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● For non-native speakers of English, first language (L1) affects many 
aspects of second language (L2) performance… including 
morphosyntactic knowledge (Murakami & Alexopoulou, 2016) and  
sentence processing (Clahsen & Felser, 2006)
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● Do LMs with different “L1s” also read English differently?

≠ ?
Pierre Vinken, 61 years old, will join… Pierre Vinken, 61 years old, will join…

● Does their sentence processing match that of human with the same L1?

= ?
Pierre Vinken, 61 years old, will join… Pierre Vinken, 61 years old, will join…

Introduction Method Results Discussion

Different L1s, same L2 (English)
Second language language models (L2LMs)
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● They do read differently!

≠
Pierre Vinken, 61 years old, will join… Pierre Vinken, 61 years old, will join…

● But not exactly like humans with the same L1!

≠
Pierre Vinken, 61 years old, will join… Pierre Vinken, 61 years old, will join…

Introduction Method Results Discussion



Related Work

5

Introduction Method Results Discussion

L2LMs with the same L2 (English)

● LMs as models of human language acquisition
○ BabyBERTa (Huebner et al., 2021)
○ BabyLM challenge (Warstadt et al., 2023; Choshen et al., 2024)
○ SLA (Yadavalli et al., 2023, Oba et al., 2023)

■ Test for Inductive Bias via Language Model Transfer
(TILT; Papadimitriou & Jurafsky, 2020)

● LMs and sentence processing
○ Surprisal theory (Hale 2001, Levy 2008)
○ LMs’ “psychometric predictive power” (PPP)
○ PPP positively correlates with LM quality

(quality-power hypothesis; Wilcox et al., 2020, Wilcox et al., 2023)
until certain point in pretraining (Oh & Schuler, 2023)



● L1s: English, Spanish, Portuguese, Arabic, Chinese, Japanese
● L2: English
● Model: GPT-2

Data & Pretraining
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● First language
○ CC100 (sampled 100M tokens)

● Second language
○ Simple English Wikipedia (sampled 30M tokens)

● Reading time data
○ CELER (Berzak et al., 2020): eye-tracking data from participants with 6 L1 

backgrounds

Data & Pretraining
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1. L2 perplexity (PPL)
2. L2 grammatical knowledge (BLiMP; Warstadt et al., 2020)
3. L2 sentence processing

○ Compare 2 linear regression models
(baseline model vs baseline+surprisal model)

○ Surprisal: 
○ ΔLL:

Evaluation
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RQ1

RQ2

L1 effects were observed!
Check our paper for these results!
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● X axis: Human L1
● Bar color: LM L1
● Y axis: ΔLL (LM-human alignment)
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Hypothesized plot
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● If LM’s L1 does not matter…

11

Hypothesized plot
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● If it does matter, and matching the L1 
result in the highest ΔLL
(this is our hypothesis)
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Hypothesized plot
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● This should apply to other languages 
as well
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Hypothesized plot
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● This should apply to other languages 
as wellHypothesized plot
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● This should apply to other languages 
as wellHypothesized plot
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● This should apply to other languages 
as wellHypothesized plot
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● If our hypothesis is right, the result plot 
should look like this!
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Hypothesized plot
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check our paper for 
interesting examples!
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Hypothesis disconfirmed!
● But ΔLL does vary by LM L1 (i.e. 

choice of pretraining L1 affects LM L2 
sentence processing)

Human L1 was a stronger predictor of ΔLL
(F=628.64, df=5, p < .001)
than LM L1 was
(F=16.67, df=5, p<.001)
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● This was from the final checkpoint…
● How L2LMs’ PPP change during pretraining?
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Hypothesized plot

x axis: L2 perplexity (lower the better)
y axis: L2 ΔLL (higher the better)
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Hypothesized plot

x axis: L2 perplexity (lower the better)
y axis: L2 ΔLL (higher the better)
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Hypothesized plot
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Hypothesized plot
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y axis: L2 ΔLL (higher the better)



Introduction Method Results Discussion

RQ2

26

Hypothesized plot

x axis: L2 perplexity (lower the better)
y axis: L2 ΔLL (higher the better)
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Hypothesized plot

x axis: L2 perplexity (lower the better)
y axis: L2 ΔLL (higher the better)
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Throughout the L2 pretraining phase (3M-30M)
PPP and LM quality are in negative correlation!
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≠
Pierre Vinken, 61 years old, will join… Pierre Vinken, 61 years old, will join…

● But not exactly like humans with the same L1!

≠
Pierre Vinken, 61 years old, will join… Pierre Vinken, 61 years old, will join…

● LMs with different L1s read English differently

Introduction Method Results Discussion



Takeaways

30

● L2 pretraining of up to 30M tokens lead to lower PPP
● Future direction

○ Why does L2 pretraining lead to lower PPP?
(previously reported tipping point is 2B tokens; Oh & Schuler, 2023)

○ Establish a precise relationship between pretraining dynamics and PPP

Introduction Method Results Discussion



Thank You!

Introduction Method Results Discussion
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