
Introduction
● BERTology has surveyed the linguistic abilities of BERT and 

other CWE models (Rogers et al. 2020)
● Still unknown: how well does BERT discern word senses 

(especially rare ones)?
● We develop a query-by-example evaluation: given a word in 

context, try to find the most similar instances from a corpus
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Experiments
● Two English corpora: OntoNotes 5.0 (Hovy et al. 2006) (nouns 

and verbs); and PDEP (Litkowski 2014), (prepositions)
● Compare CWE models with versions inoculated by fine-tuning 

(Richardson et al., 2020; Liu et al, 2019), i.e. fine-tuned on a 
small (≤2500) number of instances from a similar task: 
supersense tagging on STREUSLE (Schneider and Smith, 2015).
○ Gives model a chance to “surface” deep information

● Our metric: average precision at k for the first 50 results, 
bucketed based on lemma frequency ℓ and the sense’s 
proportional rate of occurrence (“prevalence”) r 

CWE Similarity Ranking
● Use a CWE model to embed a target token in its sentence
● Do the same for a corpus, rank corpus sentences by cosine 

similarity between the query token and all corpus tokens with the 
same lemma

● Evaluate ranking with precision at k
● Very similar to kNN classification, but similarity ranking awards 

“partial credit” – useful for rare senses where a correct kNN 
classification would only rarely occur
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Related work
● “Word sense”: a label applied to a word classifying it according to 

its syntax and semantics; from WSD (Navigli 2009)
● Wiedemann et al. (2019) and Reif et al. (2019) use kNN classifier 

with CWE models’ embeddings as a WSD system
● Tayyar Madabushi et al. (2020) and Levine et al. (2020) modify 

BERT’s training scheme with sense-oriented tasks

Ranking
1. “Sometimes,” he says, “we’ll pull3 someone off phones for more training.”
2. Hence, they have never lacked their own stately or amusing charms to pull2 in wealth and keep it within a household..
3. I can’t pull4 it off.
4. Bulatovic says Kostunica was able to pull4 off the balancing act because he is not really anti-American.
5. ...

Results
● All popular CWE models beat a random baseline, even for 

rare senses
● But considerable differences in our evaluation despite similar 

performance on GLUE (Wang et al. 2019)
○ Surprising, given how similar e.g. RoBERTa and BERT are
○ Differences lessen but persist with inoculation

● Takeaway: high-level evaluations are informative, but may not 
reveal domain-specific differences between CWE models

Query
But with all the money and glamour of high 
finance come the relentless pressures to do 
well; pressure to pull4 off another million 
before lunch 
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Query
But with all the money and 
glamour of high finance 
come the relentless 
pressures to do well; 
pressure to pull4 off 
another million before 
lunch 

Introduction
● BERTology has surveyed the linguistic abilities of BERT and 

other CWE models (Rogers et al. 2020)
● Still unknown: how well does BERT discern word senses?
● We develop a non-parametric similarity ranking scheme for 

evaluating CWE models’ word sense abilities
● We find that in English, all popular CWE models beat a random 

baseline, even for rare senses, but that they also differ 
considerably in their performance despite being very similar 
in comprehensive benchmarks like GLUE (Wang et al. 2019)

● Takeaway: high-level evaluations are informative, but may 
obscure domain-specific differences between CWE models
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Related work
● “Word sense”: a label applied to a word classifying it according to 

its syntax and semantics; from WSD (Navigli 2009)
● Wiedemann et al. (2019) and Reif et al. (2019) use kNN classifier 

with CWE models’ embeddings as a WSD system
● Tayyar Madabushi et al. (2020) and Levine et al. (2020) modify 

BERT’s training scheme with sense-oriented tasks

CWE Similarity Ranking
● Given some CWE model f, an instance from a “query” corpus 𝓠 

with some lemma L and instances from a “database” corpus 𝓓 
which also have the lemma L:
a. Use f to encode the query instance’s sentence, and take the 

sense-annotated word’s embedding
b. Use f to encode the database instances’ sentences, and take 

the sense-annotated words’ embeddings
c. Use cosine similarity to rank the database instances
d. Evaluate the ranking using precision at k

● Very similar to kNN classification, but similarity ranking awards 
“partial credit” – useful for rare senses where a correct kNN 
classification would only rarely occur
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Results
1. “Sometimes,” he says, “we’ll pull3 someone off phones for more training.”
2. Hence, they have never lacked their own stately or amusing charms to 

pull2 in wealth and keep it within a household..
3. I can’t pull4 it off.
4. Bulatovic says Kostunica was able to pull4 off the balancing act because 

he is not really anti-American.
5. ...

Results
● Little differentiation among CWEs in the high-prevalence r ≥ 0.25 

buckets
● Large differences for rare senses r < 0.25: GPT-2 does worst, 

RoBERTa remains far behind BERT even with inoculation
● This difference is surprising, since RoBERTa is architecturally 

identical to BERT, differing only in training regime; even more 
surprising since RoBERTa slightly outperforms BERT on GLUE

● CWEs have domain-specific performance differences which 
are not revealed by benchmarks


