Parsing Tweets into Universal Dependencies

Social Media NLP: domain adaptation and annotated datasets

Universal Dependencies (UD): adaptable to different genres and languages

Our work: UD v2 on English Social Media

- Annotation: Tweebank v2 (4x larger than v1)
- Pipeline: Distillation for fast/accurate parsing

Annotation

• Twitter-specific constructions that are not covered by UD guidelines (cf. Sanguinetti et al. 2017 for Italian)

Pipeline

- overcome noise in the annotation
- accurate parsing without sacrificing speed

Annotation Guidelines

Tokenization

Tradeoff between preservation of original tweet content and respecting the UD guidelines.

Part-of-Speech

Conform to UD guidelines in most cases. Use syntactic head's POS for abbreviations.

Dependencies

Identify non-syntactic tokens (see above Fig.)

- discourse for sentiment emoticon, topical hashtag, and truncated word
- list for referential URL conforming UD
- Retweet construction is treated as a whole

Twitter-specific Constructions

	Foster et al. (2010) Stanford Dependencies	Tweebank v1 (Kong et al., 2014) FUDG Dependencies	Tweebank v2 (UD)
• URL	Yes	Yes	Yes
 Ellipsis 	Not mentioned	Not mentioned	Yes
 Listing of entities 	Not mentioned	Not mentioned	Yes
Parataxis sentences	Not mentioned	Not mentioned	Yes
 Phrasal abbreviations 	Not mentioned	Not mentioned	Our contribution
 Retweet 	Yes	Yes	Our contribution
 @-mention (reply) 	Yes	Yes	Our contribution
 Hashtag 	Yes	Yes	Our contribution
 Truncated words 	Not mentioned	Not mentioned	Our contribution
		Common in web-text	- Common in tweets

Tweebank v2

Data source: Tweebank v1 + Feb to Jul 2016 Twitter Stream Statistics:

- 18 people involved
- 3,550 annotated tweets
- 4.5 times larger than v1
- POS agreement: 96.6
- Dep. agreement: 88.8 (U) / 84.3 (L)

Disagreements:

- POS for named entities
- Syntactically ambiguous tweets
- See our paper for more details

Tokenizer

- Tweet tokenization: contextual dependent and requires adaption
- Statistical modeling vs rule-based model
- We propose to use bi-**LSTM** for tokenization and it performs better

System	F1
Stanford CoreNLP	97.3
Twokenizer	94.6
Ours biLSTM	98.3

POS tagger

- We consider the existing POS taggers Rich feature-based
- (Owoputi et al., 2013) vs neural tagger (Ma and Hovy, 2016) and careful feature engineering still helps

System Acc. Stanford CoreNLP 90.6 Owoputi et al., 2013 **94.6** Ma and Hovy, 2016 92.5

Parser

- Annotation: noisy, complicates the parser training
- Overcome the noise with ensemble
- Ensemble is slow. We do distillation and it's fast and accurate

System LAS Kt/s Kong et al. (2014) 76.9 0.3 Dozat et al. (2017) 77.7 1.7 Ballesteros et al. (2015) 75.7 **2.3** Ensemble **79.4** 0.2

Distillation 77.9 2.3

Pipeline Evaluation Tokenization: 98.3, POS tagging: 93.3, UD parsing: 74.0

Yijia Liu¹ · Yi Zhu² · Wanxiang Che¹ · Bing Qin¹ · Nathan Schneider³ · Noah A. Smith⁴

¹Harbin Institute of Technology

²University of Cambridge

³Georgetown University

⁴University of Washington