
Linear Models for Classification:
Discriminative Learning

(Perceptron, SVMs, MaxEnt)
Nathan Schneider

(some slides borrowed from Chris Dyer)
ENLP | 6 February 2025

24

Outline
• Words, probabilities → Features, weights

• Geometric view: decision boundary

• Perceptron

• Generative vs. Discriminative

• More discriminative models: Logistic regression/MaxEnt;
SVM

• Loss functions, optimization

• Regularization; sparsity

25

previous lecture

this lecture

Perceptron Learner

26

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← arg maxy′ wy′ᵀ Φ(x)

 if ŷ ≠ y then # mistake
 wy ← wy + Φ(x)

 wŷ ← wŷ − Φ(x)
return w

(assumes all
classes have the
same percepts)

Perceptron Learner

27

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← ← x

 if ŷ ≠ y then # mistake
 wy ← wy + Φ(x)

 wŷ ← wŷ − Φ(x)
return w

(assumes all
classes have the
same percepts)

C decoding is a
subroutine of learning

Perceptron Learner

28

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← sign(wᵀ Φ(x))

 if ŷ ≠ y then # mistake

 w ← w + sign(y) · Φ(x)
return w

(assumes all
classes have the
same percepts)

for binary classification
single weight vector such that
>0 → + class, <0 → − class

Perceptron Learner

29

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← arg maxy′ wᵀ Φ(x, y′)

 if ŷ ≠ y then # mistake

 w ← w + Φ(x, y) − Φ(x, ŷ)
return w

if different classes
have different

percepts

work through example on the board

30

x1 = “I thought it was great”

x2 = “not so great”

x3 = “good but not great”

y1 = +

y2 = −

y3 = +

Perceptron Learner
• The perceptron doesn’t estimate probabilities. It just adjusts weights up

or down until they classify the training data correctly.

‣ No assumptions of feature independence necessary! ⇒ Better accuracy than NB

• The perceptron is an example of an online learning algorithm because it
potentially updates its parameters (weights) with each training datapoint.

• Classification, a.k.a. decoding, is called with the latest weight vector.
Mistakes lead to weight updates.

• One hyperparameter: I, the number of iterations (passes through the
training data).

• Often desirable to make several passes over the training data. The number
can be tuned. Under certain assumptions, it can be proven that the
learner will converge.

31

Perceptron: Avoiding overfitting
• Like any learning algorithm, the perceptron risks

overfitting the training data. Two main techniques
to improve generalization:

‣ Averaging: Keep a copy of each weight vector as it
changes, then average all of them to produce the final
weight vector. Daumé chapter has a trick to make this
efficient with large numbers of features.

‣ Early stopping: Tune I by checking held-out accuracy
on dev data (or cross-val on train data) after each
iteration. If accuracy has ceased to improve, stop
training and use the model from iteration I − 1.

32

http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

Questions for Discussion

• After running the perceptron to train a binary
classifier, a binary feature observed in the training
data has a final weight of 0. From this, can you
conclude it was observed an equal number of times
for the two classes? Why or why not?

• What would be some good features for a named
entity classifier, where the input is a word in a
sentence and the output is one of: {NonName,
Person, Org, Location}?

33

Generative vs. Discriminative
• Naïve Bayes allows us to classify via the joint probability of x and y:

‣ p(y | x) ∝ p(y) Πw ∈ x p(w | y)
 = p(y) p(x | y) (per the independence assumptions of the model)

 = p(y, x) (chain rule)

‣ This means the model accounts for BOTH x and y. From the joint distribution
p(x,y) it is possible to compute p(x) as well as p(y), p(x | y), and p(y | x).

• NB is called a generative model because it assigns probability to
linguistic objects (x). It could be used to generate “likely” language
corresponding to some y. (Subject to its naïve modeling assumptions!)

‣ (Not to be confused with the “generative” school of linguistics.)

• Some other linear models, including the perceptron, are discriminative:
they are trained directly to classify given x, and cannot be used to
estimate the probability of x or generate x | y.

34

C
35

Many possible decision boundaries

x y

Which one is best?

?

?

C
36

Max-Margin Methods (e.g., SVM)

x y

Choose decision
boundary that is
≈halfway between
nearest positive and
negative examples

{margin

Max-Margin Methods

• Support Vector Machine (SVM): most popular
max-margin variant

• Closely related to the perceptron; can be
optimized (learned) with a slight tweak to the
perceptron algorithm.

• Like perceptron, discriminative, non-
probabilistic.

37

Maximum Entropy (MaxEnt) a.k.a.
(Multinomial) Logistic Regression

• What if we want a discriminative classifier with probabilities?

‣ E.g., need confidence of prediction, or want the full distribution over possible classes

• Wrap the linear score computation (wᵀ Φ(x, y′)) in the softmax function:

‣ log p(y | x) = exp(wᵀ Φ(x, y)) = wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′))
 Σy′ exp(wᵀ Φ(x, y′))

‣ Binary case:
log p(y=1 | x) = exp(wᵀ Φ(x, y=1))
 exp(wᵀ Φ(x, y=1)) + exp(wᵀ Φ(x, y=0))
 = exp(wᵀ Φ(x, y=1)) (fixing wᵀ Φ(x, y=0) = 0)
 exp(wᵀ Φ(x, y=1)) + 1

• MaxEnt classifiers are a special case of MaxEnt a.k.a. log-linear models.

‣ Why the term “Maximum Entropy”? See Smith Linguistic Structure Prediction, appendix C.

38

log

log

log

score can be negative; exp(score) is always positive

Denominator = normalization (makes probabilities sum to 1).
Sum over all classes ⇒ same for all numerators ⇒ can be ignored at classification time.

Objectives
• For all linear models, the classification rule or decoding

objective is: y ← arg maxy′ wᵀ Φ(x, y′)

‣ Objective function = function for which we want to find the optimum
(in this case, the max)

• There is also a learning objective for which we want to find the
optimal parameters. Mathematically, NB, MaxEnt, SVM, and
perceptron all optimize different learning objectives.

‣ When the learning objective is formulated as a minimization
problem, it’s called a loss function.

‣ A loss function scores the “badness” of the training data under any
possible set of parameters. Learning = choosing the parameters
that minimize the badness.

39

Objectives
• Naïve Bayes learning objective: joint data likelihood

‣ p* ← arg maxp Ljoint(D; p)
 = arg maxp Σ(x, y) ∈ D log p(x,y) = arg maxp Σ(x, y) ∈ D log (p(y)p(x | y))

‣ It can be shown that relative frequency estimation (i.e., count and divide, no
smoothing) is indeed the maximum likelihood estimate

• MaxEnt learning objective: conditional log likelihood

‣ p* ← arg maxp Lcond(D; p)
 = arg maxp Σ(x, y) ∈ D log p(y|x)
w ← arg maxw Σ(x, y) ∈ D wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′)) [2 slides ago]

‣ This has no closed-form solution. Hence, we need an optimization algorithm
to try different weight vectors and choose the best one.

‣ With thousands or millions of parameters—not uncommon in NLP—it may
also overfit.

40

Objectives

41figure from Noah Smith

Hinge Loss for (x, `)

✓
max
`02L

w · �(x, `0)
◆
�w · �(x, `)

In the binary case:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In purple is the hinge loss, in blue is the log loss; in red is the
“zero-one” loss (error).

45 / 51

log loss (MaxEnt)

hinge loss (perceptron)

0–1 loss (error)

wᵀ Φ(x, y′)

better

worse

Visualizing different loss functions for binary classification

Objectives
• Why not just penalize error directly if that’s how we’re going to evaluate

our classifier (accuracy)?

‣ Error is difficult to optimize! Log loss and hinge loss are easier. Why?

✴ Because they’re differentiable.

✴ Can use stochastic (sub)gradient descent (SGD) and other gradient-based
optimization algorithms (L-BFGS, AdaGrad, …). There are freely available
software packages that implement these algorithms.

✴ With supervised learning, these loss functions are convex: local optimum =
global optimum (so in principle the initialization of weights doesn’t matter).

✴ The perceptron algorithm can be understood as a special case of
subgradient descent on the hinge loss!

• N.B. I haven’t explained the math for the hinge loss (perceptron) or the
SVM. Or the derivation of gradients. See further reading links if you’re
interested.

42

A likelihood surface

43

Christopher	Manning

A	likelihood	 surface

figure from Chris Manning

Visualizes the likelihood objective (vertical axis) as a function of 2 parameters.
Likelihood = maximization problem. Flip upside down for the loss.

Gradient-based optimizers choose a point on the surface, look at its curvature,

and then successively move to better points.

Regularization
• Better MaxEnt learning objective: regularized conditional log likelihood

‣ w* ← arg maxw −λR(w) + Σ(x, y) ∈ D wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′))

• To avoid overfitting, the regularization term (“regularizer”) −λR(w) penalizes complex
models (i.e., parameter vectors with many large weights).

‣ Close relationship to Bayesian prior (a priori notion of what a “good” model looks like if there is
not much training data). Note that the regularizer is a function of the weights only (not the
data)!

• In NLP, most popular values of R(w) are the ℓ1 norm (“Lasso”) and the ℓ2 norm (“ridge”):

‣ ℓ2 = ‖w‖2 = (Σi wi²)−1/2 encourages most weights to be small in magnitude

‣ ℓ1 = ‖w‖1 = Σi |wi| encourages most weights to be 0

‣ λ determines the tradeoff between regularization and data-fitting. Can be tuned on dev data.

• SVM objective also incorporates a regularization term. Perceptron does not (hence,
averaging and early stopping).

44

Sparsity
• ℓ1 regularization is a way to promote model sparsity: many weights are

pushed to 0.

‣ A vector is sparse if (# nonzero parameters) ≪ (total # parameters).

‣ Intuition: if we define very general feature templates—e.g. one feature per word
in the vocabulary—we expect that most features should not matter for a
particular classification task.

• In NLP, we typically have sparsity in our feature vectors as well.

‣ E.g., in WSD, all words in the training data but not in context of a particular
token being classified are effectively 0-valued features.

‣ Exception: dense word representations popular in recent neural network
models (we’ll get to this later in the course).

• Sometimes the word “sparsity” or “sparseness” just means “not very
much data.”

45

Summary: Linear Models

46

kind of model loss function
learning

algorithm
avoiding

overfitting

Naïve Bayes
Probabilistic,

generative
Likelihood Closed-form

estimation
Smoothing

Logistic regression
(MaxEnt)

Probabilistic,
discriminative

Conditional
likelihood

Optimization Regularization
penalty

Perceptron
Non-probabilistic,

discriminative
Hinge Optimization Averaging;

Early stopping

SVM (linear kernel)
Non-probabilistic,

discriminative
Max-margin Optimization Regularization

penalty

Classifier: y ← arg maxy′ wᵀ Φ(x, y′)

Take-home points
• Feature-based linear classifiers are helpful for NLP tasks where interpretability is

important.

‣ You define the features, an algorithm chooses the weights. Some classifiers then exponentiate
and normalize to give probabilities.

‣ More features ⇒ more flexibility, also more risk of overfitting. Because we work with large

vocabularies, not uncommon to have millions of features.

• Learning objective/loss functions formalize training as choosing parameters to optimize a
function.

‣ Some model both the language and the class (generative); some directly model the class
conditioned on the language (discriminative).

‣ In general: Generative ⇒ training is cheaper, but lower accuracy.

Discriminative ⇒ higher accuracy with sufficient training data and computation (optimization).

• Some models, like naïve Bayes, have a closed-form solution for parameters. Learning is
cheap!

• Other models require fancier optimization algorithms that may iterate multiple times over
the data, adjusting parameters until convergence (or some other stopping criterion).

‣ The advantage: fewer modeling assumptions. Weights can be interdependent.
47

Which linear classifier to use?

• Fast and simple: naïve Bayes

• Very accurate, still simple: perceptron

• Very accurate, probabilistic, more complicated to implement: MaxEnt

• Potentially best accuracy, more complicated to implement: SVM

• All of these: watch out for overfitting!

• Check the web for free and fast implementations,
e.g. scikit-learn, SVMlight

• Later in the course, we’ll also see nonlinear models (neural networks)

48

Evaluation

• How to interpret classifier performance?

‣ Tuning hyperparameters; overfitting vs. underfitting

‣ Feature ablations: remove (or add) features and
compare accuracy

‣ Majority baseline: always predict the most frequent
class in the training data

49

Further Reading:
Basics & Examples

• Manning: features in linear classifiers
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
FeatureClassifiers.pdf

• Goldwater: naïve Bayes & MaxEnt examples
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf

• O’Connor: MaxEnt—incl. step-by-step examples, comparison to naïve
Bayes
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf

• Daumé: “The Perceptron” (A Course in Machine Learning, ch. 3)
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

• Neubig: “The Perceptron Algorithm”
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf

50

http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-FeatureClassifiers.pdf
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-FeatureClassifiers.pdf
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf

Further Reading:
Advanced

• Neubig: “Advanced Discriminative Learning”—MaxEnt w/ derivatives, SGD,
SVMs, regularization
http://www.phontron.com/slides/nlp-programming-en-06-
discriminative.pdf

• Manning: generative vs. discriminative, MaxEnt likelihood function and
derivatives
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
MEMMs-Smoothing.pdf, slides 3–20

• Daumé: linear models
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf

• Smith: A variety of loss functions for text classification
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-
slides.pdf & http://courses.cs.washington.edu/courses/cse517/16wi/
slides/tc-advanced-slides.pdf

51

http://www.phontron.com/slides/nlp-programming-en-06-discriminative.pdf
http://www.phontron.com/slides/nlp-programming-en-06-discriminative.pdf
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf

