
The Relative Clauses AMR Parsers Hate Most

Xiulin Yang, Nathan Schneider
Georgetown University
Washington, DC, USA

{xy236, nathan.schneider}@georgetown.edu

Abstract
This paper evaluates how well English Abstract Meaning Representation parsers process an important and frequent
kind of Long-Distance Dependency construction, namely, relative clauses (RCs). On two syntactically parsed
datasets, we evaluate five AMR parsers at recovering the semantic reentrancies triggered by different syntactic
subtypes of relative clauses. Our findings reveal a general difficulty among parsers at predicting such reentrancies,
with recall below 64% on the EWT corpus. The sequence-to-sequence models (regardless of whether structural
biases were included in training) outperform the compositional model. An analysis by relative clause subtype shows
that passive subject RCs are the easiest, and oblique and reduced RCs the most challenging, for AMR parsers.
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1. Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) has emerged as a mainstream
framework in semantic parsing tasks. Recent ad-
vancements in AMR parsers have led to significant
achievements, with scores over 0.85 (Lee et al.,
2022) in Smatch (Cai and Knight, 2013). However,
relying solely on overall F-scores does not fully
reveal a parser’s performance across different lin-
guistic phenomena, leaving areas for improvement
and potential problems unclear.

In semantic parsing tasks, previous research
has shown that sequence-to-sequence (seq2seq)
models are good at abstracting away from sur-
face variation in how meanings are expressed
(Shaw et al., 2021). However, seq2seq models
that process symbolic structures as mere strings
face challenges in compositional generalization,
such as the ability to process recursion, compared
to models designed to be sensitive to the struc-
ture (Yao and Koller, 2022; Li et al., 2023; Shaw
et al., 2021). This raises the possibility that such
“structure-awareness” in the design of semantic
parsers may be valuable for complex constructions
generally.

In this paper, we focus on evaluating AMR
parsers on English relative clauses, a frequent
Long-Distance Dependency (LDD) construction.
LDD refers to the linguistic phenomenon that two
elements in a sentence, though not adjacent to
each other, are still syntactically/semantically con-
strained. As a typical example of LDD, RCs are
a popular topic of computational linguistic study
(e.g., Davis and van Schijndel, 2020; Ravfogel et al.,
2021). Compared with non-LDD constructions,
RCs are structurally complex and may give rise
to semantic ambiguities, so we assume they will be
challenging for parsers. Figure 1 shows syntactic
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(a) UD tree of the sentence: basic dependencies (above)
and enhanced dependencies added for the RC (below).

(b) Normalized AMR graph. The ARG0 edge from
like-01 to person corresponds to the relative clause.

(c) Canonical AMR graph. The ARG0-of edge corre-
sponds to the relative clause.

Figure 1: UD and AMR representations for the
sentence containing a subject relative clause I know
the person who likes you. Converting the canonical
(annotated/parsed) graph into the normalized one
entails inverting the -of edges, causing nodes to
be reentrant (have multiple parents).

dependencies and the semantic AMR graph for an
example RC.

In our evaluation we examine two types of AMR
parsers: structure-aware and structure-unaware
models. Structure-unaware models, as defined
herein, process input purely as sequential strings;
algorithms for learning and decoding are indifferent
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to any notation within these strings that represents
sentence structure. Conversely, structure-aware
models are designed to take into account structural
information, thereby enabling a more nuanced un-
derstanding of the input data’s inherent syntactic
and semantic properties.

We ask: How well can AMR parsers capture
the long-distance predicate-argument depen-
dencies in RCs? To answer this question, we
normalize edges that contain -of by inverting the
source node and the target node, and then evalu-
ate parsers by measuring recall of the reentrancies
introduced by RCs in two datasets: Universal De-
pendencies English Web Treebank (EWT; Silveira
et al., 2014) and Controlled RCs (CRC; Prasad
et al., 2019). Our investigation engages with the
following subquestions:

• Does structure-awareness help the models to
parse RCs in EWT and CRC?

• Which types of RC are most challenging and
why?

Our contributions include:
• A fine-grained method to classify RCs and

annotate Enhanced Universal Dependencies
(EUD) in reduced RCs automatically.

• A systematic comparison of five AMR parsers,
focusing specifically on their accuracy in pars-
ing reentrancies introduced by RCs, along with
an analysis of the underlying reasons for their
performance differences.

This paper begins with an overview of RCs and
reentrancies in AMR parsing (§2), followed by an
introduction to the dataset, classification algorithm,
and models in §3. §4 presents and discusses the re-
sults of our evaluation. The conclusion and sugges-
tions for future research directions are presented
in §5.1

2. Background & Related Work

2.1. Relative Clauses
In a canonical RC, a noun is modified by a clause
and is understood to fulfill a grammatical function
within that clause. The modified noun is the head
of the RC. Some RCs have a relative pronoun
like which or that. When the relative pronoun is
omitted, the clause is termed a reduced RC; when
the relative pronoun is present, along with a full
clause structure, it is termed a full RC. According
to the NP accessibility principle (Keenan and
Comrie, 1977), English allows relativization on all
grammatical functions. In the present study, we
focus on four types of full RCs and two of their
reduced counterparts:

1Our code and data can be found at https://github.
com/xiulinyang/relative-amr-eval

• Subject RC: the relative pronoun functions as
the subject of the active voice clause, as in:
He is the person who stole my book.

• Object RC: the relative pronoun functions as
the object of the clause: He is the person that
you like.

• Oblique RC: the relative pronoun functions
as an oblique within the RC: He is the person
from whom I borrowed the book. All PPs
attaching to verbs/adjectives are considered
obliques within the UD framework, which does
not distinguish oblique arguments vs. adjuncts.

• Passive RC: the RC is a passive clause whose
subject is relativized: He is the person who is
accused of stealing my book.

• Reduced Object RC: there is no relativizer
but the head noun is understood to function as
the object of the clause: He is the person you
like.

• Reduced Oblique RC: there is no relativizer
but the head noun is understood to function
as the oblique of the clause: He is the person
I borrowed the book from.

These are not the only kinds of RCs: there are
also free relatives (e.g., I heard what you said),
possessive RCs (e.g., I like the girl whose dress
is blue), and reduced subject RCs (e.g., I met the
person you mentioned __ finished all the work
this week; for clarity in this example, we indicate
the site of the gap, i.e. where the noun would go
were it not relativized).2 However, as these are
relatively rare in our dataset, our experiments are
focused on the six major RC types listed above.

2.2. RCs in UD
For the present study, we use the framework of
Universal Dependencies (UD, specifically UDv2;
Nivre et al., 2020; de Marneffe et al., 2021), a syn-
tactic annotation framework consisting of bilexical
dependencies. UD defines a shallow dependency
tree known as the basic tree, optionally comple-
mented with an enhanced graph that adds deeper
dependencies for several constructions.

The basic tree plus edges specific to the en-
hanced graph are illustrated in Figure 1a for a
sentence with a subject RC. In the UD framework,
(most) English RCs are considered a subtype of ad-
nominal clause. The predicate of the RC attaches
to the head noun with the acl:relcl dependency

2Adnominal participial clauses (the sheep eaten
by wolves, the wolves eating the sheep) are
considered RCs in some frameworks, but not in
English UD (https://universaldependencies.org/en/
dep/acl-relcl.html). There are also adverbial clauses
analyzed as RCs in UD (advcl:relcl), e.g. in cleft sen-
tences: It was Booth who shot Lincoln. These are not
very frequent in our data and we exclude them from our
analysis.
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relation. When a relative pronoun exists, in the
basic tree, it attaches inside the RC with the rela-
tivized dependency relation. In the enhanced UD
(EUD) representation, the head noun acquires the
grammatical function within the RC, and the relative
pronoun (if present) attaches to the head noun via
a ref edge in lieu of its basic function.

2.3. Fine-grained AMR Evaluation
Recognizing that overall F-scores do not tell the full
story of parser behavior, researchers have sought
to provide a finer-grained picture of the perfor-
mance of AMR parsers. Damonte et al. (2017)
report the results of a wide range of general fea-
tures of AMRs such as reentrancies, negative po-
larity, and wikification. To evaluate reentrancies,
they normalize the edges in AMR so that RCs also
introduce reentrancies. Our evaluation on AMR 3.0
data adopts their approach.

Szubert et al. (2020) provided a detailed analy-
sis of reentrancies in AMR 2.0 caused by different
syntactic, semantic, or pragmatic factors. They de-
veloped a set of heuristics to detect causes of reen-
trancies for parser evaluation. However, they focus
on reentrancies in the canonical form of the AMR,
whereas RCs are only reentrant in the inverse-
normalized form (Figure 1), so they exclude RCs
from their evaluation (Szubert et al., 2020, p. 2201).

The GrAPES benchmark (Groschwitz et al.,
2023) is designed to test AMR parsers against
nine specific challenging categories, which include
structural generalization and syntactic as well as
semantic reentrancies, among others. The dataset
includes 130 RCs in a more challenging setting
where sentences contain recursive RCs with op-
tional coreference. Groschwitz et al. test three AMR
parsers, all of which attain very low exact match
scores ranging from 0% to 17% on these recursive
RCs.

Our paper contributes to this literature by taking
a deep dive on RCs, with an extensive comparison
of AMR parsers across more than 1,400 corpus
examples and 1,400 synthetic instances of RCs.

2.4. Probing Language Models using
RCs

A few studies have used RCs to probe syntactic
structures represented in language models (LMs)
(e.g., Davis and van Schijndel, 2020; Mosbach
et al., 2020; Prasad et al., 2019). They use ei-
ther synthetic or naturalistic data to probe if the
LM represents certain linguistic features or bias.
For example, Davis and van Schijndel (2020) use
English and Spanish RCs to examine the linguistic
bias of RNN LM on the high/low attachment of RCs
when trained with only synthetic or real multilin-
gual corpus data. They found that models trained

Dataset # sents # tokens

EWT 1,449 26.5
CRC 1,400 13.7
AMR 3.0 259 29.1

Table 1: Number of sentences containing RCs in
the datasets and the mean sentence length

on synthetic data could learn to attach RCs both
high and low in the sentence structure. However,
when trained on real-world, multilingual corpus
data, the models tended to favor low attachment,
similar to the pattern seen in English, even though
this preference is not common globally across lan-
guages. Following Kim et al. (2019); Warstadt
and Bowman (2019), Mosbach et al. (2020) exam-
ined 3 pre-trained masked language models (BERT,
RoBERTa, and ALBERT) on sentence-level syntac-
tic and semantic understanding. They found that all
models show high performance in parsing syntactic
information but fail to predict the masked relative
pronoun using context and semantic knowledge.

3. Method

3.1. Data
In our experiments, three datasets are used. The
statistics of the dataset are reported in Table 1.
EWT UD treebank (henceforth EWT) The data
we use is the train split from the Universal De-
pendencies English Web Treebank (Silveira et al.,
2014). The original English Web Treebank con-
tains constituency trees for diverse web text genres
including weblogs, newsgroups, emails, reviews,
and Yahoo! answers (Bies et al., 2012). It was
then incorporated into the Universal Dependen-
cies project; we use the dependency trees for this
project.3 Opting for the training split allows for a
more extensive set of examples for evaluation. A
thorough review has confirmed that there is no con-
tent overlap between EWT and the AMR 3.0 dataset
(on which AMR parsers were trained).
Controlled RCs (henceforth CRC) The CRC
dataset is adopted from (Prasad et al., 2019). It
contains 7 types of clauses with controlled vocab-
ulary and syntactic structures, which have been
artificially generated to ensure balance across con-
structions and avoid potential confounds like length
in comparing parser performance. We employed
the four types of RCs in the dataset: subject RC,
object RC, reduced object RC, and passive RC.
Every category contains 350 examples.

3https://github.com/UniversalDependencies/UD_
English-EWT/, specifically the dev branch as of Jan. 22,
2024, which contains changes beyond the UD 2.13
release
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AMR 3.0 We report standard AMR parsing met-
rics on the test split of the AMR 3.0 release (Knight
et al., 2021), which consists of gold AMR annota-
tions from a variety of genres, including especially
news and online discussion forums. We also report
reentrancy recall on subject relative clauses.

3.2. RC classification
To have a fine-grained evaluation, we need to clas-
sify the sentences into different RC categories. We
designed a straightforward algorithm to do this
task. The classification results are then manually
checked.

We first identify all sentences annotated with
acl:relcl, totaling 2036 instances. Subsequently,
these sentences were categorized based on the
Enhanced Universal Dependency (EUD) relations
attributed to the relativized head noun. Our six
target subtypes are derived from the EUD rela-
tion and whether it is a full or reduced RC: nsubj
(full), obj (full and reduced), obl (full and reduced),
nsubj:pass (full). All other variations, such as pos-
sessives, were consolidated under the Others cat-
egory as shown in Table 2. Please note that the
total count in the table does not match 2036 due to
sentences that contain multiple types of RCs.
Reduced RC classification Enhanced UD rela-
tions were present for full RCs (having been added
based on the relativizer’s dependency relation in
the basic layer) but were missing for reduced RCs.
To infer the enhanced relation in reduced RCs,
we implement rules to identify the locally missing
(gapped) function of the RC. For example, in He
is the person you like __, in the basic UD tree the
verb like has a subject dependent but no object,
which is used to infer that it is a reduced object RC.

Our implementation takes into account the over-
all transitivity of the RC predicate verb (whether it
tends to be transitive or intransitive). We combine
data from a verb transitivity file4 and the depen-
dency relations of verbs found in EWT. Treebank
information is given precedence; if relations like
xcomp or ccomp are among the top three most fre-
quent associations with a verb, we classify it as
transitive. Otherwise, we rely on the transitivity
data from our table.

Next, we extract the set of relation labels of de-
pendents of the RC predicate, applying recursion
for instances of xcomp and ccomp so as to handle
sentences such as After I have done all the work I
promised to do, I will take a break. We then look
for a missing relation: For transitive or ditransitive

4https://github.com/wilcoxeg/verb_transitivity
The CSV file contains the percentage of the time the
verb is transitive, intransitive, and ditransitive in the
Google syntactic ngrams corpus.

RC Category Count %

Subject RC 725 35.3
Object RC 161 7.8
Oblique RC 139 6.8
Passive RC 100 4.9
Reduced object RC 340 16.5
Reduced oblique RC 218 10.6
Others 373 18.1

Total 2056 100.0

Table 2: Distribution of RC types in the EWT data
we used for evaluation.

verbs, we categorize the clause as a reduced ob-
ject RC if the verb has no obj dependent, and as
a reduced oblique RC otherwise. Clauses associ-
ated with intransitive verbs are invariably consid-
ered oblique RCs. The procedure produces 340 re-
duced object RCs and 218 reduced oblique RCs.5

The detailed statistics can be found in Table 2.
Our method relies heavily on the information

about the transitivity of verbs. Each verb type is as-
sumed to be either transitive or intransitive, which
makes ambitransitive verbs a tricky case. For ex-
ample, in the two NPs the day he returned and the
piece he returned, the first relativizes an adverbial
adjunct, while the second one is an object relative.
However, in our verb transitivity table, return is a
transitive verb, so the first example is mistakenly
tagged as a reduced object RC. Most of the classi-
fication errors are caused by this problem.

Another tricky case is embedded complement
clauses or control/raising constructions that are
marked with ccomp or xcomp in UD separately. Con-
sider the following two sentences:

(1) I will do all the work I need to do __

(2) I will talk to all the people I need __ to do the
work.

If we extract all the dependencies of the predicate
verb need, we will get the same relations: nsubj,
xcomp, obj. However, as we can see, the miss-
ing object is in different embedded structures and
therefore, the enhanced UD relation will be wrong
in terms of the head. We therefore collected all
RCs with xcomp/ccomp for manual correction.

We manually checked and corrected all exam-
ples in each reduced RC type. The results demon-
strate high accuracy in discriminating the two
classes, with a recall of 94% for reduced object
RCs and 95% for reduced oblique RCs.

5Note that reduced subject RCs only occur in doubly
embedded clauses (e.g. the rooster I thought was a
hen). These are rare and were dealt with manually.
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AMR 3.0 All Sentences RC Sentences

Models F (Full graph) F (All reentrancies) F (Full graph) F (All reentrancies) Subj RC Recall

AM-Parser§ 74.9 57.0 73.5 57.7 65.2
amrlib-T5 82.0 71.4 77.6 70.4 71.0
amrlib-BART 82.3 73.5 80.6 73.3 79.0
Spring 83.0 68.0 72.5 65.5 65.2
AMRBART§ 84.2 74.3 80.8 73.4 75.4

Table 3: Smatch F1 scores and subject RC reentrancy recall of the models on AMR 3.0 test split. Two
kinds of F1 scores are shown: overall Smatch score comparing the full graph to the gold standard AMR,
and the Reentrancies subscore (Damonte et al., 2017). These are shown for the full test set as well as
the subset of test sentences containing a relative clause. The last column shows recall of reentrancies on
subject relative clauses (138 examples in total; other RC subtypes were less frequent). “§” superscript
means “structure-aware”. The first four measures do not require token-level alignments between the
graph and the text.

3.3. Models
In our experiments, we test five different models.
The first, AM-Parser, derives a parse composition-
ally after predicting supertags and dependencies.
The other four are sequence-to-sequence models,
one of which has a structure-aware component in
its training loss.
Structure-aware models AM-Parser (Groschwitz
et al., 2018) is a neuro-symbolic compositional se-
mantic parser that learns the sub-graphs of mean-
ingful tokens and then combines them for a com-
plete AMR. It is trained on two objectives: (a) learn-
ing the supertags aligned with each token; and
(b) learning the dependency trees that connect the
supertags to build a complete AMR graph. The su-
pertagger and dependency parser are both trained
on bert-large-uncased model.

AMRBART (Bai et al., 2022) is a graph-pretrained
model based on BART (Lewis et al., 2020).
Unlike traditional text-only pretraining, AMRBART
masks parts of AMR graphs—like nodes and
edges—during pretraining. It introduces a unified
pretraining framework that combines the original
text with its AMR graph, ensuring the model learns
both linguistic content and graph structure. For pre-
training, it uses 20k silver-standard AMR graphs
created by Spring (Spring et al., 2021), and then it
is fine-tuned with gold AMR data. The fine-tuned
model shows more robust performance on unseen
data, highlighting its potential for complex language
tasks that require deep understanding.
Structure-unaware models We examined three
structure-unaware models. They are pretrained
language models fine-tuned on linearized AMRs
with necessary preprocessing.

Spring (Spring et al., 2021) fine-tunes BART-base
with vocabulary expansion. To achieve better re-
sults, instead of using linearized PENMAN notation,
they adopt graph linearization by replacing vari-
ables with special tokens <Rx> where x is a number.
In this way, the constants and variables in AMRs

can be distinguished. Despite the preprocessing
steps, the model still takes the input as sequence
of strings without distinguishing the structural in-
formation and hence we categorize Spring as a
structure-unaware model.

Similarly, amrlib fine-tunes the pre-trained lan-
guage models such as BART-large and T5 models
to translate natural language to linearized AMR.6

3.4. Evaluation
Our evaluation assesses whether the relativized
noun in a sentence is reentrant, with two incom-
ing edges—one originating from the main clause’s
predicate verb and another from the predicate
within the RC. Take the sentence in Figure 1 as an
example. After normalizing all the inverse edges,
our script identifies the RC from the acl:relcl edge
going from person to likes. It identifies the associ-
ated AMR nodes, person and like-01, and checks
whether (1) the person node receives two incoming
edges, and (2) there is an edge from like-01 to
person. If so, the reentrancy expected for the RC
is scored as recovered by the parser.

This analysis requires alignments between to-
kens in the sentence and their semantic nodes in
order to determine, given a relative clause predicate
p and its head noun n, which AMR edge (if any) is
the associated reentrancy of the form p → n. For
AM-Parser, which inherently requires node-token
alignment, we extract these alignments directly
from its predictions. For the other parsers under
study, we utilize LEAMR (Blodgett and Schnei-
der, 2021), a probabilistic, fine-grained aligner opti-
mized for English AMR.

Our evaluation metric is the recall in counting
instances where the head noun’s aligned node re-
ceives edges from both the main and RC predicate
nodes. This approach allows us to effectively gauge

6https://github.com/bjascob/amrlib/wiki/
The-parse_xfm-model
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Model Subj RC Obj RC Pass RC Obl RC RedObj RC RedObl RC All

AM-Parser§ 57.4 (416/725) 55.3 (89/161) 74.0 (74/100) 33.3 (46/138) 50.6 (172/340) 34.4 (75/218) 51.8
83.4 (605/725) 84.4 (136/161) 84.0 (84/100) 78.2 (108/138) 86.5 (294/340) 70.6 (154/218) 82.1

amrlib-BART 67.7 (491/725) 64.0 (103/161) 80.0 (80/100) 65.2 (90/138) 62.1 (211/340) 45.0 (98/218) 63.8
87.2 (632/725) 83.9 (135/161) 94.0 (94/100) 87.0 (120/138) 80.6 (274/340) 67.0 (146/218) 83.2

amrlib-T5 68.0 (493/725) 67.1 (108/161) 77.0 (77/100) 55.1 (76/138) 59.4 (202/340) 45.4 (99/218) 62.7
85.9 (623/725) 85.7 (138/161) 97.0 (97/100) 81.9 (113/138) 80.0 (272/340) 67.4 (147/218) 82.6

Spring 63.6 (461/725) 58.4 (94/161) 79.0 (79/100) 57.2 (79/138) 52.4 (178/340) 38.1 (83/218) 57.9
81.5 (591/725) 76.4 (123/161) 94.0 (94/100) 76.8 (106/138) 73.5 (250/340) 56.4 (123/218) 76.5

AMRBART§ 65.7 (476/725) 62.1 (100/161) 80.0 (80/100) 65.2 (90/138) 58.8 (200/340) 46.8 (102/218) 62.3
85.5 (620/725) 80.1 (129/161) 94.0 (94/100) 87.0 (120/138) 79.1 (269/340) 69.7 (152/218) 82.3

Average 64.5 (467/725) 61.2 (99/161) 78.0 (78/100) 55.2 (76/138) 56.6 (193/340) 41.9 (91/218) 59.1

Table 4: Results by parser and RC type on the EWT dataset. Structure-aware parsers are notated with §.
White rows report recall of RC-triggered reentrancy edges. Gray rows report attainability rates subject to
the predicted nodes and their token alignments; this is an upper bound of recall. 3 graphs produced by
AMRBART cannot be aligned with LEAMR, so we remove them from the evaluation set. The best results in
each column and condition are indicated in bold.

Model Subj RC Obj RC Passive RC RedObj RC All

AM-Parser§ 96.0 (335/349) 96.0 (332/346) 97.1 (340/350) 92.4 (280/303) 95.5 (1,287/1,348)
amrlib-BART 98.6 (344/349) 98.0 (339/346) 99.1 (347/350) 98.3 (298/303) 98.5 (1,328/1,348)
amrlib-T5 98.3 (343/349) 97.7 (338/346) 98.9 (346/350) 94.0 (284/303) 97.3 (1,311/1,348)
Spring 97.7 (341/349) 98.3 (340/346) 99.1 (347/350) 98.0 (297/303) 98.3 (1,325/1,348)

AMRBART§ 97.4 (340/349) 96.8 (335/346) 98.9 (346/350) 97.4 (295/303) 97.6 (1,316/1,348)

Average 97.6 (341/349) 97.3 (338/346) 98.6 (345/350) 96.0 (291/303) 98.0 (1,321/1,348)

Table 5: Recall by parser and RC type on the CRC dataset of synthetic sentences.

the parsers’ proficiency in handling reentrancies
within the constraints of available data.7

4. Results & Discussion

4.1. Overall Results
The initial assessment of the models was con-
ducted on the AMR 3.0 test split (after running a
dependency parser to find RCs), with outcomes
presented in Table 3. The findings indicate that
overall seq2seq models show better performance
than the compositional AM-Parser model. Across

7We do not evaluate the role label on the reentrancy
edge, because the role numbers in AMR predicates
(mostly sourced from PropBank; Kingsbury and Palmer,
2002; Pradhan et al., 2022) are semantic rather than syn-
tactic, and thus will not line up perfectly with the syntactic
RC categories. However, the numbering conventions are
weakly connected to syntactic functions: we expect that
ARG0 should imply a subject RC; a subject RC should
imply ARG0 or ARG1; a passive RC should usually imply
ARG1; an object RC should imply ARG1 or ARG2; and
ARG3, ARG4, etc. should generally imply an oblique RC
(full or reduced). Non-core roles would likely correspond
to obliques as well.

metrics, AMRBART and amrlib-BART show good per-
formance relative to other models.

It is also noteworthy that in the parsing of sen-
tences with RCs, all models exhibit a decline in
F-score, with Spring experiencing a sizable drop
(from 83.0 to 72.5). This decrease may be at-
tributed to the long-distance dependencies and
more complex syntactic structures that relative
clauses introduce.

The accuracy of 5 different models in processing
various RC types in the new datasets is systemati-
cally examined and reported in Tables 4 and 5 for
corpora with gold syntax annotations. If the predi-
cate token or head token is not aligned to a node,
it is impossible to get the reentrancy. Therefore,
we also report the attainability rate, the rate at
which node-token alignments could be recovered
for both the RC head and predicate tokens, as seen
in the gray rows of Table 4. If an RC reentrancy is
unattainable, it means either that one or both of its
tokens lack a corresponding node in the predicted
AMR (usually a parser error), or that it was present
but could not be aligned in post-processing (for sys-
tems where this step was necessary, namely the
seq2seq models).



Figure 2: RC reentrancy recall (solid lines) and
attainability rate (dashed) of all parsers, by RC sub-
type and overall.

EWT Overall, as reported in Table 4 and visual-
ized in Figure 2, detecting the edges between the
relative predicate and the head noun is challenging
for all models, with recall below 64%.8 This sug-
gests that relative clause structures are especially
difficult.

Comparison of parsers. Our results reveal that
seq2seq parsers, whether they are structure-aware
or not, outperform the compositional AM-Parser.
Moreover, the overall performance of all seq2seq
models is very similar. The performance of
AM-Parser in parsing RCs appears less advanta-
geous, which we conjecture may stem from the pre-
trained language model (i.e. bert-large-uncased)
used. As we can see, the two BART-based parsers
perform the best. Further exploration of the role of
pretrained language models is left to future work.

Attainability. According to Table 4, we can see
that even when both the head token and predicate
token have predicted nodes, there remains consid-
erable scope for further improvement given that UD
parsing has reached over 95% in LAS since 2018
(e.g., Clark et al., 2018). This means that structural
information is not fully captured by all models.

However, we recognize that the low recall might
stem from the alignment model utilized. The attain-
ability rate for oblique reduced RCs is particularly
low, which likely affects recall scores. Misalign-
ments between some subgraphs and tokens are
observed; since our analysis targets subgraphs
aligning with both the head and predicate tokens,
such misalignments can diminish the scores. Addi-
tionally, it is possible that tokens are classified as
edges rather than nodes, as illustrated in Figure 3
where no node but just an edge is aligned with the
token time.

RC subtypes. Oblique, reduced oblique, and
reduced object RCs are particularly hard. Psy-
cholinguistic research has shown that oblique rel-
ative clauses are more challenging for humans to

8For the amrlib-BART model (overall recall of
63.8%), we also computed recall of AMR edges for
ccomp complement clauses, which was much higher:
77.4% (1445/1868), with an attainability rate of 82.7
(1545/1868).

(p0 / serve-01
:ARG0 (p1 / person

:wiki "George W. Bush"
:name (p2 / name

:op1 "Bush"))
:duration (p3 / nearly

:op1 (p4 / temporal-quantity
:quant 2
:unit (p5 / year)))

:time (p6 / over-01
:ARG1 (p7 / it)))

Figure 3: Predicted AMR for the sentence By the
time it was over, Bush had served nearly two years.

process due to the greater distance between the
filler and the gap, compared to other types of rela-
tive clauses (e.g., Diessel and Tomasello, 2005);
this distance may also be challenging for the AMR
parsers. That reduced RCs are harder to parse
than full RCs is likely due to the lack of explicit syn-
tactic cues. It is interesting to see that passive RCs
are easiest to parse of the RC categories. This is
probably because both the relative pronoun and the
passive construction provide more linguistic cues
than other types of RCs. Subject RCs, the most
frequent category in both the EWT and AMR 3.0
datasets (especially if the passive subjects are in-
cluded), are easier than non-subject RCs. Psy-
cholinguistic studies have shown subject RCs to
be easier for humans to comprehend and acquire
(Gordon and Lowder, 2012; Diessel and Tomasello,
2005), and Reali and Christiansen (2007) found
that more frequent RC types are easier to process
(but did not consider passive subject RCs).

CRC As for the synthetic data, scores are
quite high across parsers and RC categories.
amrlib-BART marginally outperforms other models
on average. For object-reduced RCs, AM-Parser
and amrlib-T5 are notably weaker than the other
systems. The CRC dataset does not contain any
oblique RCs, so there is no relevant result on this
category. The results for parsing different types of
RCs presented in Table 5 align closely with those
reported in Table 4.

4.2. Exploring Parsing Performance
Variations in RCs

The models vary in absolute scores, but they follow
a general trend: reentrancies in passive RCs are
more often recovered than those in subject RCs,
followed by object RCs and oblique RCs. Reduced
RCs are harder to predict. We observe a similar
pattern in the CRC data both in dependency and
semantic parsing. Next we explore two possible fac-
tors influencing parsing performance across RCs,
namely, dependency distance and training data
distribution.



RC Category Dep Dist Mean Recall

Reduced oblique RC 3.06 41.9
Reduced object RC 3.13 56.6
Subject RC 4.30 64.5
Passive RC 5.78 78.0
Object RC 5.21 61.2
Oblique RC 6.98 55.2

Table 6: Mean dependency distance of 6 types of
RCs in our experiments

Dependency distance Dependency distance
refers to the linear distance between two words
connected by a dependency relation, which func-
tions as an important indicator of syntactic difficulty
(Liu et al., 2017). Existing research has reported
that longer dependency distance makes subject
RCs easier to process than object RCs in English
(Gibson, 1998) and vice versa in Chinese (Hsiao
and Gibson, 2003). In this paper, we calculate the
mean dependency distance between the predicate
in the RC and the head noun in the matrix clause
in each type of RC. It is surprising that the reduced
RCs have the shortest dependency distance even
if we assume the existence of the relative pronoun
(i.e., we add 1 to the existing dependency distance).
The shorter distance might justify dependency dis-
tance minimalization (Temperley, 2007) because
the omission of the relative pronoun makes the sen-
tence harder to process and therefore only shorter
dependency distance makes them easier to pro-
cess.

Regarding the full RCs, as shown in Table 6, in
the EWT dataset, the dependency distance largely
meets the observation made by previous research
that subject RC is easier than object RC. Notably,
passive RCs, despite their longer dependency dis-
tances, exhibit high parsing accuracy. This could
be attributed to passive RCs essentially acting as
subject RCs, with the relative pronoun serving as
the subject. When considering subject and passive
RCs together, the average dependency distance
decreases to 4.46, making these types the most
straightforward for parsers.
Training data distribution We investigated the
distribution of different RC types within the AMR 3.0
training split. Given the absence of gold-standard
dependency annotations in AMR 3.0, we obtained
automatic dependency trees using Stanza.9 For full
RCs, classification was based on the dependency
relationship between the relative pronoun and its
predicate. The identification of reduced RCs em-
ployed the methodology outlined in §3.2. As Table 7
illustrates, the prevalence of RC types in AMR 3.0
closely mirrors that of EWT, with subject RCs being
the most common.

9stanza-1.6.0: https://github.com/stanfordnlp/
stanza/releases/tag/v1.6.0

RC Category Count

Subject RC 4,226
Object RC 516
Oblique RC 729
Passive RC 534
Reduced object RC 1,371
Reduced oblique RC 1,092

Table 7: Distribution of 6 RC types in AMR 3.0 train
split

It is intriguing that despite being more common,
subject RCs are still tougher to handle than their
passive forms. This revelation suggests that the
frequency of a structure does not necessarily make
it easier to process, hinting at deeper complexities
in understanding syntactic patterns.

5. Conclusion

In our study, we compared two structure-aware
AMR parsers (AM-Parser and AMRBART) and typ-
ical structure-unaware seq2seq models (Spring,
amrlib-BART, and amrlib-T5) in parsing relative
clauses. We find that relative clauses are challeng-
ing for current parsers. Seq2seq models, on the
whole, outperform the compositional model. Inter-
estingly, there is little difference in performance be-
tween seq2seq models that are aware of structure
and those that are not. Furthermore, our analysis
reveals that (reduced or full) oblique and reduced
object RCs are the most challenging RC types. Ex-
amining the relationship to dependency length, we
find that the full RCs with shorter dependency dis-
tances are easier to parse; however, reduced RCs
with the shortest dependency distance are more
challenging for all parsers. As part of our study, we
have produced gold EUD annotations for reduced
RCs in the English Web Treebank; these will be
released upon publication.

Future work might expand the scope of inquiry
to more diverse reentrancy types by leveraging the
(E)UD annotations. It would also be interesting
to see if adding (E)UD information to AMR pars-
ing helps the structure-unaware parsers to learn
the complex structural information (cf. Findlay and
Haug, 2021).
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