
Empirical Methods in Natural Language Processing
Lecture 3

N-gram Language Models

(most slides from Sharon Goldwater; some adapted from Alex Lascarides)

16 & 21 January 2025

Nathan Schneider ENLP Lecture 3 16 & 21 January 2025

Recap

• Previously, we talked about corpus data and some of the information we can
get from it, like word frequencies.

• For some tasks, like sentiment analysis, word frequencies alone can work pretty
well (though can certainly be improved on).

• For other tasks, we need more.

• Today we consider sentence probabilities: what are they, why are they useful,
and how might we compute them?

Nathan Schneider ENLP Lecture 3 1

Review: Word-based sentiment

• Recall that we can predict sentiment for a document based on counting positive
and negative words.

• Do you think the following words would be positive or negative in a movie
review?

– OK
– Action
– Star

Nathan Schneider ENLP Lecture 3 2

N-grams

• In some cases, looking at more than one word at a time might be more
informative.

– action movie vs. action packed
– Star Wars vs. star studded

• An n-gram is a word sequence of length n.

– 1-gram or unigram: action
– 2-gram or bigram: action packed
– 3-gram or trigram: action packed adventure
– 4-gram: action packed adventure film

Nathan Schneider ENLP Lecture 3 3

N-grams

The Force Awakens brings back the Old Trilogy ’s heart , humor , mystery , and
fun .

How many:

• Unigrams?

• Bigrams?

• Trigrams?

Nathan Schneider ENLP Lecture 3 4

Character N-grams

• A character n-gram applies the same idea to characters rather than words.

• E.g. unnatural has character bigrams un, nn, na, . . . , al

• Why might this concept be useful for NLP?

Nathan Schneider ENLP Lecture 3 5

Towards Sentence Probabilities

• “Probability of a sentence” = how likely is it to occur in natural language

– Consider only a specific language (English)

P(the cat slept peacefully) > P(slept the peacefully cat)

P(she studies morphosyntax) > P(she studies more faux syntax)

Nathan Schneider ENLP Lecture 3 6

Language models in NLP

• It’s very difficult to know the true probability of an arbitrary sequence of words.

• But we can define a language model that will give us good approximations.

• Like all models, language models will be good at capturing some things and
less good for others.

– We might want different models for different tasks.
– Today, one type of language model: an N-gram model.

Nathan Schneider ENLP Lecture 3 7

Spelling correction

Sentence probabilities help decide correct spelling.

mis-spelled text no much effert

↓ (Error model)
no much effect

possible outputs so much effort
no much effort
not much effort
...

↓ (Language model)

best-guess output not much effort

Nathan Schneider ENLP Lecture 3 8

Automatic speech recognition

Sentence probabilities help decide between similar-sounding options.

speech input

↓ (Acoustic model)
She studies morphosyntax

possible outputs She studies more faux syntax
She’s studies morph or syntax
...

↓ (Language model)

best-guess output She studies morphosyntax

Nathan Schneider ENLP Lecture 3 9

Machine translation

Sentence probabilities help decide word choice and word order.

non-English input

↓ (Translation model)
She is going home

possible outputs She is going house
She is traveling to home
To home she is going
...

↓ (Language model)

best-guess output She is going home

Nathan Schneider ENLP Lecture 3 10

LMs for prediction

• LMs can be used for prediction as well as correction.

• Ex: predictive text correction/completion on your mobile phone.

– Keyboard is tiny, easy to touch a spot slightly off from the letter you meant.
– Want to correct such errors as you go, and also provide possible completions.

Predict as as you are typing: ineff...

• In this case, LM may be defined over sequences of characters instead of (or in
addition to) sequences of words.

Nathan Schneider ENLP Lecture 3 11

But how to estimate these probabilities?

• We want to know the probability of word sequence ~w = w1 . . . wn occurring in
English.

• Assume we have some training data: large corpus of general English text.

• We can use this data to estimate the probability of ~w (even if we never see it
in the corpus!)

Nathan Schneider ENLP Lecture 3 12

Probability theory vs estimation

• Probability theory can solve problems like:

– I have a jar with 6 blue marbles and 4 red ones.
– If I choose a marble uniformly at random, what’s the probability it’s red?

Nathan Schneider ENLP Lecture 3 13

Probability theory vs estimation

• Probability theory can solve problems like:

– I have a jar with 6 blue marbles and 4 red ones.
– If I choose a marble uniformly at random, what’s the probability it’s red?

• But often we don’t know the true probabilities, only have data:

– I have a jar of marbles.
– I repeatedly choose a marble uniformly at random and then replace it before

choosing again.
– In ten draws, I get 6 blue marbles and 4 red ones.
– On the next draw, what’s the probability I get a red marble?

• The latter also requires estimation theory.

Nathan Schneider ENLP Lecture 3 14

Notation

• I will often omit the random variable in writing probabilities, using P (x) to
mean P (X = x).

• When the distinction is important, I will use

– P (x) for true probabilities
– P̂ (x) for estimated probabilities
– PE(x) for estimated probabilities using a particular estimation method E.

• But since we almost always mean estimated probabilities, may get lazy later
and use P (x) for those too.

Nathan Schneider ENLP Lecture 3 15

Example estimation: M&M colors

What is the proportion of each color of M&M?

• In 48 packages, I find1 2620 M&Ms, as follows:

Red Orange Yellow Green Blue Brown
372 544 369 483 481 371

• How to estimate probability of each color from this data?

1Actually, data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/

Nathan Schneider ENLP Lecture 3 16

Relative frequency estimation

• Intuitive way to estimate discrete probabilities:

PRF(x) =
C(x)

N

where C(x) is the count of x in a large dataset, and

N =
∑
x′ C(x′) is the total number of items in the dataset.

Nathan Schneider ENLP Lecture 3 17

Relative frequency estimation

• Intuitive way to estimate discrete probabilities:

PRF(x) =
C(x)

N

where C(x) is the count of x in a large dataset, and

N =
∑
x′ C(x′) is the total number of items in the dataset.

• M&M example: PRF(red) = 372
2620 = .142

• This method is also known as maximum-likelihood estimation (MLE) for
reasons we’ll get back to.

Nathan Schneider ENLP Lecture 3 18

MLE for sentences?

Can we use MLE to estimate the probability of ~w as a sentence of English? That
is, the prob that some sentence S has words ~w?

PMLE(S = ~w) =
C(~w)

N

where C(~w) is the count of ~w in a large dataset, and

N is the total number of sentences in the dataset.

Nathan Schneider ENLP Lecture 3 19

Sentences that have never occurred

the Archaeopteryx soared jaggedly amidst foliage
vs

jaggedly trees the on flew

• Neither ever occurred in a corpus (until I wrote these slides).
⇒ C(~w) = 0 in both cases: MLE assigns both zero probability.

• But one is grammatical (and meaningful), the other not.
⇒ Using MLE on full sentences doesn’t work well for language model
estimation.

Nathan Schneider ENLP Lecture 3 20

The problem with MLE

• MLE thinks anything that hasn’t occurred will never occur (P=0).

• Clearly not true! Such things can have differering, and non-zero, probabilities:

– My hair turns blue
– I injure myself in a skiing accident
– I travel to Finland

• And similarly for word sequences that have never occurred.

Nathan Schneider ENLP Lecture 3 21

Sparse data

• In fact, even things that occur once or twice in our training data are a problem.
Remember these words from Europarl?

cornflakes, mathematicians, pseudo-rapporteur, lobby-ridden, Lycketoft,
UNCITRAL, policyfor, Commissioneris, 145.95

All occurred once. Is it safe to assume all have equal probability?

• This is a sparse data problem: not enough observations to estimate
probabilities well. (Unlike the M&Ms, where we had large counts for all
colours!)

• For sentences, many (most!) will occur rarely if ever in our training data. So
we need to do something smarter.

Nathan Schneider ENLP Lecture 3 22

Towards better LM probabilities

• One way to try to fix the problem: estimate P (~w) by combining the probabilities
of smaller parts of the sentence, which will occur more frequently.

• This is the intuition behind N-gram language models.

Nathan Schneider ENLP Lecture 3 23

Deriving an N-gram model

• We want to estimate P (S = w1 . . . wn).

– Ex: P (S = the cat slept quietly).

• This is really a joint probability over the words in S:
P (W1 = the,W2 = cat,W3 = slept, . . .W4 = quietly).

• Concisely, P (the, cat, slept, quietly) or P (w1, . . . wn).

Nathan Schneider ENLP Lecture 3 24

Deriving an N-gram model

• We want to estimate P (S = w1 . . . wn).

– Ex: P (S = the cat slept quietly).

• This is really a joint probability over the words in S:
P (W1 = the,W2 = cat,W3 = slept, . . .W4 = quietly).

• Concisely, P (the, cat, slept, quietly) or P (w1, . . . wn).

• Recall that for a joint probability, P (X,Y) = P (Y |X)P (X). So,

P (the, cat, slept, quietly) = P (quietly|the, cat, slept)P (the, cat, slept)

= P (quietly|the, cat, slept)P (slept|the, cat)P (the, cat)

= P (quietly|the, cat, slept)P (slept|the, cat)P (cat|the)P (the)

Nathan Schneider ENLP Lecture 3 25

Deriving an N-gram model

• More generally, the chain rule gives us:

P (w1, . . . wn) =

n∏
i=1

P (wi|w1, w2, . . . wi−1)

• But many of these conditional probs are just as sparse!

– If we want P (I spent three years before the mast)...
– we still need P (mast|I spent three years before the).

Example due to Alex Lascarides/Henry Thompson

Nathan Schneider ENLP Lecture 3 26

Deriving an N-gram model

• So we make an independence assumption: the probability of a word only
depends on a fixed number of previous words (history).

– trigram model: P (wi|w1, w2, . . . wi−1) ≈ P (wi|wi−2, wi−1)
– bigram model: P (wi|w1, w2, . . . wi−1) ≈ P (wi|wi−1)
– unigram model: P (wi|w1, w2, . . . wi−1) ≈ P (wi)

• In our example, a trigram model says

– P (mast|I spent three years before the) ≈ P (mast|before the)

Nathan Schneider ENLP Lecture 3 27

Trigram independence assumption

• Put another way, trigram model assumes these are all equal:

– P (mast|I spent three years before the)
– P (mast|I went home before the)
– P (mast|I saw the sail before the)
– P (mast|I revised all week before the)

because all are estimated as P (mast|before the)

• Also called a Markov assumption

Andrey Markov →

• Not always a good assumption! But it does reduce the sparse data problem.

Nathan Schneider ENLP Lecture 3 28

Estimating trigram conditional probs

• We still need to estimate P (mast|before, the): the probability of mast given
the two-word history before, the.

• If we use relative frequencies (MLE), we consider:

– Out of all cases where we saw before, the as the first two words of a trigram,
– how many had mast as the third word?

Nathan Schneider ENLP Lecture 3 29

Estimating trigram conditional probs

• So, in our example, we’d estimate

PMLE(mast|before, the) =
C(before, the, mast)

C(before, the)

where C(x) is the count of x in our training data.

• More generally, for any trigram we have

PMLE(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)

Nathan Schneider ENLP Lecture 3 30

Example from Moby Dick corpus

C(before, the) = 55

C(before, the,mast) = 4

C(before, the,mast)

C(before, the)
= 0.0727

• mast is the second most common word to come after before the in Moby Dick;
wind is the most frequent word.

• PMLE(mast) is 0.00049, and PMLE(mast|the) is 0.0029.

• So seeing before the vastly increases the probability of seeing mast next.

Nathan Schneider ENLP Lecture 3 31

Trigram model: summary

• To estimate P (~w), use chain rule and make an indep. assumption:

P (w1, . . . wn) =

n∏
i=1

P (wi|w1, w2, . . . wi−1)

≈ P (w1)P (w2|w1)

n∏
i=3

P (wi|wi−2, wi−1)

• Then estimate each trigram prob from data (here, using MLE):

PMLE(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)

• On your own: work out the equations for other N -grams (e.g., bigram,
unigram).

Nathan Schneider ENLP Lecture 3 32

Practical details (1)

• Trigram model assumes two word history:

P (~w) = P (w1)P (w2|w1)

n∏
i=3

P (wi|wi−2, wi−1)

• But consider these sentences:

w1 w2 w3 w4

(1) he saw the yellow
(2) feeds the cats daily

• What’s wrong? Does the model capture these problems?

Nathan Schneider ENLP Lecture 3 33

Beginning/end of sequence

• To capture behaviour at beginning/end of sequences, we can augment the
input:

w−1 w0 w1 w2 w3 w4 w5

(1) <s> <s> he saw the yellow </s>
(2) <s> <s> feeds the cats daily </s>

• That is, assume w−1 = w0 = <s> and wn+1 = </s> so:

P (~w) =

n+1∏
i=1

P (wi|wi−2, wi−1)

• Now, P (</s>|the, yellow) is low, indicating this is not a good sentence.

Nathan Schneider ENLP Lecture 3 34

Beginning/end of sequence

• Alternatively, we could model all sentences as one (very long) sequence,
including punctuation:

two cats live in sam ’s barn . sam feeds the cats daily . yesterday , he
saw the yellow cat catch a mouse . [...]

• Now, trigrams like P (.|cats daily) and P (,|. yesterday) tell us about
behavior at sentence edges.

• Here, all tokens are lowercased. What are the pros/cons of not doing that?

Nathan Schneider ENLP Lecture 3 35

Practical details (2)

• Word probabilities are typically very small.

• Multiplying lots of small probabilities quickly gets so tiny we can’t represent
the numbers accurately, even with double precision floating point.

• So in practice, we typically use negative log probabilities (sometimes called
costs):

– Since probabilities range from 0 to 1, negative log probs range from 0 to∞:
lower cost = higher probability.

– Instead of multiplying probabilities, we add neg log probabilities.

Nathan Schneider ENLP Lecture 3 36

Interim Summary: N-gram probabilities

• “Probability of a sentence”: how likely is it to occur in natural language?
Useful in many natural language applications.

• We can never know the true probability, but we may be able to estimate it
from corpus data.

• N -gram models are one way to do this:

– To alleviate sparse data, assume word probs depend only on short history.
– Tradeoff: longer histories may capture more, but are also more sparse.
– So far, we estimated N -gram probabilites using MLE.

Nathan Schneider ENLP Lecture 3 37

Interim Summary: Language models

• Language models tell us P (~w) = P (w1 . . . wn): How likely to occur is this
sequence of words?

Roughly: Is this sequence of words a “good” one in my language?

• LMs are used as a component in applications such as speech recognition,
machine translation, and predictive text completion.

• To reduce sparse data, N-gram LMs assume words depend only on a fixed-
length history, even though we know this isn’t true.

Coming up next:

• Weaknesses of MLE and ways to address them (more issues with sparse data).

• How to evaluate a language model: are we estimating sentence probabilities
accurately?

Nathan Schneider ENLP Lecture 3 38

Activity

Form 6 groups. You will implement a tiny language model by hand.

Nathan Schneider ENLP Lecture 3 39

Activity

Form 6 groups. You will implement a tiny language model by hand.

Nathan Schneider ENLP Lecture 3 40

Evaluating a language model

• Intuitively, a trigram model captures more context than a bigram model, so
should be a “better” model.

• That is, it should more accurately predict the probabilities of sentences.

• But how can we measure this?

Nathan Schneider ENLP Lecture 3 41

Two types of evaluation in NLP

• Extrinsic: measure performance on a downstream application.

– For LM, plug it into a machine translation/ASR/etc system.
– The most reliable evaluation, but can be time-consuming.
– And of course, we still need an evaluation measure for the downstream

system!

• Intrinsic: design a measure that is inherent to the current task.

– Can be much quicker/easier during development cycle.
– But not always easy to figure out what the right measure is: ideally, one

that correlates well with extrinsic measures.

Let’s consider how to define an intrinsic measure for LMs.

Nathan Schneider ENLP Lecture 3 42

Entropy

• Definition of the entropy of a random variable X:

H(X) =
∑
x−P (x) log2P (x)

• Intuitively: a measure of uncertainty/disorder

• Also: the expected value of − log2P (X)

Nathan Schneider ENLP Lecture 3 43

Entropy Example

P (a) = 1

One event (outcome)

H(X) = − 1 log2 1

= 0

Nathan Schneider ENLP Lecture 3 44

Entropy Example

P (a) = 0.5
P (b) = 0.5

2 equally likely events:

H(X) = − 0.5 log2 0.5− 0.5 log2 0.5

= − log2 0.5

= 1

Nathan Schneider ENLP Lecture 3 45

Entropy Example

P (a) = 0.25
P (b) = 0.25
P (c) = 0.25
P (d) = 0.25

4 equally likely events:

H(X) = − 0.25 log2 0.25− 0.25 log2 0.25

− 0.25 log2 0.25− 0.25 log2 0.25

= − log2 0.25

= 2

Nathan Schneider ENLP Lecture 3 46

Entropy Example

P (a) = 0.7
P (b) = 0.1
P (c) = 0.1
P (d) = 0.1

3 equally likely events and one more
likely than the others:

H(X) = − 0.7 log2 0.7− 0.1 log2 0.1

− 0.1 log2 0.1− 0.1 log2 0.1

= − 0.7 log2 0.7− 0.3 log2 0.1

= − (0.7)(−0.5146)− (0.3)(−3.3219)

= 0.36020 + 0.99658

= 1.35678

Nathan Schneider ENLP Lecture 3 47

Entropy Example

P (a) = 0.97
P (b) = 0.01
P (c) = 0.01
P (d) = 0.01

3 equally likely events and one much
more likely than the others:

H(X) = − 0.97 log2 0.97− 0.01 log2 0.01

− 0.01 log2 0.01− 0.01 log2 0.01

= − 0.97 log2 0.97− 0.03 log2 0.01

= − (0.97)(−0.04394)− (0.03)(−6.6439)

= 0.04262 + 0.19932

= 0.24194

Nathan Schneider ENLP Lecture 3 48

H(X) = 0 H(X) = 1 H(X) = 2

H(X) = 3 H(X) = 1.35678 H(X) = 0.24194

Nathan Schneider ENLP Lecture 3 49

Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

• Uniform distribution with 2n outcomes: n q’s.

• Other cases: entropy is the average number of questions per outcome in
a (very) long sequence of outcomes, where questions can consider multiple
outcomes at once.

Nathan Schneider ENLP Lecture 3 50

Entropy as encoding sequences

• Assume that we want to encode a sequence of events X.

• Each event is encoded by a sequence of bits, we want to use as few bits as
possible.

• For example

– Coin flip: heads = 0, tails = 1
– 4 equally likely events: a = 00, b = 01, c = 10, d = 11
– 3 events, one more likely than others: a = 0, b = 10, c = 11
– Morse code: e has shorter code than q

• Average number of bits needed to encode X ≥ entropy of X

Nathan Schneider ENLP Lecture 3 51

The Entropy of English

• Given the start of a text, can we guess the next word?

• For humans, the measured entropy is only about 1.3.

– Meaning: on average, given the preceding context, a human would need
only 1.3 y/n questions to determine the next word.

– This is an upper bound on the true entropy, which we can never know
(because we don’t know the true probability distribution).

• But what about N -gram models?

Nathan Schneider ENLP Lecture 3 52

Cross-entropy

• Our LM estimates the probability of word sequences.

• A good model assigns high probability to sequences that actually have high
probability (and low probability to others).

• Put another way, our model should have low uncertainty (entropy) about which
word comes next.

• We can measure this using cross-entropy.

• Note that cross-entropy ≥ entropy: our model’s uncertainty can be no less
than the true uncertainty.

Nathan Schneider ENLP Lecture 3 53

Computing cross-entropy

• For w1 . . . wn with large n, per-word cross-entropy is well approximated by:

HM(w1 . . . wn) = −1

n
log2PM(w1 . . . wn)

• This is just the average negative log prob our model assigns to each word in
the sequence. (i.e., normalized for sequence length).

• Lower cross-entropy ⇒ model is better at predicting next word.

Nathan Schneider ENLP Lecture 3 54

Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of I
spent three years before the mast (here, without using end-of sentence padding):

−1
7(lg2(P (I)) + lg2(P (spent|I)) + lg2(P (three|spent)) + lg2(P (years|three))

+ lg2(P (before|years)) + lg2(P (the|before)) + lg2(P (mast|the)))

= −1
7(−6.9381− 11.0546− 3.1699− 4.2362− 5.0− 2.4426− 8.4246)

= −1
7(41.2660)

≈ 6

• Per-word cross-entropy of the unigram model is about 11.

• So, unigram model has about 5 bits more uncertainty per word then bigram
model. But, what does that mean?

Nathan Schneider ENLP Lecture 3 55

Data compression

• If we designed an optimal code based on our bigram model, we could encode
the entire sentence in about 42 bits.

• A code based on our unigram model would require about 77 bits.

• ASCII uses an average of 24 bits per word (168 bits total)!

• So better language models can also give us better data compression: as
elaborated by the field of information theory.

Nathan Schneider ENLP Lecture 3 56

Perplexity

• LM performance is often reported as perplexity rather than cross-entropy.

• Perplexity is simply 2cross-entropy

• The average branching factor at each decision point, if our distribution were
uniform.

• So, 6 bits cross-entropy means our model perplexity is 26 = 64: equivalent
uncertainty to a uniform distribution over 64 outcomes.

Nathan Schneider ENLP Lecture 3 57

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2.
Is that good?

Nathan Schneider ENLP Lecture 3 58

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2.
Is that good?

• No way to tell! Cross-entropy depends on both the model and the corpus.

– Some language is simply more predictable (e.g. casual speech vs academic
writing).

– So lower cross-entropy could mean the corpus is “easy”, or the model is
good.

• We can only compare different models on the same corpus.

• Should we measure on training data or held-out data? Why?

Nathan Schneider ENLP Lecture 3 59

Sparse data, again

Suppose now we build a trigram model from Moby Dick and evaluate the same
sentence.

• But I spent three never occurs, so PMLE(three | I spent) = 0

• which means the cross-entropy is infinite.

• Basically right: our model says I spent three should never occur, so our model
is infinitely wrong/surprised when it does!

• Even with a unigram model, we will run into words we never saw before. So
even with short N -grams, we need better ways to estimate probabilities from
sparse data.

Nathan Schneider ENLP Lecture 3 60

Smoothing

• The flaw of MLE: it estimates probabilities that make the training data
maximally probable, by making everything else (unseen data) minimally
probable.

• Smoothing methods address the problem by stealing probability mass from
seen events and reallocating it to unseen events.

• Lots of different methods, based on different kinds of assumptions. We will
discuss just a few.

Nathan Schneider ENLP Lecture 3 61

Add-One (Laplace) Smoothing

• Just pretend we saw everything one more time than we did.

PML(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)

⇒ P+1(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1)
?

Nathan Schneider ENLP Lecture 3 62

Add-One (Laplace) Smoothing

• Just pretend we saw everything one more time than we did.

PML(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)

⇒ P+1(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1)
?

• NO! Sum over possible wi (in vocabulary V) must equal 1:∑
wi∈V

P (wi|wi−2, wi−1) = 1

• If increasing the numerator, must change denominator too.

Nathan Schneider ENLP Lecture 3 63

Add-one Smoothing: normalization

• We want:
∑
wi∈V

C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1) + x
= 1

• Solve for x: ∑
wi∈V

(C(wi−2, wi−1, wi) + 1) = C(wi−2, wi−1) + x

∑
wi∈V

C(wi−2, wi−1, wi) +
∑
wi∈V

1 = C(wi−2, wi−1) + x

C(wi−2, wi−1) + v = C(wi−2, wi−1) + x

v = x

where v = vocabulary size.

Nathan Schneider ENLP Lecture 3 64

Add-one example (1)

• Moby Dick has one trigram that begins I spent (it’s I spent in) and the
vocabulary size is 17231.

• Comparison of MLE vs Add-one probability estimates:

MLE +1

P̂ (three | I spent) 0 0.00006

P̂ (in | I spent) 1 0.0001

• P̂ (in|I spent) seems very low, especially since in is a very common word. But
can we find better evidence that this method is flawed?

Nathan Schneider ENLP Lecture 3 65

Add-one example (2)

• Suppose we have a more common bigram w1, w2 that occurs 100 times, 10 of
which are followed by w3.

MLE +1

P̂ (w3|w1, w2)
10
100

11
17331

≈ 0.0006

• Shows that the very large vocabulary size makes add-one smoothing steal way
too much from seen events.

• In fact, MLE is pretty good for frequent events, so we shouldn’t want to
change these much.

Nathan Schneider ENLP Lecture 3 66

Add-α (Lidstone) Smoothing

• We can improve things by adding α < 1.

P+α(wi|wi−1) =
C(wi−1, wi) + α

C(wi−1) + αv

• Like Laplace, assumes we know the vocabulary size in advance.

• But if we don’t, can just add a single “unknown” (UNK) item to the vocabulary,
and use this for all unknown words during testing.

• Then: how to choose α?

Nathan Schneider ENLP Lecture 3 67

Optimizing α (and other model choices)

• Use a three-way data split: training set (80-90%), held-out (or development)
set (5-10%), and test set (5-10%)

– Train model (estimate probabilities) on training set with different values of
α

– Choose the α that minimizes cross-entropy on development set

– Report final results on test set.

• More generally, use dev set for evaluating different models, debugging, and
optimizing choices. Test set simulates deployment, use it only once!

• Avoids overfitting to the training set and even to the test set.

Nathan Schneider ENLP Lecture 3 68

Summary

• We can measure the relative goodness of LMs on the same corpus using
cross-entropy: how well does the model predict the next word?

• We need smoothing to deal with unseen N -grams.

• Add-1 and Add-α are simple, but not very good.

Nathan Schneider ENLP Lecture 3 69

Postscript

• There are better smoothing methods for N -gram language models, including
one called Kneser-Ney smoothing.

• But neural network language models can do even better without a Markov
assumption. (Later in the course.)

Nathan Schneider ENLP Lecture 3 70

