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Abstract Meaning Representation (AMR)

Broad-coverage scheme for scalable 
human annotation of English 
sentences [Banarescu et al., 2013] 

‣ Unified, readable graph representation 

‣ “Semantics from scratch”: annotation 
does not use/specify syntax or align 
words 

‣ 60k sentences gold-annotated
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AMR in NLP

• Most approaches to AMR parsing/
generation require explicit alignments in 
the training data to learn generalizations 
[Flanigan et al., 2014; Wang et al., 2015; 
Artzi et al., 2015; Flanigan et al., 2016; 
Pourdamghani et al., 2016; Misra and Artzi, 
2016; Damonte et al., 2017; Peng et al., 
2017; …] 

• 2 main alignment flavors/datasets & 
systems:  

‣ JAMR [Flanigan et al., 2014]  

‣ ISI [Pourdamghani et al., 2014]
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Reactions to Current AMR Alignments
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“Wrong alignments between the word tokens in the sentence 
and the concepts in the AMR graph account for a significant 

proportion of our AMR parsing errors” [Wang et al., 2015]

“More accurate alignments are therefore crucial in order to 
achieve better parsing results.” [Damonte & Cohen, 2018—

4:24 in Empire B!]

“A standard semantics and annotation guideline for AMR 
alignment is left for future work” [Werling et al., 2015]

“Improvements in the quality of the alignment in training data 
would improve parsing results.” [Foland & Martin, 2017]



This Talk: UD 💖 AMR

✓ A new, more expressive flavor of AMR alignment that captures 
the syntax–semantics interface 

‣ UD parse nodes and subgraphs ↔ AMR nodes and subgraphs 

‣ Annotation guidelines, new dataset of 200 hand-aligned sentences 

✓ Quantify coverage and similarity of AMR to dependency syntax  
(97% of AMR aligns) 

✓ Baseline algorithms for lexical (node–node) and structural 
(subgraph) alignment
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(String, AMR) alignments



JAMR-style [Flanigan et al., 2014]
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• (Word span, AMR node), (Word span, Connected AMR subgraph) alignments

• each AMR node is in 0 or 1 alignments



ISI-style [Pourdamghani et al., 2014]
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• (Word, AMR node), (Word, AMR edge) alignments

• many-to-many

Relative to JAMR: lower level,

+ Compositional relations marked by function words (but only 23% of AMR edges covered),

− Distinguishing coreference from multiword expression



Why syntax?

• To explain all (or nearly all) of the AMR in terms of the 
sentence, we need more than string alignment. 

‣ Not every AMR edge is marked by a word—some reflected in 
word order. 

• Syntax = grammatical conventions above the word level 
that give rise to semantic compositionality. 

‣ Alignments to syntax give a better picture of the derivational 
structure of the AMR.
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Universal Dependencies (UD)
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• directed, rooted graphs

• semantics-oriented, surface syntax

• widespread usage

• corpora in many languages

• enhanced++ variant  

[Schuster & Manning, 2016]



Syntax ↔ AMR
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• Prior AMR work has modeled various kinds of syntax–semantics 
mappings [Wang et al., 2015; Artzi et al., 2015, Misra and Artzi, 
2016, Chu and Kurohashi, 2016, Chen and Palmer, 2017]. 

• We are the first to 

‣ present a detailed linguistic annotation scheme for syntactic 
alignments, and 

‣ release a hand-annotated dataset with dependency syntax. 

• AMR and dependency syntax are often assumed to be similar, 
but this claim has never been evaluated.



UD ↔ AMR
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UD AMR



Lexical alignments: (Node, Node)
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Structural alignments

!16

Connected subgraphs on both sides,  
at least one of which is larger than 1 node

The hunters camp in the forest



Adverbial PP
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Derived Noun
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The hunters camp in the forestlexical alignment

structural alignment

Similar treatment for named entities.



Subject
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Subsumption Principle for hierarchical alignments: Because the ‘hunters’ 
node aligns to person :ARG0-of hunt, any structural alignment 

containing ‘hunters’ must contain that AMR subgraph.



Structural alignments
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Connected subgraphs on both sides,  
at least one of which is larger than 1 node

The hunters camp in the forest



Hierarchical alignments
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In the story, evildoer Cruella de Vil makes no attempt to conceal her greed.



200 hand-aligned sentences 
UD: hand-corrected CoreNLP parses 

IAA: 96% for lexical, 80% for structural 
http://tiny.cc/amrud

http://tiny.cc/amrud


Coverage
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99.3% of AMR nodes

97.2% of AMR edges
are part of at least 1 alignment

Thus, nearly all information in an AMR is evoked by 
lexical items and syntax.

81.5% of AMRs are fully covered

Perhaps from-scratch AMR annotation 
gives too much flexibility, and annotators 
incorporate inferences from beyond the 
sentence [Bender et al., 2015]



AMR–UD Similarity
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alignment configuration: 
# edges on each side



Distribution of alignment configurations
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10% complex: multiple UD edges & multiple AMR edges
90% simple



Complex configurations are frequently due to
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coordination: 28%
named entities: 10%

semantic decomposition: 6%
quantities/dates: 5%

(different head rules)

(MWE with each part of name in AMR)



How similar are AMR and UD?
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10% complex alignments

66% of sentences have at least 1 complex alignment

Thus, most AMRs have some 
local structural dissimilarity.



Automatic alignment: lexical 
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Our rule-based algorithm: 87% (mainly string match; no syntax)

F1



Automatic alignment: structural 
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Simple algorithm that infers structural alignments  
from lexical alignments via path search

Gold UD & lexical alignments: 76%
Gold UD, auto lexical alignments: 61%

F1

Auto UD & lexical alignments: 55%



Conclusions

• Aligning AMRs to dependency parses (rather than strings) 
accounts for nearly all of the AMR nodes and edges 

• AMR and UD are broadly similar, but many sources of 
local dissimilarity 

• Lexical alignment can be largely automated, but structural 
alignment is harder 

• We release our guidelines, data, and code
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More in the paper

• Linguistic annotation guidelines 

• Constraints on structural alignments 

• Rule-based algorithms for lexical and structural alignment 

• Syntactic error analysis of an AMR parser
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Future Work

• Better alignment algorithms 

‣ Adjust alignment scheme as AMR standard evolves  
[Bonial et al., 2018, …] 

• Richer alignments ⇒ better AMR parsers & generators? 

‣ By feeding the alignments into the system, or 

‣ Evaluating attention in neural systems
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Advantages of our approach

• Compositional syntactic relations between lexical expressions, even if not 
marked by a function word (subject, object, amod, advmod, compound, …) 

• Subgraphs preserve contiguity of multiword expressions/morphologically 
complex expressions (as in JAMR, though we don’t require string contiguity) 

‣ Distinguish from coreference 

• Lexical alignments are where to look for spelling overlap; non-lexically-
aligned concepts are implicit 

• A syntactic edge may attach to different parts of an AMR-complex 
expression (tall hunter vs. careful hunter; bad hunter is ambiguous). The 
lexical alignment gives us the hunt predicate, while the structural alignment 
gives us the person-rooted subgraph.
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Complex configurations indicate structural differences
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nation’s defense and security capabilities

⇒ nation’s defense capabilities and its security capabilities



Hierarchical alignments
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In the story, evildoer Cruella de Vil makes no attempt to conceal her greed.
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Named entities + Coreference

In the story, evildoer Cruella de Vil makes no attempt to conceal her greed.
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Light verbs
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Control



enhanced++ UD annotation
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Automatic aligner 
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• standard label-based node alignment


* data used for experiments: our corpus, ISI corpus (Pourdamghani et al., 2014), and JAMR corpus (Flanigan et 
al., 2014)



