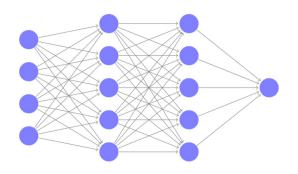
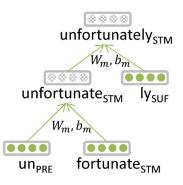
Seq2Seq Models & Transfer Learning

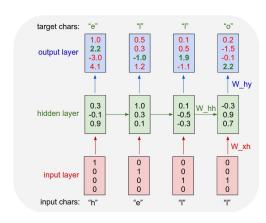
AUSTIN BLODGETT

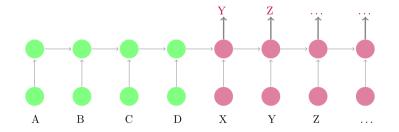
Brief Review

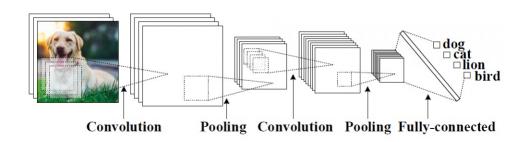
Neural Algorithms











NN Task	Example Input	Example Output			
Binary Classification	features	+/-			
Multiclass Classification	features	decl, imper, inter,			
Sequence Classification	sentence	POS tags			
Sequence to Sequence	(English) sentence	(Spanish) sentence			
Structured Prediction	sentence	dependency tree or AMR parse			

NN Task	Example Input	Example Output			
Binary classification	features	+/-			
Multiclass classification	features	decl, imper, inter,			
Sequence	sentence	POS tags			
Sequence to Sequence	(English) sentence	(Spanish) sentence			
Tree/Graph Parsing	sentence	dependency tree or AMR parse			

Seq2Seq Tasks

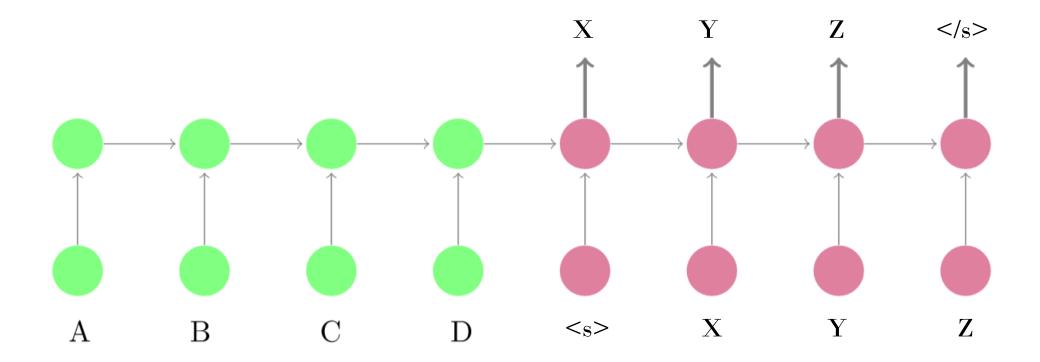
- Tasks
 - Machine Translation
 - Automatic Dialogue
 - Question Answering
 - Document Summarization
 - (Some) Semantic Parsing

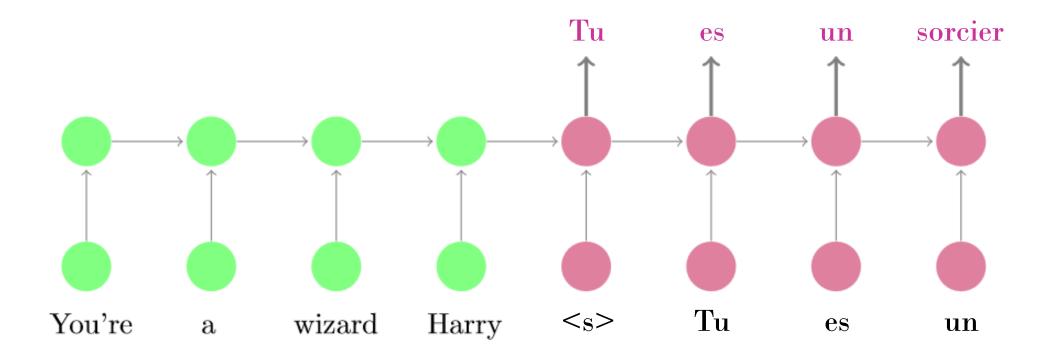
Encoder-Decoder models

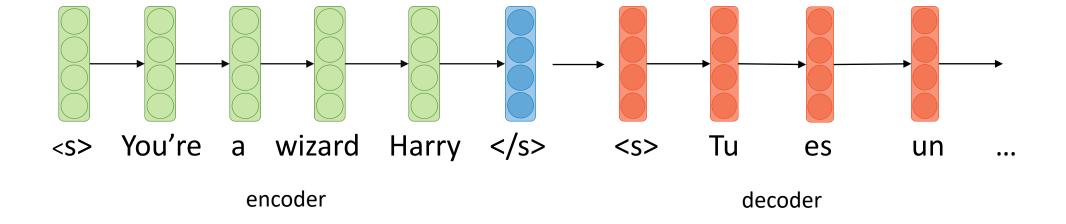
- Encoder-Decoder model (also Seq2Seq) Take a sequence as input and predict a sequence as output
- Input and Output may be different lengths
- Encoder (RNN) models input, Decoder (RNN) models output

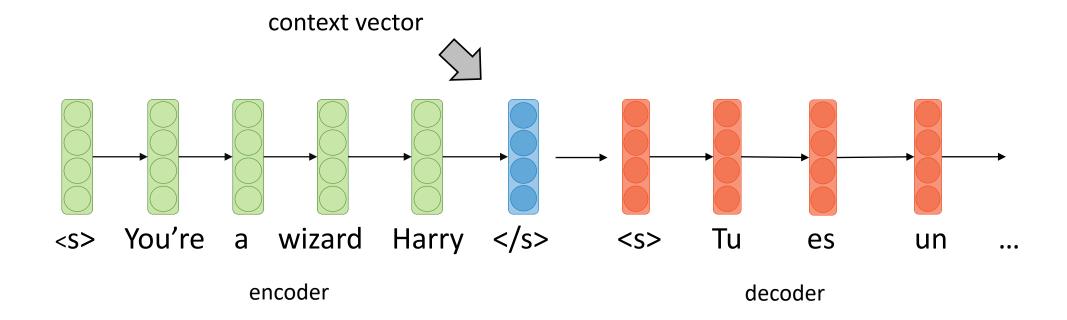
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). **Sequence to sequence learning with neural networks**. In *Advances in neural information processing system*.

Cho, K., et al. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation.

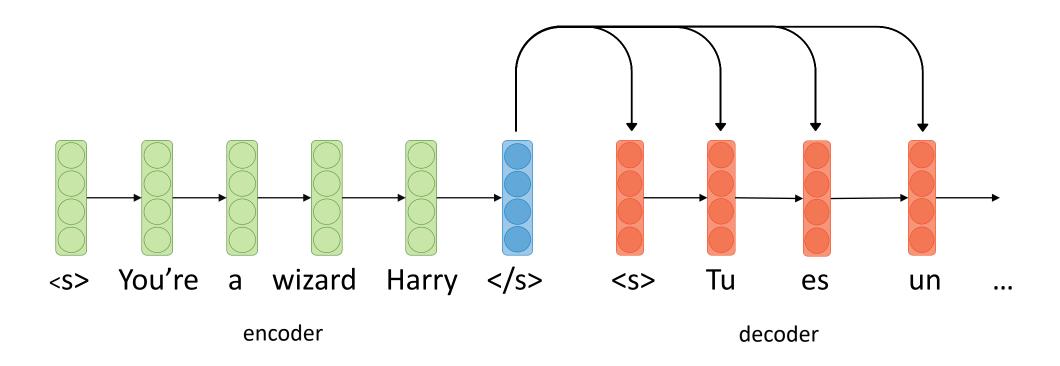








Cho et al., (2014): connect to every state in decoder



Seq2Seq with RNNs

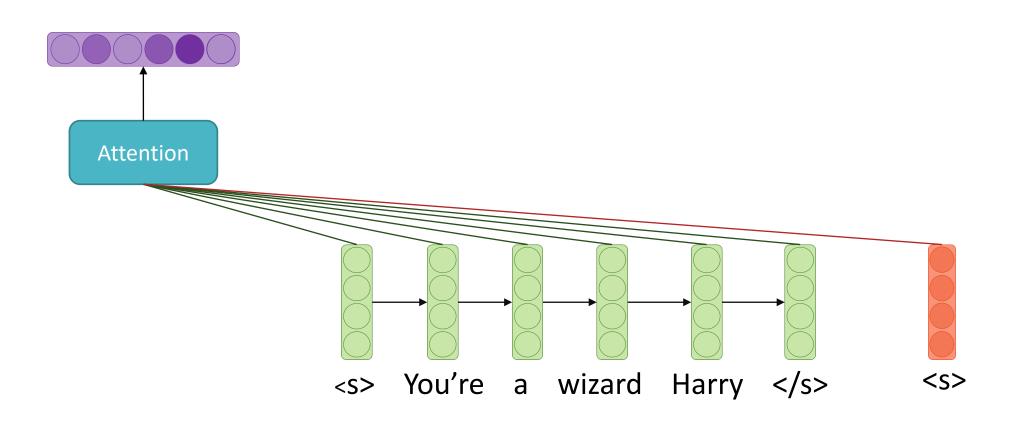
- RNNs are slow: each timestep needs the first to be completed
- RNNs struggle to capture long-distance dependencies:
 - The **keys** to <u>the door are</u>/is gray
 - Caused by issues in managing hidden state: when is it OK to forget that "keys" is the subject and is plural?

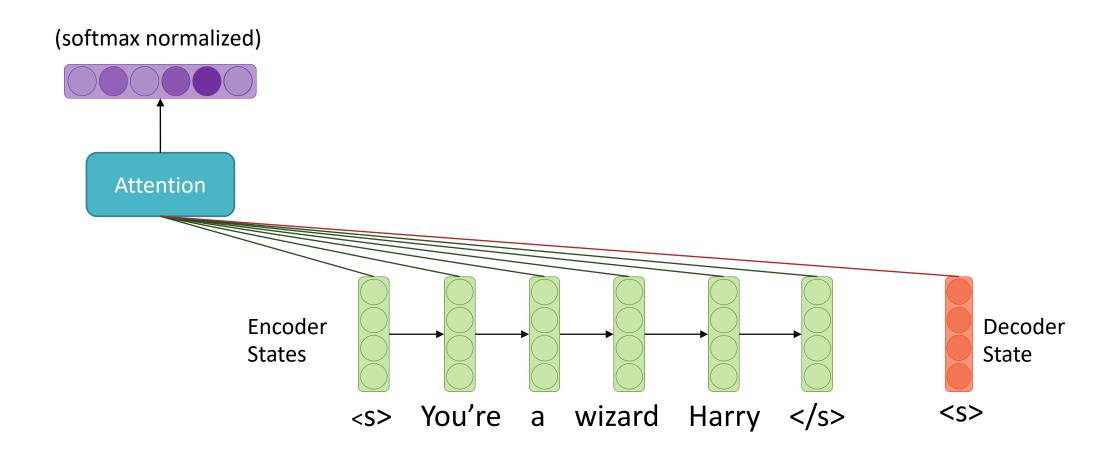
- A way of allowing tokens to "explicitly" represent their dependent words
 - Intuition: a continuous version of word alignments
- For a given word in the output, represents the importance of each word in the input
- We'll talk about how much the network "attends" to each word.
- First used in MT, improved BLEU score by 10 pts (huge!)

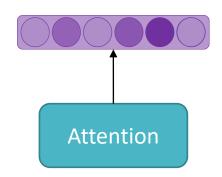
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. (2014) Neural machine translation by jointly learning to align and translate.

Activity

Question								Answer				
What	is	the	preferred	weapon	of	the	Jedi	?	_	a	light	saber
PRON	AUX	DFT	ADI	NOUN	ADP	DFT	PROPN			1	2	3

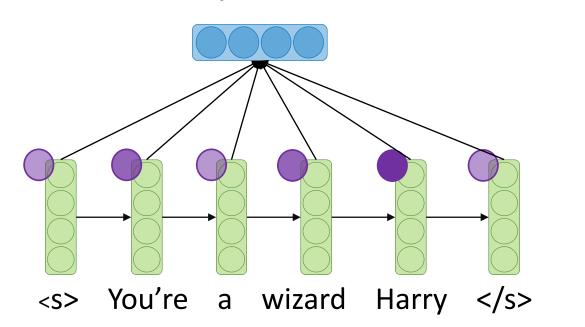




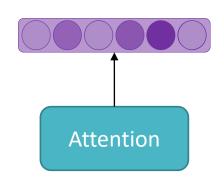


Context vector

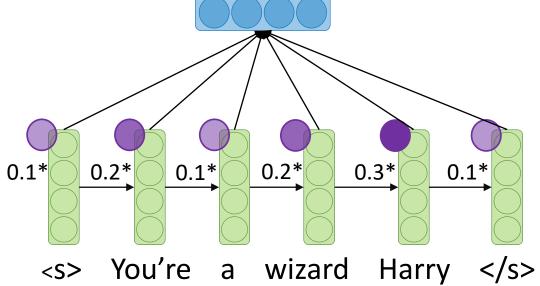
$$c_i = \sum_{j=1} \alpha_{ij} h_j$$

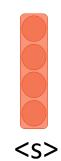


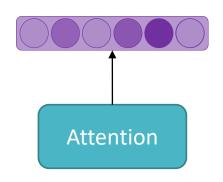
<S>



Context vector $c_i = \sum_{j=1}^{n} \alpha_{ij} h_j$

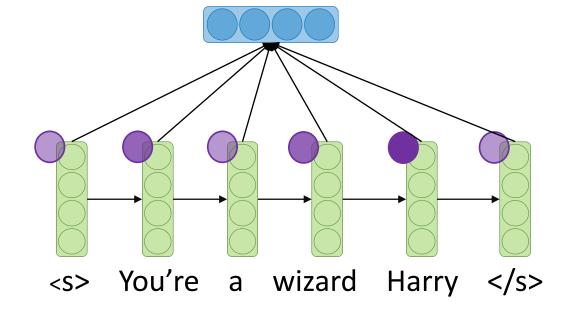






Context vector

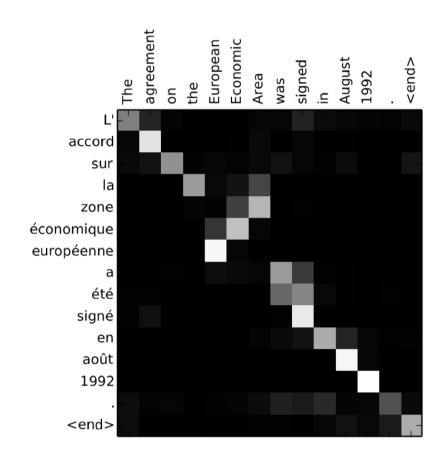
$$c_i = \sum_{j=1} \alpha_{ij} h_j$$



<S>

Every attention value depends on one word in the source and one in the target.

Attention matrix tells us how "important" a source word is for each target word (much like alignment).



Attention vs. RNN

- Shift "context management" into its own module (attention)
- Allow decoder state to handle everything else (e.g. grammar of the target language)
- Benefits
 - More parallelizable
 - No more "remembering" problem: each token gets its own context vector that is more independent of other tokens' context vectors

Transformers

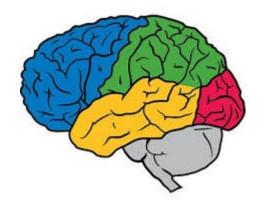
Attention is All You Need (Vaswani et al., 2017)

Debut of the **Transformer** architecture

The same model used in:

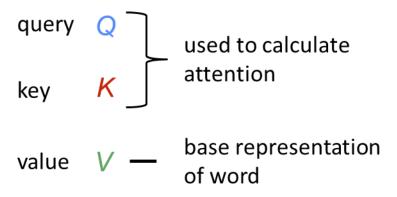
- BERT (Devlin, et al. 2018)
- LISA (Strubell, et al. 2018)
- RoBERTa (Liu et al., 2019)
- and others...

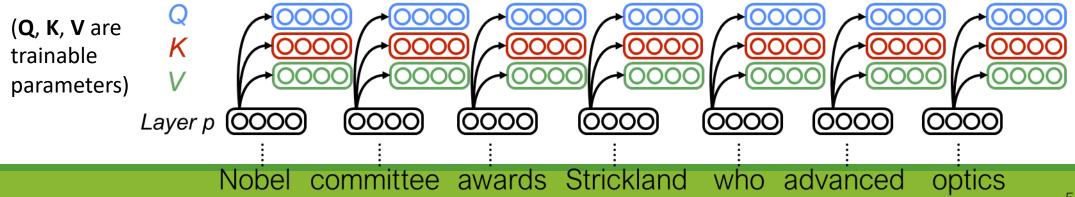
Motto paraphrased: No more RNNs, CNNs, just use Attention!

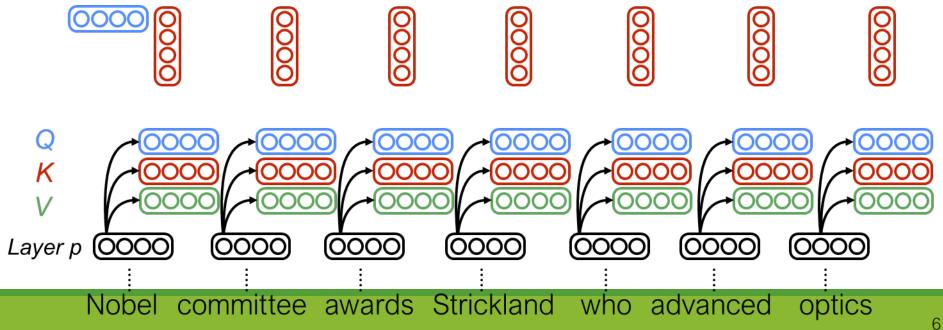


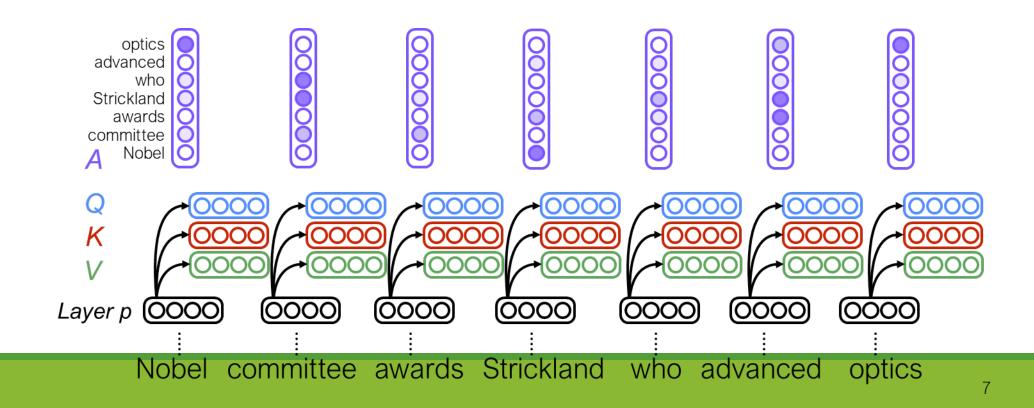
Introducing Self-Attention

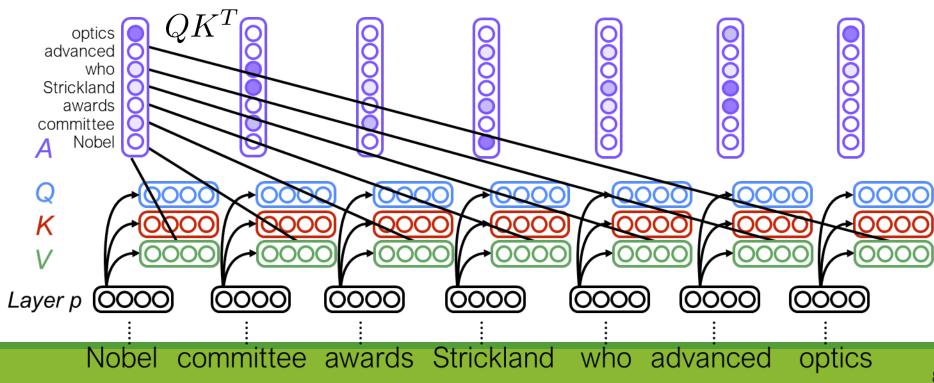
- Shift "context management" into its own module (attention)
- Allow decoder state to handle everything else (e.g. grammar of the target language)
- Benefits
 - More parallelizable
 - No more "remembering" problem: each token gets its own context vector that is more independent of other tokens' context vectors

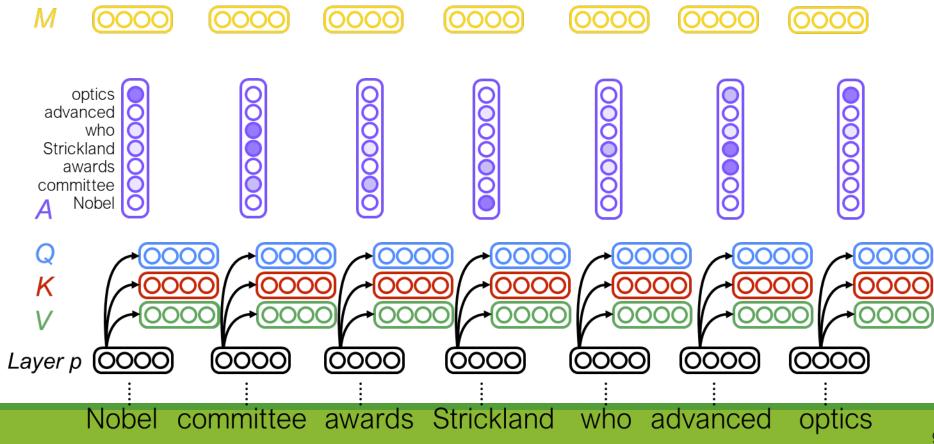








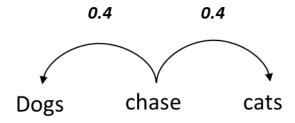




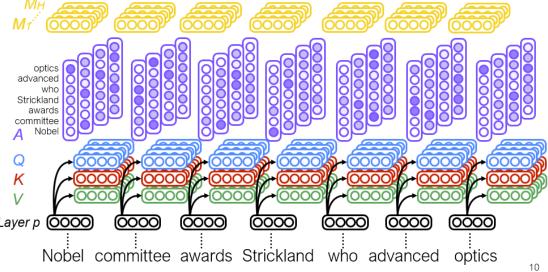
Multi-Head Attention

How to distinguish dependencies:

One attention layer can't distinguish two dependencies (subject vs. object).



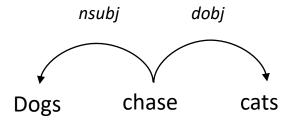
Use multiple attention layers, hopefully one represents subject, one object, etc.

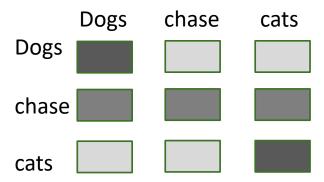


Linguistically Motivated

Strengths

- Captures long-distance dependencies!
- Intuitively: approximates weighted unlabeled dependencies

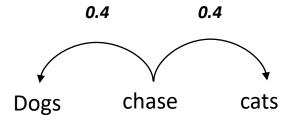


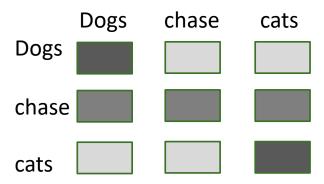


Linguistically Motivated

Strengths

- Captures long-distance dependencies!
- Intuitively: approximates weighted unlabeled dependencies





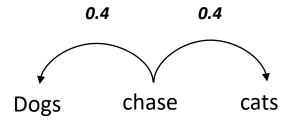
Linguistically Motivated

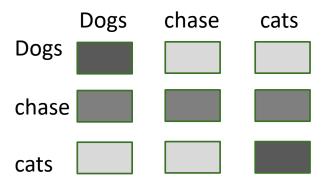
Strengths

- Captures long-distance dependencies!
- Intuitively: approximates weighted unlabeled dependencies

Weaknesses (addressed in next slides)

- Weak model of word order
- One layer can't distinguish dependencies
- No locality bias





Transformer Architecture

- Encode-Decoder with Transformers instead of RNNs
- Large improvement over LSTM encoder-decoder. Why?
 - long-distance relations
 - better representation of syntax
 - faster to train (when using TPUs)

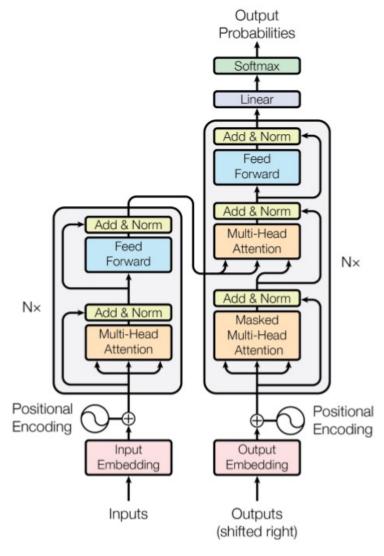


Figure 1: The Transformer - model architecture.

Positional Encoding

Caveat: self-attention on its own doesn't have awareness of word order, needs to be represented another way (position embeddings)

Replicate, Extend, etc.

Tensorflow

https://github.com/tensorflow/tensor2tensor

Pytorch

https://github.com/jadore801120/attention-is-all-you-need-pytorch

Annotated Code

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Illustrated Explanation

http://jalammar.github.io/illustrated-transformer/

Transfer Learning: ELMo & BERT

Learning Paradigms so far

- rule-based (symbolic) approaches
- supervised learning
- self-supervised learning
- (unsupervised learning)

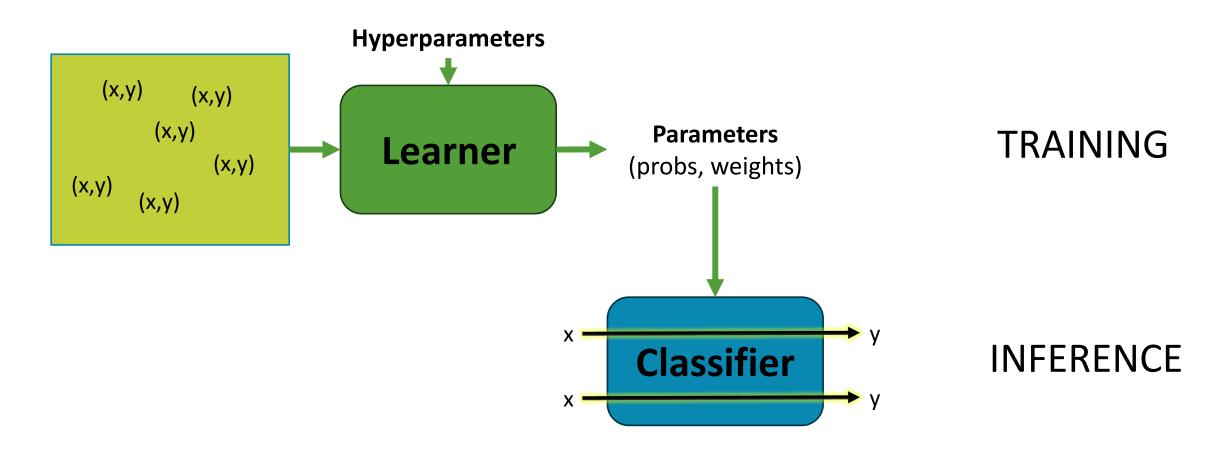
Categorization exercise:

LSTM POS tagger; Naïve Bayes sentiment analyzer; Regex tokenizer; N-gram LM; word2vec embeddings; CFG syntactic parser

Learning Paradigms so far

- rule-based (symbolic) approaches
 - Deterministic procedure e.g. regular expression to match a pattern, or parsing with a plain CFG
 - Good e.g. for format conversion; English tokenization
- supervised learning
 - Labeled training data
 - E.g. linear classifiers; prob. models like HMM/PCFG; RNN for classification/tagging
- self-supervised learning, representation learning
 - Goal is not labeling, but predicting/encoding/scoring text
 - static word embeddings, language models
- (unsupervised learning: clustering, topic models)

Supervised Learning (inductive)



Review: Word Embeddings

GloVe is a collection of pretrained (static) word embeddings that can be plugged into your models.

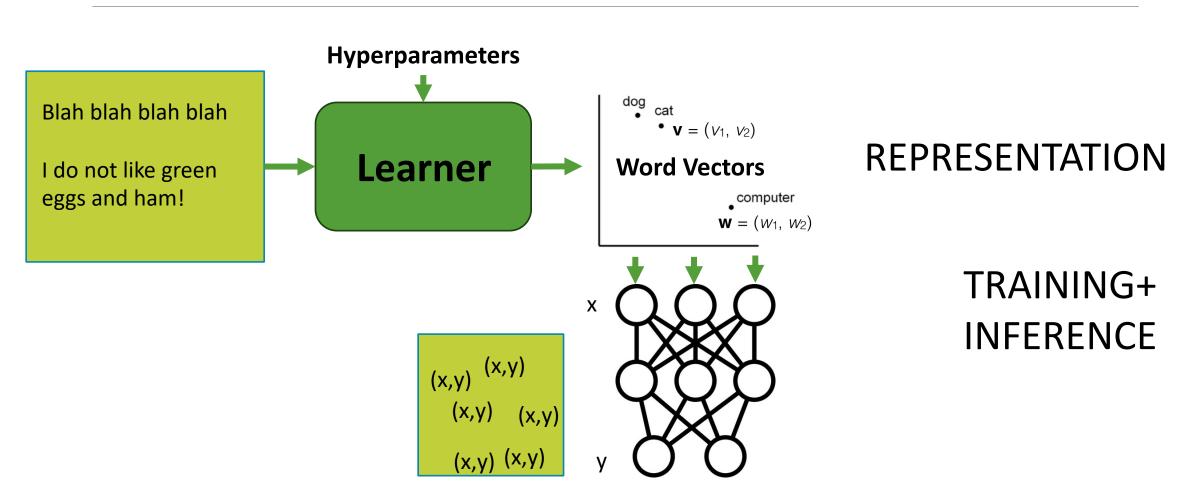
Approximate semantic features: King - Man + Woman = Queen

Trained on millions of sentences

Can be "tuned": your model can adjust GloVe features to be more useful for your task.

Pennington, J., Socher, R., & Manning, C. (2014). **Glove: Global vectors for word representation**. In *Proceedings of the 2014 conference on EMNLP*.

Deep Representation Learning (e.g. word2vec)



Why Transfer Learning

- Labeled data is often sparse or expensive
- Transfer Learning: taking a pre-trained model and applying it to a new dataset and/or task
- General-purpose contextualized embeddings turn out to work well for lots of tasks!
 - Closer to genuine linguistic representations?

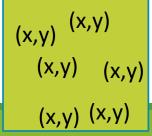
Transfer Learning with LLM

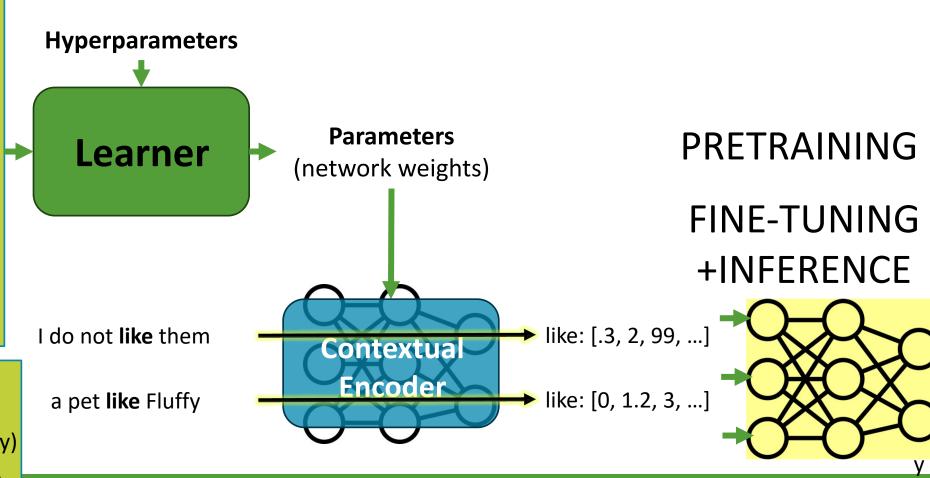
Blah blah blah blah

I do not like green eggs and ham!

There is so much text on the internet.

ike, SO much.





BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., 2018)

Bidirectional Encoder Representations from Transformers

- Idea: if we train a model using a very general task on a **massive** corpus, could we get representations out of that model that are useful for any task?
- Introduced new tasks (masked language modeling, next sentence prediction)

Masked LM

- Solution: Mask out k% of the input words, and then predict the masked words
 - We always use k = 15%

```
store gallon

the man went to the [MASK] to buy a [MASK] of milk
```

- Too little masking: Too expensive to train
- Too much masking: Not enough context

Next Sentence Prediction

• To learn *relationships* between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```

Experiments

- GLUE: **Textual Inference** (MNLI, RTE, WNLI), **Question Similarity** (QQP), **Question Answering** (QNLI), **Sentiment Analysis** (SST-2), **Grammaticality** (CoLa), **Semantic Similarity** (STS-B, MRPC)
- SQuAD (Question Answering)
- Named Entity Recognition
- SWAG (Adverserial Sentence Prediction)

Experiments: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERT_{BASE} = (L=12, H=768, A=12); BERT_{LARGE} = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.com/language-unsupervised/.

Impact

- Most successful early contextualized word embedding model
 - "contextualized": a word's representation depends on its context, differs from use to use
- Provided massive performance gains for most tasks in English and other high-resource languages

Using a contextualized embedding model

- More pretraining: you can download a pretrained BERT model and perform additional pretraining on unlabeled data in a genre of interest
 - Don't Stop Pretraining (Gururangan et al. 2020): a good domain adaptation technique
- Fine-tuning: You can expose the model to some labeled data for your target task to further train the embeddings to suit the task
- **Prediction**: Finally, you can train a classifier on top of BERT, e.g. a linear layer that will use the contextualized embeddings to make a prediction
- **BERTology** is the study of how BERT(-like) models store information about language in various layers, e.g. by controlled comparisons or by using its embeddings for linguistic tasks

Using a generative LLM

- State-of-the-art large language models (LLMs) can now be trained with so much data (+ human feedback) that they can engage in conversations in fluent English.
 - GPT-3.5/ChatGPT, GPT-4, Bard, ...
- OpenAI doesn't release its most advanced GPT models, but you can pay for API access
- Alternatives to fine-tuning for a particular task:
 - **Prompting**: Give an English instruction about want the model to predict (may have to experiment with different ways of phrasing the instruction)
 - Few-shot learning: Prompt with a few examples of input/output pairs, then provide test inputs

Demo

AllenNLP demo of BERT

https://demo.allennlp.org/masked-lm

Replicate, Extend, etc.

Includes 104 languages

Tensorflow

https://github.com/google-research/bert

Pytorch

https://github.com/huggingface/pytorch-pretrained-BERT

Recent Transfer Learning Projects

RoBERTa (Liu et al., 2019)

https://github.com/pytorch/fairseq

XLNet (Yang et al., 2019)

https://github.com/zihangdai/xlnet