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How effectively do AMR parsers handle different types of English
relative clauses (RCs)?
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Relative Clauses

| know the person who you like
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Relative Clauses

| know the person [who you IikeJ )
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Long Distance Dependency (LDD)

| know the person [who you like _ ] .
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Long Distance Dependency (LDD)

de

| know the person [who you think that Tom mentioned once that likes you].
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Abstract Meaning Representation (AMR)

» AMR is a graph semantic representation that captures the core semantic
roles and relations in a sentence.

» Usually who did what to whom, where and when.

» Each AMR is a single rooted, directed graph, which can be represented
with Penman Notation.

» | know the person who likes you
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roles and relations in a sentence.

» Usually who did what to whom, where and when.

» Each AMR is a single rooted, directed graph, which can be represented
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» | know the person who likes you

(k / know-01
:ARGO (i / 1)
:ARG1 (p / person
:ARGO-of (1 / like-01
:ARG1 (y / you))))
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Relative Clause in AMRs

» | know the person who likes you.

TOP

Figure: Canonical AMR graph. The ARGO-of edge corresponds to the
relative clause.
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Relative Clause in AMRs

» | know the person who likes you.

Figure: Canonical AMR graph. The ARGO-of edge corresponds to the
relative clause.

Figure: Normalized AMR graph. The ARGO edge from 1ike-01 to
person corresponds to the relative clause.
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Relative Clause Types

acl:relcl
nsub
> Subject RC: He is the person who _ stole my book
acl:relcl
obj
> Object RC: He is the person that you like
» Oblique RC:
ob
acl:relcl
He is the person that | borrowed the book from
» Passive Subject RC:
acl:relc
nsubj:pa
He is the person who _ is liked by you
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Relative Clause Types

acl:relcl
nsubj
> Subject RC: He is the person who _ stole my book
acl:relcl
[e]
> Object RC: He is the person that you like
» Oblique RC:
acl:relcl
/;@\\
He is the person that | borrowed the book from
» Passive Subject RC:
acl:relcl
/@/@»\%\
He is the person who is liked by you
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Reduced Relative Clause Types

acl:relcl

obj

He is th lik
> Reduced Object RC: = '° "¢ Person you ke

» Reduced Oblique RC:
obl

acl:relcl

He is the person | borrowed the book from
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"AMR parsing is far from solved” (croschwitz et ai., 2023)

» SOTA AMR Parser (Lee et al., 2022) achieved over 0.85 in Smatch (Cai
and Knight, 2013).

» Relying solely on overall F-scores does not fully reveal a parser’s
performance across different linguistic phenomena (Groschwitz et al.,
2023)

» Seq2seq models that simply take input as sequence string fail at structural
generalization compared with models that explicitly encode structural
information (Yao and Koller, 2022; Li et al., 2023; Shaw et al., 2021)

» Recovering reentrancy structures is a challenge for AMR parsers (Szubert
et al., 2020; Damonte et al., 2017)
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Research Questions

» How well can AMR parsers capture the long-distance
predicate-argument dependencies in RCs?

» Does structure-awareness help the models to parse?
» Which types of RC are most challenging and why?
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Relative clause

acl:relcl

> Subject RC: He is the person who _ _ stole my book
acl:relc!

R

He is the person that you like

» Object RC:
acl:relcl
fOb\
> Oblique RC: He is the person that | borrowed the book from

acl:relcl

He is the person who is liked by you

» Passive Subject RC: -

acl:relcl

N

He is th lik
> Reduced Object RC: = '° ‘the Persen you ke

obl
He is the person | borrowed the book from

» Reduced Oblique RC:
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Method

» Datasets
» Models

» Evaluation Metric
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Datasets

Dataset # sents  # tokens
EWT (Silveira et al., 2014) 1,449 26.5
CRC (Prasad et al., 2019) 1,400 13.7
AMR 3.0 (Knight et al., 2021) 259 29.1

Table: Number of sentences containing RCs in the datasets and the mean
sentence length
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Models

» Structure-aware models

» AM-Parser (Groschwitz et al., 2018): compositional parser
composed of a supertagger + dependency parser

> AMRBART (Bai et al., 2022): structural pretraining +
fine-tuning

» Structure-unaware models

> Spring (Spring et al., 2021)
» amrlib-BART!
» amrlib-T5

» All models are fine-tuned on AMR 3.0.

lhttps ://github.com/bjascob/amrlib
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Evaluation Metric - Reentrancy recall

» OQur evaluation assesses whether the relativized noun in a sentence is
reentrant, with two incoming edges—one originating from the main
clause’s predicate verb and another from the predicate within the RC.

» To do so, we use LEAMR (Blodgett and Schneider, 2021), a probabilistic,
fine-grained aligner optimized for English AMR.

I  know the person who likes you

FIgU €. Normalized AMR graph for the sentence | know the person who likes you..
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I know the person who likes you.

FIgU re: Correct prediction /
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| know the person who likes you.

FIgU re:. Correct prediction v/ @

FIgU I'€. Incorrect prediction X
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Structure-aware vs Structure-unaware

Subj, Obj, Passive, Obl, RedOb;...

== AM-Parser-rec AMRBART-rec == amrlib-BART-rec
80.0
60.0
40.0
20.0
0.0
Subj Obj Passive Obl RedObj RedObl All

relative cluse types

Figure: RC reentrancy recall of AM-Parser, amrlib-BART and
AMRBART, by RC subtype and overall.
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Relative Clause Types

80.0 == AM-Parser-rec

amrlib-BART-rec
amrlib-T5-rec

== Spring-rec

60.0
== AMRBART-rec
40.0
20.0
0.0
subj obj pass obl RedObj RedObl Overall

Figure: RC reentrancy recall of all parsers by RC subtype and overall.
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Why contributes to such discrepancies?

Dep Dist vs Mean Recall

B RC Category
@ Reduced oblique RC
75 4 ® Reduced object RC
® Subject RC
® Passive RC
70 4 @ Object RC
oblique RC
o
=
g .
@ 6o 4
c
s
i
= ®
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50
45 4
L J
30 35 4.0 45 5.0 5.5 6.0 6.5 7.0

Dep Dist

Figure: Average Dependency Distance vs Mean Recall across RC Types.
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Takeaways

» Does structure-awareness help the models to parse?

» Which types of RC are most challenging and why?
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Takeaways

» Does structure-awareness help the models to parse?
» Seq2seq models, on the whole, outperform the compositional
model
» There is little difference in performance between seq2seq
models that are aware of structure and those that are not.

» Which types of RC are most challenging and why?

» Relative clauses are challenging for current parsers

» Reduced RCs are the most challenging RC types.

» The full RCs with shorter dependency distances are easier to
parse

» Linguistic cues?
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Thank you for your attention!
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Other RC Types

v

Free relatives (e.g., | heard what you said)
Possessive RCs (e.g., I like the girl whose dress is blue)

Reduced subject RCs (e.g., | met the person you mentioned
finished all the work this week)

Adnominal participial clauses (e.g., the sheep eaten by
wolves)
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Attainable Rate vs Recall

100.0

75.0

50.0

25.0

0.0

Subj

Obj

Passive

Obl

RedObj

RedObl

All

AM-Parser-att
AM-Parser-rec
amrlib-BART-att
amrlib-BART-rec
AMRBART-att
AMRBART-rec
Spring-att
Spring-rec
amrlib-T5-att

amrlib-T5-rec

Figure: RC reentrancy recall (solid lines) and attainability rate (dashed)
of all parsers, by RC subtype and overall.
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Dependency Distances and Counts across RC Types

RC Category Dep Dist Count Mean Recall
Reduced oblique RC 3.06 1,092 41.9
Reduced object RC 3.13 1,371 56.6
Subject RC 4.30 4,226 64.5
Passive Subject RC 5.78 534 78.0
Object RC 5.21 516 61.2
Oblique RC 6.98 729 55.2

Table: Mean dependency distance of 6 types of RCs in our experiments
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