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Contributions

e Anovel structurally-comprehensive formulation of AMR-to-English alignment in
terms of mappings between spans and connected subgraph:s.

e Released Data: automatic data for AMR Release 3.0 and Little Prince data + 350 gold
aligned sentences.

e Alignment algorithm which combines EM with rules. Advantages include:

1.
2.

3.

much improved coverage over previous datasets,

increased variety of the substructures aligned, including alignments for all
relations, and alignments for diagnosing reentrancies,

alignments are made between spans and connected substructures of an AMR,
broader identification of spans including named entities and verbal and
prepositional multiword expressions.
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Introduction: AMR

* Abstract Meaning Representation

captures “who did what to whom”

Directed acyclic graph representation of
sentence meaning

Consolidates a number of semantic
prediction task:

word sense disambiguation
semantic role labelling
named entity recognition
coreference

Scalable (~60,000 available English
sentences)

Unanchored (lacks gold alignments)



Introduction: AMR
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Background: Alignment

® Alignmentin MT

e.g., German-to-English

® AMR Alignment
e.g., AMR-to-English
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Alignments in AMR Parsing

Some AMR parsers rely on alignhments: Composition-based parsers (e.g., Beschke,
2019; Lindemann et al., 2020; Groschwitz, 2019), transition-based parsers (Wang et al.,
2015; Zhou et al., 2021; Astudillo et al., 2020; Naseem et al., 2019), factorization-based
parsers (Flanigan et al., 2014)

For other AMR parsers (Lyu & Titov, 2018; Bevilacqua et al., 2021; Xu et al., 2020; Zhang
et al., 2019), explicit alignments could still be valuable for evaluation.
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Previous AMR Aligners

e Rule Based: JAMR alignments (Flanigan et al., 2014) align using iterative application of
a list of rules.

e Expectation-Maximization: IS| alignments (Pourdamghani et al., 2014) first linearize an
AMR and then apply an expectation-maximization alignment.

e Tuned Alignments: TAMR alignments (Liu et al., 2018) are built on top of the JAMR
alignment system, but are tuned based on the performance of an oracle.

e Graph Distance: Wang and Xue (2017) use an HMM-based aligner and include a
calculation of graph distance as a locality constraint, similar to our use of projection
distance.
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Limitations of Previous Aligners

Alignments are generally between individual nodes and individual tokens without full
coverage:

Nodes in an alignment may be disconnected

Lack of multi-token alignments
Non-comprehensive node coverage

Low coverage and performance on edges
No alignment of reentrencies

JAMR
ISI
TAMR

nodes
91.1
78.7
94.9

edges

9.8

reentrancies
X
X
X
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Subgraph Layer Alignments
most -> most
of -> include-91

students -> person :ARGO-of study-01

want -> want-01

visit -> visit-01
New York -> city :name (name

:op1 “New” :0p2 “York”)
graduate -> graduate-01
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Duplicate Subgraph

Layer
used for:
ellipsis (“John ate and so did
Mary”),
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Relation Layer

used for:

argument structures,

prepositions,
etc.
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Relation Layer

used for:
argument structures,
prepositions, BELSON
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Relation Layer
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Reentrancy Layer
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LEAMR Released Data

Automatic Alignments:
e AMR Release 3.0
e Little Prince

Gold Alignments:
® 350 sentences

https://github.com/ablodge/leamr

TAA Exact Align
F1
Subgraphs (366) 94.54
Relations (260) 90.73
Reentrancies (65) 76.92
Duplicates (5) 66.67
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https://github.com/ablodge/leamr

Structure-Aware EM Algorithm

For alignable elements (unaligned nodes or
edges) of the graph, do until finished:

e Identify legal candidate spans
o unaligned spans
o spans aligned to a neighboring element
o (for subgraphs only) any span aligned to a
duplicate of this element

e Score each candidate based on alighment
and distance probabilities
e Align best scoring element-span pair

span, span, span, span, span, span, span, span, span, span, ...
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Structure-Aware EM Algorithm

% alignments
For alignable elements (unaligned nodes or =
edges) of the graph, do until finished: ﬁ‘; = Ei

e Identify legal candidate spans
o unaligned spans n,
o spans aligned to a neighboring element B
o (for subgraphs only) any span aligned to a
duplicate of this element

e Score each candidate based on alighment
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Structure-Aware EM Algorithm

For alignable elements (unaligned nodes or
edges) of the graph, do until finished: n

e Identify legal candidate spans
o unaligned spans n
o spans aligned to a neighboring element
o (for subgraphs only) any span aligned to a
duplicate of this element

e Score each candidate based on alighment
and distance probabilities
e Align best scoring element-span pair

alignments

span, ->n,
span, ->n,, n,

span, span, span, span, span, span, span, span, span, span, ...
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Structure-Aware EM Algorithm

0 alignments
For alignable elements (unaligned nodes or =
edges) of the graph, do until finished:

span, ->n,
span, ->n,, n,
. . span, ->n

o Identify legal candidate spans o

o unaligned spans

o spans aligned to a neighboring element

o (for subgraphs only) any span aligned to a
duplicate of this element

e Score each candidate based on alighment
and distance probabilities
e Align best scoring element-span pair 3
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Structure-Aware EM Algorithm

For alignable elements (unaligned nodes or L
edges) of the graph, do until finished:

e Identify legal candidate spans
o unaligned spans
o spans aligned to a neighboring element
o (for subgraphs only) any span aligned to a ) -
duplicate of this element

e Score each candidate based on alignment () )
and distance probabilities
e Align best scoring element-span pair

E3

span,span, span, span, span, span; span, span., span, span, ...
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Projection Distance old -> old

For two neighboring elements (nodes or edges), we h3/have-degree-91
define projection distance as the signed distance
between spans aligned to each element.
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Projection Distance

For two neighboring elements (nodes or edges), we
define projection distance as the signed distance
between spans aligned to each element.
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Aligning Subgraphs

score((g,5)) = Paiign (g | 5;61) Hal,-ez)Pdist(a'i§‘92)ﬁ IB(g,5)
H/_/ - ~ J

subgraph label given projection distance
span label probability

inductive bias
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Aligning Relations
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Alighing Reentrancies

score({r,s,type)) = Paign (7, 1ype | 5; 06 ) - Paist (d1; 07) - Paist (d2; 6g)

T S

reentrancy label given projection distance projection distance
span label probability (parent) probability (child)
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Exact Align F1 (%)
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DATA + CODE:

https://github.com/ablodge/leamr

Other AMR research:
https://nert-nlp.github.io/AMR-Bibliography/

Thank You!


https://nert-nlp.github.io/AMR-Bibliography/
https://github.com/ablodge/leamr

