Probabilistic Frame-Semantic Parsing

State of the state

Dipanjan Das Nathan Schneider Desai Chen Noah A. Smith

School of Computer Science Carnegie Mellon University

> NAACL-HLT June 4, 2010

In a Nutshell

- Most models for semantics are very local (cascades of classifiers)
- This work: towards more global modeling for rich semantic processing

(feature sharing among all semantic classes) (just two probabilistic models)

- Our model outperforms the state of the art
- Our framework lends itself to extensions and improvements

Outline

- Introduction
- Background and Datasets
- Models and Results
- Conclusion

Outline

Introduction

- Background and Datasets
- Models and Results
- Conclusion

Overview

- Annotate English sentences with semantic representations
- Combination of:
 - semantic frame (word sense) disambiguation
 - semantic role labeling
- Frame and role repository: FrameNet (Fillmore et al., 2003)

- Theory developed by Fillmore (1982)
 - a word evokes a *frame* of semantic knowledge

- Theory developed by Fillmore (1982)
 - a word evokes a *frame* of semantic knowledge

the 1995 book by John Grisham

- Theory developed by Fillmore (1982)
 - a word evokes a *frame* of semantic knowledge

the 1995 <u>book</u> by John Grisham TEXT

- Theory developed by Fillmore (1982)
 - a word evokes a *frame* of semantic knowledge

the 1995 <u>book</u> by John Grisham TEXT

• a frame encodes a gestalt event or scenario

- Theory developed by Fillmore (1982)
 - a word evokes a *frame* of semantic knowledge

- a frame encodes a gestalt event or scenario
- it has conceptual dependents filling roles elaborating the frame instance

(Fillmore et al., 2003)

relationships between frames and between roles

(Fillmore et al., 2003)

- Statistics:
 - 795 semantic frames
 - 7124 roles
 - 8379 lexical units (predicates)
- I 39,000 exemplar sentences containing one frame annotation per sentence

Why Frame-Semantic Parsing?

- Combines lexical and predicate-argument semantics
- Exploits meaningful primitives developed by experts
 - the FrameNet lexicon
- Richer representation than PropBank style SRL
- No inconsistent symbolic tags (ARG2-ARG5) (Yi et al. 2007, Matsubayashi et al. 2009)
- Patterns generalizing across frames and roles can be learned (Matsubayashi et al. 2009)

Outline

Introduction

- Background and Datasets
- Models and Results

Conclusion

Early Work

- Gildea and Jurafsky (2002)
 - Much smaller version of FrameNet
 - exemplar sentences

SemEval 2007

- Baker et al. (2007) organized the SemEval task on frame structure extraction
 - first set of *full* text annotations available
 - released a corpus of ~2000 sentences with full frame-semantic parses
- Johansson and Nugues (2007) submitted the best performing system
 - our baseline for comparison (J&N'07)

SemEval 2007

- SemEval 2007 dataset:
 - training set: 1941 sentences
 - test set: 120 sentences
- Three domains
 - American National Corpus (travel)
 - Nuclear Threat Initiative (bureaucratic)
 - PropBank (news)

SemEval 2007

- Evaluation is done using the official SemEval script
 - Measures precision, recall and F₁ score for frames and arguments
 - Features a partial matching criterion for frame identification
 - assigns score between 0 and 1 to closely related frames in the FrameNet hierarchy

Outline

- Introduction
- Background and Datasets
- Models and Results

Conclusion

Challenges

- Several times more labels than traditional shallow semantic parsing
- Annotated data does not have gold syntactic annotation
- Very little labeled data
 - Identifying semantic frames for unknown lexical units
 - Very sparse features

Desired Structure

Everyone in Dublin seems intent on changing places with everyone else .

Desired Structure

Three Subtasks:

• Target identification

- Identifying frame-evoking predicates (nontrivial!)
- Frame identification
 - Labeling each target with a frame type (795 possibilities; ~WSD)
- Argument identification
 - Finding each frame's arguments (~SRL; roleset is frame-specific)

Three Subtasks:

• Target identification

 Identifying frame-evoking predicates (nontrivial!)

• Frame identification

Carnegie Mellon

 Labeling each target with a frame type (795 possibilities; ~WSD)

• Argument identification

 Finding each frame's arguments (~SRL; roleset is frame-specific)

Outline

- Introduction
- Background and Datasets
- Models and Results
 - Target Identification
 - Frame Identification
 - Argument Identification
 - Final Results

Conclusion

Target Identification

Everyone in Dublin seems intent on changing places with everyone else.

Target Identification

Everyone in Dublin seems intent on changing places with everyone else.

- Rule-based identification
 - list of all morphological variants of predicates in the lexicon
 - all prepositions filtered
 - support verbs were not identified
 - J&N'07 filtered these

Outline

- Introduction
- Background and Datasets

Models and Results

- Target Identification
- Frame Identification
- Argument Identification
- Final Results

Conclusion

Frame Identification

Everyone in Dublin seems intent on changing places with everyone else . Locative_relation Appearance Purpose Exchange Locale

J&N'07 used several classifiers for this subtask

(Johansson and Nugues, 2007)

Seen LUs

Our approach:

One single model for frame identification

Assume POS tags and dependency trees to be given

Assume that target t is connected to the frame f through a prototype unit ℓ

Thus, we define a probabilistic model:

 $p_{\theta}(f, \ell \mid t, \mathbf{x}) \propto \exp \theta^{\top} \mathbf{g}(f, \ell, t, \mathbf{x})$

Thus, we define a probabilistic model:

$$p_{\theta}(f, \ell \mid t, \mathbf{x}) \propto \exp \theta^{\top} \mathbf{g}(f, \ell, t, \mathbf{x})$$

other features looking at the whole sentence structure ${\bf x}$

Thus, we define a probabilistic model:

$$p_{\theta}(f, \ell \mid t, \mathbf{x}) \propto \exp \theta^{\top} \mathbf{g}(f, \ell, t, \mathbf{x})$$

Note that ℓ is unknown

Thus, we define a probabilistic model:

 $p_{\theta}(f, \ell \mid t, \mathbf{x}) \propto \exp \theta^{\top} \mathbf{g}(f, \ell, t, \mathbf{x})$

Marginalization of latent variable:

$$p_{\theta}(f \mid t, \mathbf{x}) \propto \sum_{\ell} \exp \theta^{\top} \mathbf{g}(f, \ell, t, \mathbf{x})$$

- For gold standard targets, 210 out of 1058 lemmas were unseen
 - I 90 of these get some positive score for partial frame matching
 - 4 of these exactly match
 - 44 get 0.5 or more, indicating close match

Outline

- Introduction
- Background and Datasets

Models and Results

- Target Identification
- Frame Identification
- Argument Identification
- Final Results

Conclusion

Everyone in Dublin seems intent on <u>changing</u> places with everyone else.

Exchanger_1

Exchange Themes Exchanger_2

Argument Identification: The traditional approach

Argument Identification: The traditional approach

Carnegie Mellon

Argument Identification: The traditional approach

Carnegie Mellon

Argument Identification: The traditional approach Candidate spans Exchanger_1 **Everyone in Dublin** X in Dublin Two steps Х on changing places unnecessary Two steps: Х changing places Exchanger_2 with everyone else Themes places Х

everyone

Carnegie Mellon

Argument Identification: Our approach

Candidate spans **Roleset for** Exchange Exchanger_1 Everyone in Dublin Exchanger_2 in Dublin Themes on changing places Exchangers changing places Theme_1 with everyone else Theme_2 places Manner everyone Means

.....

Argument Identification: Our approach

A probabilistic model:

$$p_{\psi}(r \to s \mid f, t, \mathbf{x}) \propto \exp \psi^{\top} \mathbf{h}(r, s, f, t, \mathbf{x})$$

A probabilistic model:

$$p_{\psi}(r \rightarrow s \mid f, t, \mathbf{x}) \propto \exp \psi^{\top} \mathbf{h}(r, s, f, t, \mathbf{x})$$

features looking at the span, the
frame, the role and the observed
sentence structure

A probabilistic model:

$$p_{\psi}(r \to s \mid f, t, \mathbf{x}) \propto \exp \psi^{\top} \mathbf{h}(r, s, f, t, \mathbf{x})$$

Decoding:

Best span for each role is selected

For each frame, the best set of nonoverlapping arguments is decoded together

A probabilistic model:

$$p_{\psi}(r \to s \mid f, t, \mathbf{x}) \propto \exp \psi^{\top} \mathbf{h}(r, s, f, t, \mathbf{x})$$

Training:

Maximum conditional likelihood

Results

Outline

Introduction

- Background and Datasets
- Models and Results
 - Target Identification
 - Frame Identification
 - Argument Identification
 - Final Results

Conclusion

Full Frame-Semantic Parsing

Results

full frame-semantic parsing

Full Frame-Semantic Parsing

full frame-semantic parsing

Conclusion

- Best results to date on frame-semantic parsing
- Only two probabilistic models instead of a cascade of classifiers for the frame-semantic parsing task
- Latent variable model for frame identification
- Better modeling of the argument identification (SRL) stage using only one model instead of two
- Publicly available software: http://www.ark.cs.cmu.edu/SEMAFOR

Thanks!

http://www.ark.cs.cmu.edu/SEMAFOR

Thanks!

 $J \text{UDGMENT}_\text{DIRECT}_\text{ADDRESS}$

http://www.ark.cs.cmu.edu/SEMAFOR

