A note about NLP tools

• NLTK is primarily a teaching tool—it’s built-in taggers, parsers, etc. are not especially accurate.

• Open source software suites you may want to use for your projects:
 - Stanford CoreNLP (Java)
 - spaCy (Python)

 Both support tokenization, NER, POS tagging, parsing in English and a few other languages. Stanford also supports coreference resolution, sentiment analysis.
Lecture 19
Semantic Role Labeling and Argument Structure

Nathan Schneider

ENLP | 11 April 2018
Language is flexible.

I’m thrilled to visit sunny California.
I’m thrilled to visit California, where the weather is sunny.
I’m thrilled to visit California, where it’s sunny.
I’m excited to visit California, where it’s sunny.
I’m excited to visit California, where it’s sunny out.
I’m excited to spend time in California, where it’s sunny out.
I’m not excited to visit sunny California.
I’m thrilled to visit sunny Florida.
I’m thrilled to visit sunny Mountain View.
I’m thrilled to visit California because it’s sunny.
I’m sort of happy about the California visit.

 나는 맛은 캘리포니아를 방문 기뻐요.
Lexical Semantics

- So far, we’ve seen approaches that concern the **choice** of individual words:
 - sense disambiguation
 - semantic relations in a lexicon or similarity space
- Today: words that are fully understood by “**plugging in**” information from elsewhere in the sentence.
 - Specifically, understanding words that are (semantic) **predicates**, in relation to their **arguments**.
 - Especially **verbs**.
 - **Who did what to whom?**
Argument Structure
Alternations

• Mary opened the door.
The door opened.

• John slices the bread with a knife.
The bread slices easily.
The knife slices easily.

• Mary loaded the truck with hay.
 Mary loaded hay onto the truck.
The truck was loaded with hay (by Mary).
 Hay was loaded onto the truck (by Mary).

• John got Mary a present.
 John got a present for Mary.
 Mary got a present from John.
Stanford Dependencies

- Mary loaded the truck with hay.
 - nsubj
 - dobj
 - prep_with

- Hay was loaded onto the truck by Mary.
 - nsubj_pass
 - prep_onto
 - prep_by

Syntax is not enough!
Syntax-Semantics Relationship
Outline

• Syntax ≠ semantics
 • The **semantic roles** played by different participants in the sentence are not trivially inferable from syntactic relations
 • …though there are patterns!
• Two computational datasets/approaches that describe sentences in terms of semantic roles:
 • PropBank — simpler, more data
 • FrameNet — richer, less data
• The idea of semantic roles can be combined with other aspects of meaning. Glimpse of **AMR**, which is one way to do this.
PropBank

• Abstracts away from syntax to predicate-argument structures
Mary loaded the truck with hay at the depot on Friday.

- **load**: load.01 ‘cause to be burdened’
 - **Roles**:
 - Arg0-PAG: loader, agent
 - Arg1-GOL: beast of burden
 - Arg2-PPT: cargo
 - Arg3-MNR: instrument

- **load_up**: load.02 ‘phrasal cause to be burdened’

- **load**: load.03 ‘fix, set up to cheat’
Mary loaded the truck with hay at the depot on Friday.
Mary **loaded** the truck with hay at the depot on Friday.

load.01

A0 loader
A1 bearer
A2 cargo
A3 instrument

AM-LOC
AM-TMP
AM-PRP
AM-MNR
…
Mary loaded the truck with hay at the depot on Friday.
Mary loaded the truck with hay at the depot on Friday.
Mary **loaded** the truck with hay at the depot on Friday.

load.01
A0 loader
A1 bearer
A2 cargo
A3 instrument

AM-LOC
AM-TMP
AM-PRP
AM-MNR
...
Mary *loaded* the truck with hay at the depot on Friday.

A0 loader
A1 bearer
A2 cargo
A3 instrument

load.01

AM-LOC
AM-TMP
AM-PRP
AM-MNR
...
Mary loaded the truck with hay at the depot on Friday.
Mary loaded the truck with hay at the depot on Friday.

Mary loaded hay onto the truck at the depot on Friday.
Mary loaded the truck with hay at the depot on Friday.

Mary loaded hay onto the truck at the depot on Friday.
Mary loaded the truck with hay at the depot on Friday.
Mary loaded hay onto the truck at the depot on Friday.

Can be expressed in logic: e.g.

\[
\text{load(Mary, the truck, hay)}
\]

Neo-Davidsonian:
\[
\exists e: \text{load}(e) \land a0(e, \text{Mary}) \land a1(e, \text{the truck}) \land a2(e, \text{hay}) \\
\land \text{loc}(e, \text{the depot}) \land \text{tmp}(e, \text{Friday})
\]
PropBank

• Abstracts away from syntax to predicate-argument structures

• Predicate-argument lexicon + annotations of full WSJ PTB corpus and other data (such as OntoNotes)

• Originally **verbs** only (Kingsbury & Palmer 2002); now has many nouns, adjectives, light verb constructions, etc. (Bonial et al. 2014)

• Strongly **lexicalized**: no synonymy, hypernymy, etc. of predicates with different stems; very coarse-grained sense distinctions

• Phrase structure constituents of PTB(-style) trees
Argument Structure
Alternations

• Mary opened the door.
The door opened.

• John slices the bread with a knife.
The bread slices easily.
The knife slices easily.

• Mary loaded the truck with hay.
Mary loaded hay onto the truck.
The truck was loaded with hay (by Mary).
Hay was loaded onto the truck (by Mary).

• John got Mary a present.
John got a present for Mary.
Mary got a present from John.
Semantic Role Labeling

• Traditional pipeline:

1. (Assume syntactic parse and predicate senses as given)

2. **Argument identification**: select the predicate’s argument phrases

3. **Argument classification**: select a role for each argument

 useful feature: predicate →* argument path in tree

• See Palmer et al. 2010 for a review
Limitation of PropBank

• Numbered roles (ARG0, ARG1, etc.) are predicate-specific.
 • load.ARG1: beast of burden, whereas
 • put.ARG1: thing put
 • load.ARG1 corresponds to put.ARG2
Thematic Roles

• Linguists talk about general classes of semantic roles:
 ‣ *Agent* = animate entity who is volitionally acting
 ‣ *Theme* = participant that is undergoing motion, for example
 ‣ *Patient* = participant that undergoes some internal change of state (e.g., breaking)
 ‣ *Destination* = intended endpoint of motion
 ‣ *Recipient* = party to which something is transferred

• The **VerbNet** resource uses these and a couple dozen other roles.

• But it is hard to come up with a small list of these roles that will suffice for all verbs.

• And there are correspondences that these roles do not expose: e.g., that someone who *buys* is on the receiving end of *selling*.
Berkeley FrameNet
https://framenet.icsi.berkeley.edu/
Paraphrase

• James snapped a photo of me with Sheila.

• Sheila and I had our picture taken by James.
What’s in common

• James **snapped a photo** of me with Sheila.

• Sheila and I had our **picture taken** by James.
What’s in common

• James **snapped a photo** of me with Sheila.

• Sheila and I had our **picture taken** by James.
Idealized Stanford Dependencies

• James snapped a photo of me with Sheila.

 nsubj(snap, James)
 dobj(snap, photo)
 prep_of(photo, me)
 prep_with(me, Sheila)
 det(photo, a)

• Sheila and I had our picture taken by James.

 nsubjpass(taken, Sheila)
 nsubjpass(taken, I)
 conj_and(Sheila, I)
 aux(taken, had)
 dobj(taken, picture)
 poss(picture, our)
 agent(taken, James)
Frame Semantics

“MEANINGS ARE RELATIVIZED TO SCENES”

(Fillmore 1977)
1. **Photographer** identifies **Subject** to be depicted in a **Captured_image**

2. **Photographer** puts the **Subject** in view of the **Camera**

3. **Photographer** operates the **Camera** to create the **Captured_image**
1. **Photographer** identifies **Subject** to be depicted in a **Captured_image**

2. **Photographer** puts the **Subject** in view of the **Camera**

3. **Photographer** operates the **Camera** to create the **Captured_image**

photograph.v **take ((picture))).v** **snap picture.v**
frame name

textual definition explaining the scene and how the frame elements relate to one another

Core

Frame

Elements

predicate1.v predicate2.n predicate3.a
FrameNet: Lexicon

• ~1000 **frames** represent scenarios. Most are associated with **lexical units** (a.k.a. **predicates**). Berkeley FrameNet currently has 13k LUs (5k nouns, 5k verbs, 2k adjectives).

• **Frame elements** (a.k.a. **roles**) represent participants/components of those scenarios. **Core** vs. **non-core**.

• Frames and their corresponding roles are linked together in the lexicon.

• Frames are explained with textual descriptions.
Create_physical_artwork

Definition:

A **Creator** creates an artifact that is typically an iconic **Representation** of an actual or imagined entity or event. The **Representation** may also be evocative of an idea while not based on resemblance.

Diagrams must be **clearly DRAWN** on construction paper. CNI

I **TOOK** his picture and told him that if it came out well I would make him a copy.

In about 1305 and 1306 **Giotto** **PAINTED** a notable series of 38 frescoes.

FEs:

Core:

Creator [cre] An individual or individuals that bring the **Representation** into existence.

 Supposedly, the artist **DREW** the picture from memory.

Representation [rep] The entity that is created to represent either iconically or abstractly.

 Most of us know where we **TOOK a photo** but have a harder time remembering the time we took it.

Non-Core:

Depictive [dep] This FE describes the **Creator** as being in some state during the creation of the **Representation**.

Descriptor [] A characteristic of the **Creator** or the **Representation**.
Lexical Units:

artist.n, cast.v, draw.v, paint.v, sculpt.v, take_((picture)).v

Created by 605 on 11/21/2005 03:47:00 PST Mon

<table>
<thead>
<tr>
<th>Lexical Unit</th>
<th>LU Status</th>
<th>Lexical Entry Report</th>
<th>Annotation Report</th>
<th>Annotator ID</th>
<th>Created Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>artist.n</td>
<td>Created</td>
<td>Lexical entry</td>
<td>Annotation</td>
<td>361</td>
<td>03/28/2007 03:10:10 PDT Wed</td>
</tr>
<tr>
<td>cast.v</td>
<td>Created</td>
<td>Lexical entry</td>
<td></td>
<td>597</td>
<td>06/09/2008 01:41:45 PDT Mon</td>
</tr>
<tr>
<td>draw.v</td>
<td>Finished_Initial</td>
<td>Lexical entry</td>
<td>Annotation</td>
<td>605</td>
<td>11/21/2005 05:28:34 PST Mon</td>
</tr>
<tr>
<td>paint.v</td>
<td>Finished_Initial</td>
<td>Lexical entry</td>
<td>Annotation</td>
<td>605</td>
<td>11/21/2005 05:26:23 PST Mon</td>
</tr>
<tr>
<td>sculpt.v</td>
<td>Created</td>
<td>Lexical entry</td>
<td></td>
<td>597</td>
<td>05/23/2008 02:55:21 PDT Fri</td>
</tr>
<tr>
<td>take_((picture)).v</td>
<td>Created</td>
<td>Lexical entry</td>
<td></td>
<td>605</td>
<td>11/21/2005 05:29:24 PST Mon</td>
</tr>
</tbody>
</table>
Sheila and I had our picture taken by James.
Languages with FrameNets
SRL Demos

- Mateplus/Framat (PropBank, FrameNet): http://www.coli.uni-saarland.de/~mroth/demo.html
- SEMAFOR (FrameNet): http://demo.ark.cs.cmu.edu/parse
Abstract Meaning Representation

(Abanescu et al., LAW 2013)

A graph-based representation of lexical concepts and typed relations between those concepts that are denoted by an English sentence.

AMR integrates several aspects of lexical/relational meaning—abstracting away from the grammatical details—in a single structure designed to support rapid corpus annotation and data-driven NLP.
AMRs

(l / like-01
:ARG0 (d / duck)
:ARG1 (r / rain-01))

- ducks like rain
- the duck liked that it was raining
I saw her duck
(I / like-01
:ARG0 (d / duck)
:ARG1 (r / rain-01))

(s2 / see-01
:ARG0 (i / i)
:ARG1 (d / duck
:poss (s / she)))

- I saw her duck (alternate interpretation)
She saw her (own) duck
AMRs

She saw her (someone else's) duck

(l / like-01
 :ARG0 (d / duck)
 :ARG1 (r / rain-01))

(s2 / see-01
 :ARG0 (i / i)
 :ARG1 (d / duck
 :poss (s / she)))
AMRs

Ducks who like rain are happy
Ducks who like rain are happy
Happy ducks like rain
Police release security footage of the man they believe assaulted a 12-year-old in her home.

(r / release-01
 :ARG0 (p / police)
 :ARG1 (f / footage
 :mod (s / security)
 :topic (m / man
 :ARG0-of (a / assault-01
 :ARG1 (g / girl
 :age (t / temporal-quantity :quant 12
 :unit (y / year)))
 :ARG1-of (b / believe-01
 :ARG0 p)
 :location (h / home
 :poss g))))))
Police release security footage of the man they believe assaulted a 12-year-old in her home.

(r / release-01
 :ARG0 (p / police)
 :ARG1 (f / footage
 :mod (s / security)
 :topic (m / man
 :ARG0-of (a / assault-01
 :ARG1 (g / girl
 :age (t / temporal-quantity :quant 12
 :unit (y / year)))
 :ARG1-of (b / believe-01
 :ARG0 p)
 :location (h / home
 :poss g))))))
AMR Features

• PropBank predicate-argument semantics

• name & value entities; entity linking (wikification)

• coreference entities & events

• modality, negation, questions

 history teacher → (p / person

• relations between nominals

 :ARG0-of (t / teach-01

 :ARG1 (h / history))

• canonicalization of content words (remove inflectional
 morphology, convert adv → adj → noun → verb where possible)

• …all in a single graph!

 his trial → (t / try-02 :ARG1 (h / he))
AMR Assets

• Snazzy annotation tool

• Evaluation method (smatch)

• Extensive documentation (guidelines, help pages in tool, heuristics in tool)

• Tutorial: https://github.com/nschneid/amr-tutorial

• Close coordination with PropBank

• Annotation sites: CU, ISI, SDL, LDC

• Data: ~40,000 AMRs released (as of 2016)
Abstract Meaning Representation (AMR)

(Banarescu et al., LAW 2013)

A graph-based representation of lexical concepts and typed relations between those concepts that are denoted by an English sentence.

AMR integrates several aspects of lexical/relational meaning—abstracting away from the grammatical details—in a single structure designed to support rapid corpus annotation and data-driven NLP.

(Flanigan et al., ACL 2014)
AMR Parsing: JAMR

- Open source system from CMU
- Pipeline:
 1. **Preprocessing**: dependency parsing, NER
 2. **Concept identification**: map word sequences to graph fragments
 3. **Relation identification**: connect the fragments into a rooted DAG *(novel MSCG algorithm)*
- See Flanigan et al. 2014 for details
assaulted a 12-year-old girl.
Summary

• For verbs (and other semantic predicates), there are complicated patterns of argument structure—how semantic arguments/roles correspond to syntactic slots.

• Lexicons formalize this in different ways: PropBank, VerbNet, FrameNet

 • Corpora annotated according to each of these lexicons for training semantic role labelers.

 • FrameNet is the richest theory (deep frames), but that imposes practical limits on the size of the lexicon and annotated corpora.

 • PropBank has good coverage of English verbs, and large amount of annotated corpora (WSJ + more!). But a bit superficial (verb-specific frames).

• PropBank event predicates are used in AMR, a meaning representation that also captures named entities, negation/modality, coreference, and other aspects of semantics in a graph for each sentence.