

Putting Words in BERT's Mouth: Navigating Contextualized Vector Spaces with Pseudowords

Taelin Karidi, Yichu Zhou, Nathan Schneider, Omri Abend, Vivek Srikumar

Hebrew University of Jerusalem # University of Utah # Georgetown University

EMNLP 2021

What knowledge is encoded in LMs such as BERT?

What knowledge is encoded in LMs such as BERT?

Downstream model (e.g. probing classifier)

[Liu et al., 2019; Conneau et al., 2018; Belinkov et al., 2017; Adi et al., 2016, inter alia] Predictions of the LM itself

[Petroni et al., 2019]

Geometric methods (e.g. clustering the embeddings)

[Coenen et al., 2019; Ethayarajh 2019; Gessler & Schneider 2021]

What knowledge is encoded in LMs such as BERT?

What does BERT know about **lexical semantics**?

Motivating Example

The event is in _____

The event is in London

The event is in October

How is the information about the **sense** encoded in the contextualised representation of "in"?

Main Hypothesis

There are regular "nicely defined" regions in the BERT-space around words that correspond to distinct senses.

Geometric View

Naive approach: Look at neighborhoods of points in the BERT-space.

Geometric View

Naive approach: Look at neighborhoods of points in the BERT-space.

Novel technique to investigate the geometry of the BERT-space in a controlled manner around individual instances.

Novel technique to investigate the geometry of the BERT-space in a controlled manner around individual instances.

How do different regions in the contextualised space correspond to word senses?

We learn a pseudoword \mathbf{z}^* in place of \mathbf{z}_4 which is customized to reconstruct \mathbf{x}_4

$$\mathbf{z}^* = \underset{\mathbf{z} \in \mathbb{R}^d}{\operatorname{arg\,min}} ||BERT(\mathbf{z}) - \mathbf{x}_t||^2$$

(here t=4, d=768)

Masked prediction using a pseudoword

Masked Pseudoword Probing (MaPP): Summary

Run BERT for a sentence.

The MaPP Data Set

- We manually compiled a dataset for our experiments.
- Each sentence contains an <u>ambiguous word</u> that is fully disambiguated by a specific slot in the sentence.

Focus Word	Sentence	Sense			
in	The event is in October .	temporal			
for	The book is for Lisa.	person			
with	I ate salad with enjoyment.	feeling			
about	The clip is about a horse .	topic			
started	I started the car.	device			
had	I <mark>had</mark> a party.	social event			
had	I had slept.	auxiliary/past participle			

Research Questions & Experiments

Experiment 1: Specialization

Question: Does a pseudoword decode to a specific sense of the focus token?

Research Questions & Experiments

Experiment 1: Specialization

Question: Does a pseudoword decode to a specific sense of the focus token?

Query	Top 5 predictions				
The dinner is on Monday .	 z fire X offer X sale X Friday ✓ hold X z* Sunday ✓ Saturday ✓ Thursday ✓ Tuesday ✓ Friday ✓ 				
The clip is about a queen .	z minute \checkmark year \checkmark second \checkmark day \checkmark week \checkmark z [*] woman \checkmark girl \checkmark man \checkmark child \checkmark boy \checkmark				

Specialization Experiment: Results

Accuracy at producing a completion consistent with the sense from the original context

Research Questions & Experiments: Interpolation

Experiment 2: Interpolation

Question: What does a boundary between two distinct senses look like?

The event is in London

The event is in October

Mask	Vanilla BERT	Query 1	Interpolated MaPP			Query 2	
WIASK			$\alpha = 0$	$\alpha = 0.4$	$\alpha = 0.8$	$\alpha = 1$	Query 2
The event is in [MASK].	progress X		London ┥	Toronto 🖪	June 🕨	July 🕨	
	June 🕨		Dublin 🖪	London 🖪	July 🕨	September 🕨	
	July 🕨	The event is in London .	Edinburgh 🖪	June 🖌	March 🕨	June 🕨	The event is in August.
	April 🕨		Paris 🖪	Dublin ┥	September 🕨	March 🕨	
	September 🕨		Sydney ┥	Melbourne 🔺	April 🕨	August 🕨	
The book is for [MASK].	children ┥		me 🔺	children ┥	free X	free X	
	women <		her ┥	women	sale 🕨 🕨	download 🕨	
	adults 🚽	The book is for him.	him 🖪	you 🖪	download 🕨	sale 🕨 🕨	The book is for
	sale 🕨 🕨		you 🖪	sale 🕨	reading >	reading 🕨 🕨	viewing.
	boys ┥		us 🖣	free X	children ┥	purchase 🕨	

Examples for the interpolation results:

Interpolation: Results

Figure 5: Interpolation results for minimal pair data as a function of interpolation parameter α : average proportion of top-1 predictions consistent with sense A, which predominates at $\alpha = 0$; sense B, which predominates at $\alpha = 1$; or neither.

Conclusions

- Novel methodology and dataset for investigating the geometry of the BERT-space
 - interpretation of **arbitrary points**
- Conclusions about the BERT-space:
 - substantial regularity, with **regions that correspond to distinct senses**
 - evidence for "**voids**"—regions that do not correspond to any intelligible sense.

Limitations & Future Work:

- Short and carefully constructed sentences \rightarrow naturalistic sentences
- English only \rightarrow other languages
- Representations in ambiguous contexts?

THE END!

