
Parsing with
Context Free Grammars
CMSC 723 / LING 723 / INST 725

MARINE CARPUAT
marine@cs.umd.edu

mailto:marine@cs.umd.edu

Today’s Agenda

• Grammar-based parsing with CFGs
– CKY algorithm

• Dealing with ambiguity
– Probabilistic CFGs

• Strategies for improvement
– Rule rewriting / Lexicalization

Sample Grammar

GRAMMAR-BASED PARSING: CKY

Grammar-based Parsing
• Problem setup

– Input: string and a CFG
– Output: parse tree assigning proper structure to input

string

• “Proper structure”
– Tree that covers all and only words in the input
– Tree is rooted at an S
– Derivations obey rules of the grammar
– Usually, more than one parse tree…

Parsing Algorithms

• Two basic (= bad) algorithms:
– Top-down search
– Bottom-up search

• A “real” algorithm:
– CKY parsing

Top-Down Search

• Observation
– trees must be rooted with an S node

• Parsing strategy
– Start at top with an S node
– Apply rules to build out trees
– Work down toward leaves

Top-Down Search

Top-Down Search

Top-Down Search

Bottom-Up Search

• Observation
– trees must cover all input words

• Parsing strategy
– Start at the bottom with input words
– Build structure based on grammar
– Work up towards the root S

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Top-Down vs. Bottom-Up

• Top-down search
– Only searches valid trees
– But, considers trees that are not consistent

with any of the words
• Bottom-up search

– Only builds trees consistent with the input
– But, considers trees that don’t lead anywhere

Parsing as Search

• Search involves controlling choices in the
search space
– Which node to focus on in building structure
– Which grammar rule to apply

• General strategy: backtracking
– Make a choice, if it works out then fine
– If not, back up and make a different choice

Shared Sub-Problems

• Observation
– ambiguous parses still share sub-trees

• We don’t want to redo work that’s already
been done

• Unfortunately, naïve backtracking leads to
duplicate work

Efficient Parsing
with the CKY Algorithm

• Solution: Dynamic programming
• Intuition: store partial results in tables

– Thus avoid repeated work on shared sub-
problems

– Thus efficiently store ambiguous structures with
shared sub-parts

• We’ll cover one example
– CKY: roughly, bottom-up

CKY Parsing: CNF
• CKY parsing requires that the grammar consist of

binary rules in Chomsky Normal Form
– All rules of the form:

– What does the tree look like?

A → B C
D → w

CKY Parsing with Arbitrary CFGs

• What if my grammar has rules like
VP → NP PP PP
– Problem: can’t apply CKY!
– Solution: rewrite grammar into CNF

• Introduce new intermediate non-terminals into the
grammar

A o B C D A o X D
X o B C

(Where X is a symbol that
doesn’t occur anywhere else in
the grammar)

Sample Grammar

CNF Conversion
Original Grammar CNF Version

Nathan

CNF Conversion
Original Grammar CNF Version

CKY Parsing: Intuition
• Consider the rule D → w

– Terminal (word) forms a constituent
– Trivial to apply

• Consider the rule A → B C
– “If there is an A somewhere in the input, then there must be a B

followed by a C in the input”
– First, precisely define span [i, j]
– If A spans from i to j in the input then there must be some k such

that i<k<j
– Easy to apply: we just need to try different values for k

A

B C

i j

k

Sample GrammarCNF Conversion
Original Grammar CNF VersionCNF (binarized) grammar

Book this flight through Houston

CNF Conversion
Original Grammar CNF Version

CKY Parsing: Table
• Any constituent can conceivably span [i, j] for all

0≤i<j≤N, where N = length of input string
– We need an N × N table to keep track of all spans…
– But we only need half of the table

• Semantics of table: cell [i, j] contains A iff A spans i to j
in the input string
– Of course, must be allowed by the grammar!

CKY Parsing: Table-Filling
• In order for A to span [i, j]

– A o B C is a rule in the
grammar, and

– There must be a B in [i, k] and
a C in [k, j] for some i<k<j

• Operationally
– To apply rule A o B C, look for

a B in [i, k] and a C in [k, j]
– In the table: look left in the row

and down in the column

CKY Parsing: Canonical Ordering

• Standard CKY algorithm:
– Fill the table a column at a time, from left to

right, bottom to top
– Whenever we’re filling a cell, the parts needed

are already in the table (to the left and below)

• Nice property: processes input left to right,
word at a time

CKY Parsing: Ordering Illustrated

Nathan
this

CKY Algorithm

CKY: Example

Filling column 5

?

?

?

?

Nathan
this

CKY: Example
Recall our CNF grammar:

?

?

?

?

Nathan
this

CKY: Example

?

?

?

Nathan
this

CKY: Example

?

?

Nathan
this

CKY: Example

?
Recall our CNF grammar:

Nathan
this

CKY: Example

Nathan
this

CKY Parsing: Recognize or Parse

• Recognizer
– Output is binary
– Can the complete span of the sentence be

covered by an S symbol?

• Parser
– Output is a parse tree
– From recognizer to parser: add backpointers!

Ambiguity

• CKY can return multiple parse trees
– Plus: compact encoding with shared sub-trees
– Plus: work deriving shared sub-trees is reused
– Minus: algorithm doesn’t tell us which parse is

correct!

Ambiguity

PROBABILISTIC CONTEXT-FREE
GRAMMARS

Simple Probability Model

• A derivation (tree) consists of the bag of
grammar rules that are in the tree
– The probability of a tree is the product of the

probabilities of the rules in the derivation.

Rule Probabilities
• What’s the probability of a rule?

• Start at the top...
– A tree should have an S at the top. So given

that we know we need an S, we can ask about
the probability of each particular S rule in the
grammar: P(particular rule | S)

• In general we need
for each rule in the grammar

��

P(D oE |D)

Training the Model

• We can get the estimates we need from a
treebank

For example, to get the probability for a particular VP rule:
1. count all the times the rule is used
2. divide by the number of VPs overall.

Parsing (Decoding)

How can we get the best (most probable)
parse for a given input?

1. Enumerate all the trees for a sentence

2. Assign a probability to each using the model

3. Return the argmax

Example

• Consider...
– Book the dinner flight

Examples

• These trees consist of the following rules.

Dynamic Programming

• Of course, as with normal parsing we don’t
really want to do it that way...

• Instead, we need to exploit dynamic
programming
– For the parsing (as with CKY)
– And for computing the probabilities and

returning the best parse (as with Viterbi and
HMMs)

Probabilistic CKY
• Store probabilities of constituents in the table

– table[i,j,A] = probability of constituent A that spans
positions i through j in input

• If A is derived from the rule A o B C :
– table[i,j,A] = P(A o B C | A) * table[i,k,B] * table[k,j,C]
– Where

• P(A o B C | A) is the rule probability
• table[i,k,B] and table[k,j,C] are already in the table

given the way that CKY operates

• Only store the MAX probability over all the A rules.

Probabilistic CKY

Problems with PCFGs

• The probability model we’re using is just
based on the bag of rules in the
derivation…

1. Doesn’t take the actual words into account
in any useful way.

2. Doesn’t take into account where in the
derivation a rule is used

3. Doesn’t work terribly well

IMPROVING OUR PARSER

Improved Approaches

There are two approaches to overcoming
these shortcomings

1. Rewrite the grammar to better capture the
dependencies among rules

2. Integrate lexical dependencies into the model

Solution 2:
Lexicalized Grammars

• Lexicalize the grammars with heads

• Compute the rule probabilities on these
lexicalized rules

• Run Prob CKY as before

Lexicalized Grammars: Example

How can we learn probabilities for
lexicalized rules?

• We used to have
– VP -> V NP PP
– P(rule|VP) = count of this rule divided by the

number of VPs in a treebank

• Now we have fully lexicalized rules...
– VP(dumped)-> V(dumped) NP(sacks)PP(into)
P(r|VP ^ dumped is the verb ^ sacks is the head

of the NP ^ into is the head of the PP)

We need to make
independence assumptions

• Strategies: exploit independence and
collect the statistics we can get

• Many many ways to do this...

• Let’s consider one generative story: given
a rule we’ll

1. Generate the head
2. Generate the stuff to the left of the head
3. Generate the stuff to the right of the head

From the generative story
to rule probabilities…

The rule probability for

Can be estimated as

Framework

• That’s just one simple model
– “Collins Model 1”

• Other assumptions that might lead to better
models
– make sure that you can get the counts you need
– make sure they can get exploited efficiently

during decoding

Today’s Agenda

• Grammar-based parsing with CFGs
– CKY algorithm

• Dealing with ambiguity
– Probabilistic CFGs

• Strategies for improvement
– Lexicalization

Today’s Agenda

• Grammar-based parsing with CFGs
– CKY algorithm

• Dealing with ambiguity
– Probabilistic CFGs

• Strategies for improvement
– Lexicalization

• Tools for parsing English, Chinese, French, … with
PCFGs http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml

