Distributional Semantics

Sean Simpson (some slides from Marine Carpuat, Nathan Schneider) (last updated by Tatsuya Aoyama, March 2024)

ENLP Lecture 13 March 12, 2024

Topics

Lexical Semantics

- → Word Similarity
- → Distributional Hypothesis
- → Vector Representations
- → Evaluation

Document Semantics

→ Topic Modeling

Lexical Semantics

• Identify word closest to target:

Accidental

- → Abominate
- → Meander
- → Inadvertent
- → inhibit

• Identify word closest to target:

Accidental

- → Abominate
- → Meander
- → Inadvertent
- → inhibit

• Identify word closest to target:

• FedEx

- → car
- → UPS
- → rotate
- → Navy

• Identify word closest to target:

• FedEx

- → car
- → UPS
- → rotate
- → Navy

• Identify word closest to target:

Millennial

- → octopus
- → fork
- → water
- → avocado

• Identify word closest to target:

Millennial

- → octopus
- → fork
- → water
- → avocado

Semantic Similarity

What drives semantic similarity?

Meaning

- → The two concepts are close in terms of meaning
- → e.g. 'inadvertent' and 'accidental'

World Knowledge

- The two concepts have similar properties, often occur together, or occur in similar contexts
- → e.g. 'spinach' and 'kale,' or 'UPS' and 'FedEx'

Psychology

- The two concepts fit together within an over-arching psychological schema or framework
- → e.g. 'money' and 'bank', or 'millennial' and 'avocado'

Semantic Similarity

What drives semantic similarity?

• Meaning

→ e.g. 'money' and 'bank', or 'millennial' and 'avocado'

Automatic computation of semantic similarity

Why would such a thing be useful?

 Semantic similarity gives us a way to generalize beyond word identities

→ Lots of practical applications

- → Information retrieval
- → Machine translation
- → Ontological hierarchies
- → Etc.

So far in this course, most of our statistical models have treated words as discrete categories.

- → No explicit relationship between "cat" and "feline" in our LMs, classifiers, HMMs
- → Equivalently, each word type in the vocabulary can be represented as an integer or as a one-hot vector

$$\rightarrow$$
 "cat" = [000001000...]

- → "feline" = [000000010...]
- → They are orthogonal; dot product is 0
- → Length is size of the vocabulary

Distributional Hypothesis

Idea: Similar linguistic objects have similar **contents** (for documents, paragraphs, sentences) or **contexts** (for words)

 → "Differences of meaning correlates with differences of distribution" (Harris, 1970)

→

→ "You shall know a word by the company it keeps!" (Firth, 1957)

Example

- → He handed her a glass of bardiwac
- → Beef dishes are made to complement the bardiwac
- → Nigel staggered to his feet, face flushed from too much bardiwac.
- ➔ Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine
- → I dined off bread and cheese and this excellent bardiwac
- ➔ The drinks were delicious: bold bardiwac as well as light, sweet Rhenish.

• A word type may be represented as a vector of features indicating the contexts in which it occurs in a corpus.

$$\vec{w} = (f_1, f_2, f_3, \dots f_N)$$

Context Features

Word Co-occurrence within a window:

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	0	0	1	1	1	0	1	0
information	0	0	1	1	1	0	1	0

Grammatical Relations:

	subj-of, absorb	subj-of, adapt	subj-of, behave	 pobj-of, inside	pobj-of, into	 nmod-of, abnormality	nmod-of, anemia	nmod-of, architecture	 obj-of, attack	obj-of, call	obj-of, come from	obj-of, decorate	 nmod, bacteria	nmod, body	nmod, bone marrow	
cell	1	1	1	16	30	3	8	1	6	11	3	2	3	2	2	

Context Features

Feature Values:

- →Boolean
- →Raw Counts
- → Weighting Scheme (e.g. tf-idf)
- →Association Values

Association Value: Pointwise Mutual Information

• Measures how often a target word *w* and a feature *f* occur together compared to what we would expect if the two were independent

association_{PMI}(w, f) =
$$\log_2 \frac{P(w, f)}{P(w)P(f)}$$

- → PMI ranges from -inf to +inf, but negative values are generally unreliable (Jurafsky & Martin, 2017:275).
 - → Use positive PMI and clip at zero.

Computing Similarity

Semantic similarity boils down to computing some measure of spatial similarity between context vectors in vector space.

Words in a vector space

• In 2 dimensions:

- V = 'cat'
- W = 'computer'

• cat
•
$$\mathbf{v} = (v_1, v_2)$$

• computer
• $\mathbf{w} = (w_1, w_2)$

Euclidean Distance

• Formula:

 $\sqrt{\sum_i (v_i - w_i)^2}$

Can be oversensitive to extreme values

Cosine Similarity

• Formula:

$$\sin_{\text{cosine}}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i \times w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

→ Typically better than Euclidean distance for vector space semantic

Vector Sparseness

- Co-occurrence based context vectors tend to very long and very sparse.
 - → len(word_vec) == len(vocab)
- **short** (dim. of around 50-300) and **dense** context vectors are usually preferable.
 - → Easier to include as features in machine learning systems
 - → Fewer parameters = better generalization & less over-fitting
 - → Better at capturing synonymy

2 Main methods of producing short, dense vectors:

(1) Dimensionality reduction

(2) Neural Language Models

Dimensionality Reduction

Methods:

- →Principal Component Analysis (PCA)
- →t-Distributed Stochastic Neighbor Embedding (t-SNE)
- →Latent Semantic Analysis (LSA)

→...

Neural Network Embeddings

Idea: Train a neural network to predict context words based on current 'target' word.

- Similar input words \rightarrow similar context word prediction
- Similar input words → similar corresponding rows in the weight matrix of the trained network.

We don't actually care about context word prediction!

• Rows in the trained weight matrix become our context vectors (aka word vectors, aka word embeddings)

Neural Network Embeddings

- This idea marked a transition from count-based methods to prediction-based methods for obtaining word embeddings, and prediction-based methods are shown to be better (Baroni et al., 2014, *Don't count, predict!*)
- This means that we can use *any* language models' weights to represent a word, but let's see the first of its kind, **word2vec**

Neural Network Embeddings

Most popular family of methods: word2vec (Mikolov et al. 2013, Mikolov et al. 2013a)

Neural LM architectures: which to use?

- CBOW and Skip-Gram typically produce similar embeddings, but:
 - CBOW is several times faster to train, better accuracy for frequent words
 - Skip-Gram works well with small amounts of training data, and does well with representing rare words
- Mikolov: "Best practice is to try a few experiments and see what works the best for you"

https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/ESId8LcDxIAJ

Properties of dense word embeddings

Dense word embeddings encode:

- → Semantic Relationships
- → Syntactic Relationships

Can probe relations between words using vector arithmetic:

- → king male + female = ?
- \rightarrow walked walk + fly = ?

Type-based vector to token-based vector

Now we've got one vector for each word type... what's next?

- Did you hear the **sound**?
- He arrived home safe and **sound**.

... do you see the problem?

• As mentioned earlier, we can use *any* language model's weights to represent a word

Type-based vector to token-based vector

Language models have evolved to capture this difference

- ELMo (Peters et al., 2017)
- BERT (Devlin et al., 2018)
- ... (more on neural architecture later in this course!)
- These models generate *contextualized* (or dynamic, as opposed to static) word embeddings (CWEs).
- Some models are even *multilingual*!

Type-based vector to token-based vector

- t-SNE-ed snapshot of some words from Europarl corpus in multilingual BERT's embedding space
 - Each word *type* occurs multiple times because this is contextualized (*token*-based word embeddings)

Cao et al. (2020)

Train your own word embeddings:

TensorFlow: https://www.tensorflow.org/tutorials/word2vec

Gensim: <u>https://rare-technologies.com/word2vec-tutorial/</u>

FastText: <u>https://github.com/facebookresearch/fastText</u>

Pretrained Word embeddings:

Word2Vec: https://code.google.com/archive/p/word2vec/

- → Trained on 100 billion tokens from Google News corpus
- GloVe: <u>https://nlp.stanford.edu/projects/glove/</u>
 - →6B wikipedia, 42-840B tokens Common Crawl, 27B tokens Twitter
- LexVec: <u>https://github.com/alexandres/lexvec</u>
 - → 58B tokens Common Crawl, 7B tokens Wikipedia + NewsCrawl

Nowadays... <u>https://huggingface.co/models</u>

→500k+ models including ELMo, BERT, GPTs, and you can also train them from scratch with enough GPU!

Word embeddings: Evaluation

How to judge the quality of embeddings?

• 'Relatedness' scores for given word pairs

→ Compare model's relatedness scores to human relatedness scores

Analogy tests

→ Find x such that x : y best resembles a sample relationship a : b

Categorization

→ Recover a known clustering of words into different categories.

Document features

- So far: Features in word-vectors can be: context counts, PMI scores, weights from neural LMs...
- Can also be features of the docs in which the words occur.
- Document occurrence features are useful for topical/thematic similarity

Document-Term Matrix

	D1	D2	D3	D4
W1	23	17	0	0
W2	102	0	14	24
W3	14	57	0	2
W4	0	0	18	38

Term Frequency – Inverse Document Frequency (tf-idf)

- Common in IR tasks
- Popular method to weight term-document matrices in general
- Tf: relative frequency of term in document → tf(t,d) = f(t,d)

Idf: inverse of the proportion of docs containing the term
N / n_t (N = total # of docs, n_t = # of docs term t appeared in)

Document-Term Matrix

	D1	D2	D3	D4
W1	23	17	0	0
W2	102	0	14	24
W3	14	57	0	2
W4	0	0	18	38

Tf-idf weighted Document-Term Matrix

	D1	D2	D3	D4
W1	.12	.16	0	0
W2	.21	0	.13	.11
W3	.03	.22	0	.01
W4	0	0	.39	.41

Tf-idf weighted Document-Term Matrix

		D1	D2	D3	D4	
Word Vectors	W1	.12	.16	0	0	
	W2	.21	0	.13	.11	
	W3	.03	.22	0	.01	
	W4	0	0	.39	.41	

Tf-idf weighted Document-Term Matrix

	Document Vectors									
	D1	D2	D3	D4						
W1	.12	.16	0	0						
W2	.21	0	.13	.11						
W3	.03	.22	0	.01						
W4	0	0	.39	.41						

Topic Models

Latent Dirichlet Allocation (LDA) and variants known as topic models.

→Learned on large document collection (unsupervised)

→Latent probabilistic **clustering** of words that tend to occur in the same document. Each '**topic**' cluster is a distribution over words.

→Generative Model: Each document is a sparse mixture of topics. Each word in the doc is chosen by sampling a topic from the doc-specific topic distribution, then sampling a word from that topic.

Topic Models

Topics

Documents

Topic proportions and assignments

https://cacm.acm.org/magazines/2012/4/147361-probabilistic-topic-models/fulltext

Visualizing Topics

TOPIC 32 programs supply programs provide accessibility destinations efficient measures convenient bicycling projects maintain single strategies safety information improve management choices goods travelsafe identify vehicle systems ink freight mode mode network modes · facilitate capacity demand impacts enhance calming priority walking connections improvements people efficiency

TOPIC 36 environmental concentration significant distribution expansion communities designated business structures districtareas existing industrial rarge commercial area entire shopping mixed retail goods sizes site site start surrounding activity sites. zones cultural upper CS1dential exist impacts and districts or restaurants close location office serve light locate oriented services market accommodate mixture businesses adjacent Actability Line Droximity efforts

TOPIC 33

readiness focused inport successfully production tramed providers logistics Svitience ccessfully production transfer of providence logistics advanced focus tech factor innovations scient clusters data system skill track work role track important lobs systems institutions important roos of section institutions technology training improving agree research economy gow improve tracking region degrees workforce applied technologies prosperity in innovation industry success employers education skills universities gain charter metropolitan enrepreneurs companies talent professional start philmthropic clara

TOPIC 37

unincorporated supplement transition streets order retail endourban subarea order adopted adsurban subarea special existing recommendations opportunity stu mp sp form part space relevant chainse center study light series trainse center study light series studies fruitridge figure march proposed village university plans boondary

Neural Language Models (again!)

- At word level, we saw count-based -> prediction-based
- At document level, we saw count-based (tf-idf)... so what about prediction-based?
- Document-level prediction tasks are not as straightforward as word/sentence level prediction tasks (as opposed to binary prediction in word2vec or NWP/NSP in modern LMs).

Neural Language Models (again!)

- Use word representations
 - Concatenate CWEs of tokens in a document
 - Max/average-pooling
 - . . .
- Document/span specific models
 - doc2vec (Le& Mikolov, 2014)
 - Document embeddings trained to predict next word in the document
 - SpanBERT (Joshi et al., 2019)
 - Longformer (Beltagy et al., 2020)
 - BigBird (Zaheer et al., 2020)
 - HiPool (Li et al., 2023)

Questions?