Parsing Tweets int0 Universal Dependencies

Social Media NLP: domain adaptation and
annotated datasets

Universal Dependencies (UD): adaptable to
different genres and languages

Our work: UD v2 on English Social Media

* Annotation: Tweebank v2 (4x larger than v1)
 Pipeline: Distillation for fast/accurate parsing

Annotation

 Twitter-specific constructions that are not
covered by UD guidelines (cf. Sanguinetti
et al. 2017 for Italian)

Pipeline

* overcome noise Iin the annotation

 accurate parsing without sacrificing speed
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Identify non-syntactic tokens (see above Fig.) abbreviations

» discourse for sentiment emoticon, * Retweet
and * @-mention (reply)
’  Hashtag

» Jist for referential URL conforming UD . Truncated words
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IS treated as a whole

Data source: Tweebank v1 +

Feb to Jul 2016 Twitter Stream
Statistics:.

» 18 people involved

» 3,550 annotated tweets

» 4.5 times larger than v1

* POS agreement: 96.6

* Dep. agreement: 88.8 (U) / 84.3 (L)
Disagreements:

* Tweet tokenization:
contextual dependent
and requires adaption

 Statistical modeling vs
rule-based model

* \We propose to use bi-
LSTM for tokenization
and it performs better

System F1

* We consider the
existing POS taggers

* Rich feature-based
(Owoputi et al., 2013)
vs neural tagger (Ma
and Hovy, 2016) and
careful feature
engineering still helps

System Acc.

Common in web-text - Common in tweets

* Annotation: noisy,
complicates the parser
training

 Overcome the noise
with ensemble

« Ensemble is slow. We
do distillation and it's
fast and accurate

System LAS Klt/s

* POS for named entities
» Syntactically ambiguous tweets
* See our paper for more details

Stanford CoreNLP 97.3
Twokenizer 94.6
Ours biLSTM 98.3

Tokenization: 98.3, POS tagging: 93.3, UD parsing: 74.0

Stanford CoreNLP
Owoputi et al., 2013
Ma and Hovy, 2016

90.6
94.6
92.5

Kong et al. (2014) 76.9 0.3
Dozat et al. (2017) 77.7 1.7
Ballesteros et al. (2015) 75.7 2.3
Ensemble 79.4 0.2
Distillation 77.9 2.3
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Dataset @ http://tiny.cc/Ojuzty - Software @ http://tiny.cc/fluzty
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