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Today’s Agenda

• Grammar-based parsing with CFGs
– CKY algorithm

• Dealing with ambiguity
– Probabilistic CFGs

• Strategies for improvement
– Rule rewriting / Lexicalization



Sample Grammar



GRAMMAR-BASED PARSING: CKY



Grammar-based Parsing
• Problem setup

– Input: string and a CFG
– Output: parse tree assigning proper structure to input 

string

• “Proper structure”
– Tree that covers all and only words in the input
– Tree is rooted at an S
– Derivations obey rules of the grammar
– Usually, more than one parse tree…



Parsing Algorithms

• Two basic (= bad) algorithms:
– Top-down search
– Bottom-up search

• A “real” algorithm:
– CKY parsing



Top-Down Search

• Observation
– trees must be rooted with an S node

• Parsing strategy
– Start at top with an S node
– Apply rules to build out trees
– Work down toward leaves



Top-Down Search



Top-Down Search



Top-Down Search



Bottom-Up Search

• Observation
– trees must cover all input words

• Parsing strategy
– Start at the bottom with input words
– Build structure based on grammar
– Work up towards the root S



Bottom-Up Search



Bottom-Up Search



Bottom-Up Search



Bottom-Up Search



Bottom-Up Search



Top-Down vs. Bottom-Up

• Top-down search
– Only searches valid trees
– But, considers trees that are not consistent 

with any of the words
• Bottom-up search

– Only builds trees consistent with the input
– But, considers trees that don’t lead anywhere



Parsing as Search

• Search involves controlling choices in the 
search space
– Which node to focus on in building structure
– Which grammar rule to apply

• General strategy: backtracking
– Make a choice, if it works out then fine
– If not, back up and make a different choice



Shared Sub-Problems

• Observation
– ambiguous parses still share sub-trees

• We don’t want to redo work that’s already 
been done

• Unfortunately, naïve backtracking leads to 
duplicate work



Efficient Parsing 
with the CKY Algorithm

• Solution: Dynamic programming
• Intuition: store partial results in tables

– Thus avoid repeated work on shared sub-
problems

– Thus efficiently store ambiguous structures with 
shared sub-parts

• We’ll cover one example
– CKY: roughly, bottom-up



CKY Parsing: CNF
• CKY parsing requires that the grammar consist of 

binary rules in Chomsky Normal Form
– All rules of the form:

– What does the tree look like?

A → B C 
D → w



CKY Parsing with Arbitrary CFGs

• What if my grammar has rules like             
VP → NP PP PP
– Problem: can’t apply CKY!
– Solution: rewrite grammar into CNF

• Introduce new intermediate non-terminals into the 
grammar

A o B C D A o X D
X o B C

(Where X is a symbol that 
doesn’t occur anywhere else in 
the grammar)



Sample Grammar



CNF Conversion
Original Grammar CNF Version

Nathan



CNF Conversion
Original Grammar CNF Version



CKY Parsing: Intuition
• Consider the rule D → w

– Terminal (word) forms a constituent
– Trivial to apply

• Consider the rule A → B C
– “If there is an A somewhere in the input, then there must be a B 

followed by a C in the input”
– First, precisely define span [ i, j ] 
– If A spans from i to j in the input then there must be some k such 

that i<k<j
– Easy to apply: we just need to try different values for k

A

B C

i j

k



Sample GrammarCNF Conversion
Original Grammar CNF VersionCNF (binarized) grammar

Book          this          flight       through     Houston

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CNF Conversion
Original Grammar CNF Version





CKY Parsing: Table
• Any constituent can conceivably span [ i, j ] for all 

0≤i<j≤N, where N = length of input string
– We need an N × N table to keep track of all spans…
– But we only need half of the table

• Semantics of table: cell [ i, j ] contains A iff A spans i to j
in the input string
– Of course, must be allowed by the grammar!



CKY Parsing: Table-Filling
• In order for A to span [ i, j ]

– A o B C is a rule in the 
grammar, and

– There must be a B in [ i, k ] and 
a C in [ k, j ] for some i<k<j

• Operationally 
– To apply rule A o B C, look for 

a B in [ i, k ] and a C in [ k, j ]
– In the table: look left in the row 

and down in the column



CKY Parsing: Canonical Ordering

• Standard CKY algorithm:
– Fill the table a column at a time, from left to 

right, bottom to top 
– Whenever we’re filling a cell, the parts needed 

are already in the table (to the left and below)

• Nice property: processes input left to right, 
word at a time



CKY Parsing: Ordering Illustrated

Nathan
this



CKY Algorithm



CKY: Example

Filling column 5
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CKY: Example
Recall our CNF grammar:
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CKY: Example

?
Recall our CNF grammar:
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CKY: Example
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CKY Parsing: Recognize or Parse

• Recognizer
– Output is binary
– Can the complete span of the sentence be 

covered by an S symbol?

• Parser
– Output is a parse tree
– From recognizer to parser: add backpointers!



Ambiguity

• CKY can return multiple parse trees
– Plus: compact encoding with shared sub-trees
– Plus: work deriving shared sub-trees is reused
– Minus: algorithm doesn’t tell us which parse is 

correct!



Ambiguity



PROBABILISTIC CONTEXT-FREE 
GRAMMARS



Simple Probability Model

• A derivation (tree) consists of the bag of 
grammar rules that are in the tree
– The probability of a tree is the product of the 

probabilities of the rules in the derivation.



Rule Probabilities
• What’s the probability of a rule?

• Start at the top...
– A tree should have an S at the top. So given 

that we know we need an S, we can ask about 
the probability of each particular S rule in the 
grammar:  P(particular rule | S)

• In general we need
for each rule in the grammar  

��

P(D oE |D)



Training the Model

• We can get the estimates we need from a 
treebank

For example, to get the probability for a particular VP rule:
1. count all the times the rule is used
2. divide by the number of VPs overall.



Parsing (Decoding)

How can we get the best (most probable) 
parse for a given input?

1. Enumerate all the trees for a sentence

2. Assign a probability to each using the model

3. Return the argmax



Example

• Consider...
– Book the dinner flight



Examples

• These trees consist of the following rules.



Dynamic Programming

• Of course, as with normal parsing we don’t 
really want to do it that way...

• Instead, we need to exploit dynamic 
programming
– For the parsing (as with CKY)
– And for computing the probabilities and 

returning the best parse (as with Viterbi and 
HMMs)



Probabilistic CKY
• Store probabilities of constituents in the table

– table[i,j,A] = probability of constituent A that spans 
positions i through j in input

• If A is derived from the rule A o B C :
– table[i,j,A] = P(A o B C | A) * table[i,k,B] * table[k,j,C]
– Where

• P(A o B C | A) is the rule probability
• table[i,k,B] and table[k,j,C] are already in the table 

given the way that CKY operates

• Only store the MAX probability over all the A rules.



Probabilistic CKY



Problems with PCFGs

• The probability model we’re using is just 
based on the bag of rules in the 
derivation…

1. Doesn’t take the actual words into account 
in any useful way.

2. Doesn’t take into account where in the 
derivation a rule is used

3. Doesn’t work terribly well



IMPROVING OUR PARSER



Improved Approaches

There are two approaches to overcoming 
these shortcomings

1. Rewrite the grammar to better capture the 
dependencies among rules 

2. Integrate lexical dependencies into the model



Solution 2: 
Lexicalized Grammars

• Lexicalize the grammars with heads

• Compute the rule probabilities on these 
lexicalized rules

• Run Prob CKY as before



Lexicalized Grammars: Example



How can we learn probabilities for 
lexicalized rules?

• We used to have
– VP -> V NP PP 
– P(rule|VP) = count of this rule divided by the 

number of VPs in a treebank

• Now we have fully lexicalized rules...
– VP(dumped)-> V(dumped) NP(sacks)PP(into)
P(r|VP ^ dumped is the verb ^ sacks is the head 

of the NP ^ into is the head of the PP)



We need to make 
independence assumptions

• Strategies: exploit independence and 
collect the statistics we can get

• Many many ways to do this...

• Let’s consider one generative story: given 
a rule we’ll

1. Generate the head
2. Generate the stuff to the left of the head
3. Generate the stuff to the right of the head



From the generative story 
to rule probabilities…

The rule probability for

Can be estimated as



Framework

• That’s just one simple model
– “Collins Model 1”

• Other assumptions that might lead to better 
models
– make sure that you can get the counts you need
– make sure they can get exploited efficiently 

during decoding
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Today’s Agenda

• Grammar-based parsing with CFGs
– CKY algorithm

• Dealing with ambiguity
– Probabilistic CFGs

• Strategies for improvement
– Lexicalization

• Tools for parsing English, Chinese, French, … with 
PCFGs http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml

