an execution of
πSPoS is determined by assigning each wi = 1 independently with probability
(1 − ε)/2. According to Theorem 1 the probability that a string of length t
drawn from this distribution is forkable is no more than exp(−c

√
t) for a positive

constant c. Note that for any α ≥ 1,

R∑

t=α+k−1

e−c
√

t ≤
∫ ∞

k−1

e−c
√

t dt = (2/c2)(1 + c
√

k − 1)e−c
√

k−1 = e−Ω(
√

k)

and it follows that the sum (∗) above is exp(−Ω(
√

t)). Thus

Pr[common prefix violation] ≤ R · exp(−Ω(
√

k)) ≤ exp(ln R − Ω(
√

k)),

as desired.

4.4 Chain Growth and Chain Quality

Anticipating these two proofs, we record an additive Chernoff–Hoeffding bound.
(See, e.g., [17] for a proof.)
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Theorem 3 (Chernoff–Hoeffding bound). Let X1, . . . , XT be independent
random variables with E[Xi] = pi and Xi ∈ [0, 1]. Let X =

∑T
i=1 Xi and μ =

∑T
i=1 pi = E[X]. Then, for all δ ≥ 0,

Pr[X ≥ (1 + δ)μ] ≤ e− δ2
2+δ μ and Pr[X ≤ (1 − δ)μ] ≤ e− δ2

2+δ μ.

We will start with the chain growth property.

Theorem 4. The πSPoS protocol satisfies the chain growth property with para-
meters τ = 1 − α, s ∈ N throughout an epoch of R slots with probability at least
1 − exp(−Ω(ε2s) + ln R) against an adversary holding an α − ε portion of the
total stake.

Proof (sketch). The proof proceeds by applying the Chernoff bound to ensure
that with high probability a characteristic string drawn from the binomial dis-
tribution has a ≈ τ = (1 − α) fraction of honest indices. Note that each honest
player will force the length of the resulting chain to increase by one in any
execution of πSPoS. See [14] for a complete presentation.

Having established chain growth we now turn our attention to chain quality.
Recall that the chain quality property with parameters μ and � asserts that
among every � consecutive blocks in a chain (possessed by an honest user), the
fraction of adversarial blocks is no more than μ.

Theorem 5. Let α−ε be the adversarial stake ratio. The πSPoS protocol satisfies
the chain quality property with parameters μ(α − ε) = α/(1 − α) and � ∈ N

throughout an epoch of R slots with probability at least

1 − exp
(−Ω(ε2α�) + ln R

)
.

Proof (sketch). This likewise follows from appropriate application of the Cher-
noff bound. See [14] for full discussion.

5 Our Protocol: Dynamic Stake

5.1 Using a Trusted Beacon

In the static version of the protocol in the previous section, we assumed that
stake was static during the whole execution (i.e., one epoch), meaning that stake
changing hands inside a given epoch does not affect leader election. Now we put
forth a modification of protocol πSPoS that can be executed over multiple epochs
in such a way that each epoch’s leader election process is parameterized by the
stake distribution at a certain designated point of the previous epoch, allowing
for change in the stake distribution across epochs to affect the leader election
process. As before, we construct the protocol in a hybrid model, enhancing the
FD,F

LS ideal functionality to now provide randomness and auxiliary information
for the leader election process throughout the epochs (the enhanced functionality
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will be called FD,F
DLS). We then discuss how to implement FD,F

DLS using only FD,F
LS

and in this way reduce the assumption back to the simple common random string
selected at setup.

Before describing the protocol for the case of dynamic stake, we need to
explain the modification of FD,F

LS so that multiple epochs are considered. The
resulting functionality, FD,F

DLS , allows stakeholders to query it for the leader selec-
tion data specific to each epoch. FD,F

DLS is parameterized by the initial stake of
each stakeholder before the first epoch e1 starts; in subsequent epochs, parties
will take into consideration the stake distribution in the latest block of the pre-
vious epoch’s first R − 2k slots. Given that there is no predetermined view of
the stakeholder distribution, the functionality FD,F

DLS will provide only a random
string and will leave the interpretation according to the stakeholder distribu-
tion to the party that is calling it. The effective stakeholder distribution is the
sequence S1,S2, . . . defined as follows: S1 is the initial stakeholder distribution;
for slots {(j − 1)R + 1, . . . , jR} for j ≥ 2 the effective stakeholder Sj is deter-
mined by the stake allocation that is found in the latest block with time stamp
at most (j − 1)R − 2k, provided all honest parties agree on it, or is undefined if
the honest parties disagree on it. The functionality FD,F

DLS is defined in Fig. 4.

Fig. 4. Functionality FD,F
DLS .

We now describe protocol πDPoS, which is a modified version of πSPoS that
updates its genesis block B0 (and thus the leader selection process) for every new
epoch. The protocol also adopts an adaptation of the static maxvalidS function,
defined so that it narrows selection to those chains which share common prefix.
Specifically, it adopts the following rule, parameterized by a prefix length k:

Function maxvalid(C,C). Returns the longest chain from C∪{C} that does
not fork from C more than k blocks. If multiple exist it returns C, if this
is one of them, or it returns the one that is listed first in C.

Protocol πDPoS is described in Fig. 5 and functions in the FD,F
DLS -hybrid model.
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Fig. 5. Protocol πDPoS

Remark 1. The modification to maxvalid(·) to not diverge more than k blocks
from the last chain possessed will require stakeholders to be online at least every
k slots. The relevance of the rule comes from the fact that as stake shifts over
time, it will be feasible for the adversary to corrupt stakeholders that used to
possess a stake majority at some point without triggering Bad

1/2 and thus any
adversarial chains produced due to such an event should be rejected. It is worth
noting that this restriction can be easily lifted if one can trust honest stakeholders
to securely erase their memory; in such case, a forward secure signature can be
employed to thwart any past corruption attempt that tries to circumvent Bad1/2.

5.2 Simulating a Trusted Beacon

While protocol πDPoS handles multiple epochs and takes into consideration
changes in the stake distribution, it still relies on FD,F

DLS to perform the leader
selection process. In this section, we show how to implement FD,F

DLS through
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Protocol πDLS, which allows the stakeholders to compute the randomness and
auxiliary information necessary in the leader election.

Recall, that the only essential difference between FD,F
LS and FD,F

DLS is the con-
tinuous generation of random strings ρ2, ρ3, . . . for epochs e2, e3, . . .. The idea
is simple, protocol πDLS will use a coin tossing protocol to generate unbiased
randomness that can be used to define the values ρj , j ≥ 2 bootstrapping on the
initial random string and initial honest stakeholder distribution. However, notice
that the adversary could cause a simple coin tossing protocol to fail by aborting.
Thus, we build a coin tossing scheme with “guaranteed output delivery.”

Protocol πDLS is described in Fig. 6 and uses a publicly verifiable secret shar-
ing (PVSS) [26] (we defer to the full version the full description of the scheme).

The assumption we will use about the PVSS scheme is that the resulting
coin-flipping protocol simulates a perfect beacon with distinguishing advantage
εDLS. Simulation here suggests that, in the case of honest majority, there is
a simulator that interacts with the adversary and produces indistinguishable
protocol transcripts when given the beacon value after the commitment stage.
We remark that using [26] as a PVSS, a simulator can achieve simulatability
in the random oracle model by taking advantage of the programmability of the
oracle. Using a random oracle is by no means necessary though and the same
benefits may be obtained by a CRS embedded into the genesis block.

5.3 Robust Transaction Ledger

We are now ready to state the main result of the section that establishes that
the πDPOS protocol with the protocol πDLS as a sub-routine implements a robust
transaction ledger under the environmental conditions that we have assumed.
Recall that in the dynamic stake case we have to ensure that the adversary cannot
exploit the way stake changes over time and corrupt a set of stakeholders that
will enable the control of the majority of an elected committee of stakeholders
in an epoch. In order to capture this dependency on stake “shifts”, we introduce
the following property.

Definition 16. Consider two slots sl1, sl2 and an execution E. The stake shift
between sl1, sl2 is the maximum possible statistical distance of the two weighted-
by-stake distributions that are defined using the stake reflected in the chain C1 of
some honest stakeholder active at sl1 and the chain C2 of some honest stakeholder
active at sl2 respectively.

Given the definition above we can now state the following theorem.

Theorem 6. Fix parameters k,R,L ∈ N, ε, σ ∈ (0, 1). Let R = 10k be the epoch
length and L the total lifetime of the system. Assume the adversary is restricted
to 1−ε

2 − σ relative stake and that the πSPOS protocol satisfies the common pre-
fix property with parameters R, k and probability of error εCP, the chain quality
property with parameters μ ≥ 1/k, k and probability of error εCQ and the chain
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Fig. 6. Protocol πDLS.

growth property with parameters τ ≥ 1/2, k and probability of error εCG. Further-
more, assume that πDLS simulates a perfect beacon with distinguishing advantage
εDLS.

Then, the πDPOS protocol satisfies persistence with parameters k and liveness
with parameters u = 2k throughout a period of L slots (or Bad

1/2 happens) with
probability 1 − (L/R)(εCQ + εCP + εCG + εDLS), assuming that σ is the maximum
stake shift over 10k slots, corruption delay D ≥ 2R − 4k and no honest player
is offline for more than k slots.

Proof. (sketch) Let us first consider the execution of πDPOS when FD,F
DLS is

used instead of πDLS. Let BADr be the event that any of the three proper-
ties CP,CQ,CG is violated at round r ≥ 1 while no violation of any of them
occurred prior to r. It is easy to see that Pr[∪r≤RBADr] ≤ εCQ + εCP + εCG.
Conditioning now on the negation of this event, we can repeat the argument
for the second epoch, since D ≥ R and thus the adversary cannot influence
the stakeholder selection for the second epoch. It follows that Pr[∪r≤LBADr] ≤
(L/R)(εCQ + εCP + εCG). It is easy now to see that persistence and liveness hold
conditioning on the negation of the above event: a violation of persistence would
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violate common prefix. On the other hand, a violation of liveness would violate
either chain growth or chain quality for the stated parameters.

Observe that the above result will continue to hold even if FD,F
DLS was weakened

to allow the adversary access to the random value of the next epoch 6k slots
ahead of the end of the epoch. This is because the corruption delay D ≥ 2R −
4k = 16k.

Finally, we examine what happens when FD,F
DLS is substituted by FD,F

LS and
the execution of protocol πDLS. Consider an execution with environment Z and
adversary A and event BAD that happens with some probability β in this exe-
cution. We construct an adversary A∗ that operates in an execution with FD,F

DLS ,
weakened as in the previous paragraph, and induces the event BAD with roughly
the same probability β. A∗ would operate as follows: in the first 4k slots, it will
use an honest party to insert in the blockchain the simulated commitments of
the honest parties; this is feasible for A∗ as in 4k slots, chain growth will result in
the blockchain growing by at least 2k blocks and thus in the first k blocks there
will be at least a single honest block included. Now A∗ will obtain from FD,F

DLS

the value of the beacon and it will simulate the opening of all the commitments
on behalf of the honest parties. Finally, in the last 2k slots it will perform the
forced opening of all the adversarial commitments that were not opened. The
protocol simulation will be repeated for each epoch and the statement of the
theorem follows. ��
Remark 2. We note that it is easy to extend the adversarial model to include
fail-stop (and recover) corruptions in addition to Byzantine corruptions. The
advantage of this mixed corruption setting, is that it is feasible to prove that we
can tolerate a large number of fail-stop corruptions (arbitrarily above 50%). The
intuition behind this is simple: the forkable string analysis still applies even if
an arbitrary percentage of slot leaders is rendered inactive. The only necessary
provision for this would be expand the parameter k inverse proportionally to the
rate of non-stopped parties. We omit further details.

6 Incentives

So far our analysis has focused on the cryptographic adversary setting where
a set of honest players operate in the presence of an adversary. In this section
we consider the setting of a coalition of rational players and their incentives to
deviate from honest protocol operation.

Input Endorsers. In order to address incentives, we modify further our basic
protocol to assign two different roles to stakeholders. As before in each epoch
there is a set of elected stakeholders that runs the secure multiparty coin flipping
protocol and are the slot leaders of the epoch. Together with those there is a (not
necessarily disjoint) set of stakeholders called the endorsers. Now each slot has
two types of stakeholders associated with it; the slot leader who will issue the
block as before and the slot endorser who will endorse the input to be included in
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the block. Moreover, contrary to slot leaders, we can elect multiple slot endorsers
for each slot, nevertheless, without loss of generality we just assume a single
input endorser per slot in this description. While this seems like an insignificant
modification it gives us a room for improvement because of the following reason:
endorsers’ contributions will be acceptable even if they are d slots late, where
d ∈ N is a parameter.

The enhanced protocol, πDPOSwE, can be easily seen to have the same per-
sistence and liveness behaviour as πDPOS: the modification with endorsers does
not provide any possibility for the adversary to prevent the chain from grow-
ing, accepting inputs, or being consistent. However, if we measure chain quality
in terms of number of endorsed inputs included this produces a more favorable
result: it is easy to see that the number of endorsed inputs originating from a
set of stakeholders S in any k-long portion of the chain is proportional to the
relative stake of S with high probability. This stems from the fact that it is
sufficient that a single honest block is created for all the endorsed inputs of the
last d slots to be included in it. Assuming d ≥ 2k, any set of stakeholders S
will be an endorser in a subset of the d slots with probability proportional to its
cumulative stake, and thus the result follows.

A Suitable Class of Reward Mechanisms. The reward mechanism that we will
pair with input endorsers operates as follows. First we set the endorsing accep-
tance window, d to be d = 2k. Let C be a chain consisting of blocks B0, B1, . . ..
Consider the sequence of blocks that cover the j-th epoch denoted by B1, . . . , Bs

with timestamps in {jR + 1, . . . , (j + 1)R + 2k} that contain an r ≥ 0 sequence
of endorsed inputs that originate from the j-th epoch (some of them may be
included as part of the j + 1 epoch). We define the total reward pool PR to be
equal to the sum of the transaction fees that are included in the endorsed inputs
that correspond to the j-th epoch. If a transaction occurs multiple times (as part
of different endorsed inputs) or even in conflicting versions, only the first occur-
rence of the transaction is taken into account (and is considered to be part of
the ledger at that position) in the calculation of P , where the total order used is
induced by the order the endorsed inputs that are included in C. In the sequence
of these blocks, we identify by L1, . . . , LR the slot leaders corresponding to the
slots of the epoch and by E1, . . . , Er the input endorsers that contributed the
sequence of r endorsed inputs. Subsequently, the i-th stakeholder Ui can claim
a reward up to the amount (β · |{j | Ui = Ej}|/r + (1 − β) · |{j | Ui = Lj}|/R)P
where β ∈ [0, 1]. Claiming a reward is performed by issuing a “coinbase” type of
transaction at any point after 4k blocks in a subsequent epoch to the one that
a reward is being claimed from.

Observe that the above reward mechanism has the following features: (i) it
rewards elected committee members for just being committee members, indepen-
dently of whether they issued a block or not, (ii) it rewards the input endorsers
with the inputs that they have contributed. (iii) it rewards entities for epoch j,
after slot jR + 4k.
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We proceed to show that our system is a δ-Nash (approximate) equilibrium,
cf. [19, Sect. 2.6.6]. Specifically, the theorem states that any coalition deviating
from the protocol can add at most an additive δ to its total rewards.

A technical difficulty in the above formulation is that the number of players,
their relative stake, as well as the rewards they receive are based on the transac-
tions that are generated in the course of the protocol execution itself. To simplify
the analysis we will consider a setting where the number of players is static, the
stake they possess does not shift over time and the protocol has negligible cost
to be executed. We observe that the total rewards (and hence also utility by our
assumption on protocol costs) that any coalition V of honest players are able
extract from the execution lasting L = tR + 4k + 1 slots, is equal to

RV (E) =
t∑

j=1

P
(j)
all

(

β
IEj

V (E)
R

+ (1 − β)
SLj

V (E)
rj

)

for any execution E where common prefix holds with parameter k, where rj is
the total endorsed inputs emitted in the j-th epoch (and possibly included at
any time up to the first 2k slots of epoch j +1), P

(j)
all is the reward pool of epoch

j, SLj
V (E) is the number of times a member of V was elected to be a slot leader

in epoch j and IEj
V (E) the number of times a member of V was selected to

endorse an input in epoch j.
Observe that the actual rewards obtained by a set of rational players V in an

execution E might be different from RV (E); for instance, the coalition of V may
never endorse a set of inputs in which case they will obtain a smaller number of
rewards. Furthermore, observe that we leave the value of RV (E) undefined when
E is an execution where common prefix fails: it will not make sense to consider
this value for such executions since the view of the protocol of honest parties
can be divergent; nevertheless this will not affect our overall analysis since such
executions will happen with sufficiently small probability.

We will establish the fact that our protocol is a δ-Nash equilibrium by proving
that the coalition V , even deviating from the proper protocol behavior, it cannot
obtain utility that exceeds RV (E) + δ for some suitable constant δ > 0.

Theorem 7. Fix any δ > 0; the honest strategy in the protocol is a δ-Nash
equilibrium against any coalition commanding a proportion of stake less than
(1 − ε)/2 − σ for some constants ε, σ ∈ (0, 1) as in Theorem 6, provided that
the maximum total rewards Pall provided in all possible protocol executions is
bounded by a polynomial in λ, while εCQ + εCP + εCG + εDLS is negligible in λ.

We refer to the full version of the paper, [14], for the proof.

Remark 3. In the above theorem, for simplicity, we assumed that protocol costs
are not affective the final utility (in essence this means that protocol costs are
assumed to be negligible). Nevertheless, it is straightforward to extend the proof
to cover a setting where a negative term is introduced in the payoff function
for each player proportional to the number of times inputs are endorsed and
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the number of messages transmitted for the MPC protocol. The proof would
be resilient to these modifications because endorsed inputs and MPC protocol
messages cannot be stifled by the adversary and hence the reward function can be
designed with suitable weights for such actions that offsets their cost. Still note
that the rewards provided are assumed to be “flat” for both slots and endorsed
inputs and thus the costs would also have to be flat. We leave for future work the
investigation of a more refined setting where costs and rewards are proportional
to the actual computational steps needed to verify transactions and issue blocks.

7 Stake Delegation

In this section we introduce a delegation scheme whereby the stakeholders of
the PoS protocol can delegate the protocol execution rights to another set of
parties, the delegates. A delegate may participate in the protocol only if it rep-
resents a certain number of stakeholders whose aggregate stake exceeds a given
threshold. Such a participation threshold ensures that a “fragmentation” attack,
that aims to increase the delegate population in order to hurt the performance
of the protocol, cannot incur a large penalty as it is capable to force the size
of the committee that runs the protocol to be small (it is worth noting that
the delegation mechanism is similar to mining pools in proof-of-work blockchain
protocols).

Delegation Scheme. The concept of delegation is simple: any stakeholder can
allow a delegate to generate blocks on her behalf. In the context of our protocol,
where a slot leader signs the block it generates for a certain slot, such a scheme
can be implemented in a straightforward way based on proxy signatures [7].

A stakeholder can transfer the right to generate blocks by creating a proxy
signing key that allows the delegate to sign messages of the form (st, d, slj)
(i.e., the format of messages signed in Protocol πDPoS to authenticate a block).
In order to limit the delegate’s block generation power to a certain range of
epochs/slots, the stakeholder can limit the proxy signing key’s valid message
space to strings ending with a slot number slj within a specific range of values.
The delegate can use a proxy signing key from a given stakeholder to simply run
Protocol πDPoS on her behalf, signing the blocks this stakeholder was elected to
generate with the proxy signing key. This simple scheme is secure due to the
Verifiability and Prevention of Misuse properties of proxy signature schemes,
which ensure that any stakeholder can verify that a proxy signing key was actu-
ally issued by a specific stakeholder to a specific delegate and that the delegate
can only use these keys to sign messages inside the key’s valid message space,
respectively. We remark that while proxy signatures can be described as a high
level generic primitive, it is easy to construct such schemes from standard digital
signature schemes through delegation-by-proxy as shown in [7]. In this construc-
tion, a stakeholder signs a certificate specifying the delegates identity (e.g., its
public key) and the valid message space. Later on, the delegate can sign messages
within the valid message space by providing signatures for these messages under
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its own public key along with the signed certificate. As an added advantage,
proxy signature schemes can also be built from aggregate signatures in such a
way that signatures generated under a proxy signing key have essentially the
same size as regular signatures [7].

An important consideration in the above setting is the fact that a stakeholder
may want to withdraw her support to a stakeholder prior to its proxy signing
key expiration. Observe that proxy signing keys can be uniquely identified and
thus they may be revoked by a certificate revocation list within the blockchain.

Eligibility Threshold. Delegation as described above can ameliorate fragmenta-
tion that may occur in the stake distribution. Nevertheless, this does not pre-
vent a malicious stakeholder from dividing its stake to multiple accounts and,
by refraining from delegation, induce a very large committee size. To address
this, as mentioned above, a threshold T , say 1%, may be applied. This means
that any delegate representing less a fraction less than T of the total stake is
automatically barred from being a committee member. This can be facilitated by
redistributing the voting rights of delegates representing less than T to other del-
egates in a deterministic fashion (e.g., starting from those with the highest stake
and breaking ties according to lexicographic order). Suppose that a committee
has been formed, C1, . . . , Cm, from a total of k draws of weighing by stake. Each
committee member will hold ki such votes where

∑m
i=1 ki = k. Based on the

eligibility threshold above it follows that m ≤ T−1 (the maximum value is the
case when all stake is distributed in T−1 delegates each holding T of the stake).
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