
Appendices
A Lexical categories in STREUSLE

Lexcat SS Definition Lexcat Definition
N n.* noun, common or proper NUM number
PRON.POSS p.* possessive pronoun PRON non-possessive pronoun
POSS p.* possessive clitic (’s) ADJ adjective
P p.* adposition ADV adverb
PP p.* (idiomatic) adpositional phrase MWE DET determiner
INF.P p.* semantically annotatable infinitive marker INF nonsemantic infinitive marker
V v.* single-word full verb or copula AUX auxiliary, not copula
V.VID v.* MWE: verbal idiom DISC discourse/pragmatic expression
V.VPC.full v.* MWE: full verb-particle construction CCONJ coordinating conjunction
V.VPC.semi v.* MWE: semi verb-particle construction SCONJ subordinating conjunction
V.LVC.full v.* MWE: full light verb construction INTJ interjection
V.LVC.cause v.* MWE: causative light verb construction SYM symbol
V.IAV v.* MWE: idiomatic adpositional verb PUNCT punctuation

X foreign or nonlinguistic

Table 1: Lexcats (lexical categories) that are annotated for strong lexical units, i.e., single-word expressions or
strong MWEs. Weak MWEs are treated as compositional and thus do not receive a holistic lextag or supersense.
Left: Lexcats that require supersenses of the class designated in the second column: nominal (n.*), verbal (v.*),
or adpositional/possessive (p.*). Verbal MWEs are syntactically subtyped in the lexcat, and the simple V lexcat
applies to non-MWEs only. Right: Lexcats that are incompatible with supersenses. Most of these are defined in
line with Universal POS tag definitions, but may also apply to MWEs. Definitions come from https://github.com/

nert-nlp/streusle/blob/master/CONLLULEX.md.

B Baseline Implementation Details

Table 2 lists the hyperparameter values we found by tuning on the STREUSLE development set, with
BERT pre-trained contextualized embeddings (large-cased; Devlin et al., 2019), predicted POS tags and
lemmas. BERT parameters are not fine-tuned.

BiLSTM #layers 2
BiLSTM total dim. per layer 512
Learning rate 0.001
Batch size 64

Table 2: Hyperparameter values.

Our tagger uses the BERT (large, cased) pretrained model to produce input word representations;
these input word representations are a learned scalar mixture of the BERT representations, following
observations that the topmost layer of BERT is highly attuned to the pretraining task and generalizes
poorly (Liu et al., 2019). The representation for a token is taken to be BERT output corresponding to its
first wordpiece representation. We freeze the BERT representations during training.

The word representations from the frozen BERT contextualizer are then fed into a 2-layer bidirectional
LSTM with 256 hidden units in each direction. The LSTM outputs then are projected into the label space
with a learned linear function, and a linear chain conditional random field produces the final output.

For training, we minimize the negative log-likelihood of the tag sequence with the Adam optimizer,
using a batch size of 64 sequences and a learning rate of 0.001.

We train our model for 75 epochs, and gradient norms are rescaled to a maximum of 5.0. We apply
early stopping with a patience of 25 epochs. Our model is implemented in the AllenNLP framework
(Gardner et al., 2018).

In our ablated models that use GloVe vectors and character-level CNNs instead of BERT, we use 200
output filters with a window size of 5 in the CNN. The input to the CNN are 64-dimensional character
embeddings.

https://github.com/nert-nlp/streusle/blob/master/CONLLULEX.md
https://github.com/nert-nlp/streusle/blob/master/CONLLULEX.md


C Per-Lexcat STREUSLE Results

Table 3 shows STREUSLE test set results for the BERT tagger with only MWE constraints (no POS/lemma
constraints), broken down by lexical category. The numbers reported here differ from the evaluation in
table 1—these metrics are calculated by extracting the predicted and gold spans, and then computing an
exact-match F1 measure between the predicted and gold sets.

Frequency counts are for STREUSLE-test; OOV token rates are relative to STREUSLE-train. Examples
are lemmatized lexical units (“lexlemmas”). Lexlemmas are used to calculate OOV rates.

Lexcat Example # Gold % OOV P R F Lexcat Example # Gold % OOV P R F

N food 946 24.7% 85.5 88.9 87.2 NUM five 41 17.1% 92.9 95.1 94.0

PRON.POSS my 94 0.0% 98.9 93.6 96.2 PRON it 393 0.0% 95.1 98.2 96.6
POSS ’s 1 0.0% 100.0 100.0 100.0 ADJ best 532 8.9% 85.8 94.0 89.7
P with 322 0.3% 88.0 93.2 90.5 ADV extremely 358 2.1% 91.7 92.2 91.9
PP by far 18 0.0% 87.5 77.8 82.4 DET the 376 0.0% 92.4 96.8 94.5
INF.P to see 20 0.0% 87.0 100.0 93.0 INF to 36 0.0% 91.9 94.4 93.2

V go 587 3.5% 90.0 95.4 92.6 AUX have 160 0.0% 95.7 96.2 96.0
V.VID take time 24 0.0% 64.3 37.5 47.4 DISC thanks 21 4.5% 63.6 66.7 65.1
V.VPC.full turn out 11 0.0% 58.3 63.6 60.9 CCONJ and 204 0.0% 95.3 99.5 97.4
V.VPC.semi add on 5 0.0% 50.0 60.0 54.5 SCONJ lest 21 4.8% 90.5 90.5 90.5
V.LVC.full have fun 8 0.0% 60.0 37.5 46.2 INTJ hey 17 35.3% 78.6 64.7 71.0
V.LVC.cause give chance 1 0.0% 0.0 0.0 0.0 SYM :) 12 0.0% 100.0 75.0 85.7
V.IAV treat to 17 5.9% 81.8 52.9 64.3 PUNCT . 597 0.3% 99.0 99.7 99.3

X etc 2 50.0% 0.0 0.0 0.0

Table 3: STREUSLE test set results for the BERT-based tagger with only MWE constraints (no POS/lemma
constraints), broken down by lexcat. The numbers reported here differ from the evaluation in table 1—these
metrics are calculated by extracting the predicted and gold spans, and then computing an exact-match F1 measure
between the predicted and gold sets.

D Per-VMWE Category PARSEME Results

Table 4 shows PARSEME (English) test set results for the BERT tagger with only MWE constraints (no
POS/lemma constraints), broken down by VMWE category.

Frequency counts are for PARSEME-EN-test and reflect the number of gold MWEs; OOV token rates
are relative to STREUSLE-train. Examples are lemmatized lexical units (“lexlemmas”). Lexlemmas are
used to calculate OOV rates.

PARSEME 1.1 MWE-based Token-based
VMWEs (EN-test) Example # Gold % OOV P R F P R F

V.VID tide turn 79 80.6% 8.8 17.7 11.8 11.8 20.9 15.1
V.VPC.full bring in 146 44.3% 41.8 59.6 49.2 43.3 63.7 51.5
V.VPC.semi speak up 26 61.5% 12.7 30.8 18.0 12.5 30.8 17.8
V.LVC.full make promise 166 90.5% 30.8 4.8 8.3 38.2 6.1 10.6
V.LVC.cause yield result 36 100.0% 0.0 0.0 0.0 0.0 0.0 0.0
V.IAV turn into 44 52.2% 30.4 38.6 34.0 29.1 37.8 32.9
V.MVC cross examine 4 80.0% 0.0 0.0 0.0 0.0 0.0 0.0

Table 4: PARSEME (English) test set results for the BERT tagger with only MWE constraints (no POS/lemma
constraints), broken down by VMWE category.

E VMWE Performance in STREUSLE vs. PARSEME

PARSEME appears to be a much more challenging task, even considering just the VMWE identification
performance in STREUSLE: in the main text, compare BERT model F-scores of 64% in STREUSLE
versus 40% in PARSEME (where the state-of-the-art result is 42%). Why is this the case? We suspect at
least three factors are at play:



• Substantial domain shift: PARSEME covers a wide range of genres, including literary genres, which
is likely to contribute to lower precision and recall in general.

• Base rate of MWEs: STREUSLE contains about 10 times as many MWEs per word as PARSEME,
in part due to the comprehensive nature of MWE annotation in STREUSLE. Considering just verbal
MWEs per word, STREUSLE-train has 763/44,815 = 1.7% and STREUSLE-test has 66/5,381 =
1.2%, whereas PARSEME-test has 501/71,002 = 0.7%. So it is not surprising that the STREUSLE-
trained tagger would overpredict VMWEs in PARSEME. Note that precision is lower than recall
overall and for most VMWE subtypes.

• OOV rate: MWE identification of lexical items unseen in training is generally more challenging. We
see above that the VMWE vocabularies of STREUSLE and PARSEME are largely disjoint, with
OOV rates above 50% for most subtypes. This would be expected to mainly impact recall, and in
fact, the higher the OOV rate, in general the lower the recall. In particular, recall is much lower than
precision for the LVC.full subtype, with an OOV rate of 90.5%, suggesting that it is able to correctly
identify some known LVCs but unable to generalize to new ones. The 8 instances correctly identified
had, in fact, been seen in training.



References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL-HLT, pages 4171–
4186, Minneapolis, Minnesota.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proc. of NAACL-HLT, pages
1073–1094, Minneapolis, Minnesota.

https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112

