
Distributional Semantics

Sean Simpson
(some slides from Marine Carpuat, Nathan Schneider)
(last updated by Tatsuya Aoyama, March 2024)

ENLP Lecture 13
March 12, 2024

Topics

l Lexical Semantics
è Word Similarity

è Distributional Hypothesis

è Vector Representations

è Evaluation

l Document Semantics
è Topic Modeling

Lexical Semantics

Semantic similarity: Intuition

l Identify word closest to target:

l Accidental
è Abominate

è Meander

è Inadvertent

è inhibit

Semantic similarity: Intuition

l Identify word closest to target:

l Accidental
è Abominate

è Meander

è Inadvertent

è inhibit

Semantic similarity: Intuition

l Identify word closest to target:

l FedEx
è car

è UPS

è rotate

è Navy

Semantic similarity: Intuition

l Identify word closest to target:

l FedEx
è car

è UPS

è rotate

è Navy

Semantic similarity: Intuition

l Identify word closest to target:

l Millennial
è octopus

è fork

è water

è avocado

Semantic similarity: Intuition

l Identify word closest to target:

l Millennial
è octopus

è fork

è water

è avocado

Semantic Similarity

What drives semantic similarity?
l Meaning

è The two concepts are close in terms of meaning

è e.g. ‘inadvertent’ and ‘accidental’

l World Knowledge
è The two concepts have similar properties, often occur together, or occur in

similar contexts

è e.g. ‘spinach’ and ‘kale,’ or ‘UPS’ and ‘FedEx’

l Psychology
è The two concepts fit together within an over-arching psychological schema or

framework

è e.g. ‘money’ and ‘bank’, or ‘millennial’ and ‘avocado’

Semantic Similarity

What drives semantic similarity?
l Meaning

è The two concepts are close in terms of meaning

è e.g. ‘inadvertent’ and ‘accidental’

l World Knowledge
è The two concepts have similar properties, often occur together, or occur in

similar contexts

è e.g. ‘spinach’ and ‘kale,’ or ‘UPS’ and ‘FedEx’

l Psychology
è The two concepts fit together within an over-arching psychological schema or

framework

è e.g. ‘money’ and ‘bank’, or ‘millennial’ and ‘avocado’

Automatic computation of semantic similarity

Why would such a thing be useful?

è Semantic similarity gives us a way to generalize beyond word
identities

è Lots of practical applications
è Information retrieval

è Machine translation

è Ontological hierarchies

è Etc.

Beyond one-hot vectors

So far in this course, most of our statistical models have treated
words as discrete categories.
è No explicit relationship between “cat” and “feline” in our LMs,

classifiers, HMMs
è Equivalently, each word type in the vocabulary can be

represented as an integer or as a one-hot vector
è “cat” = [0 0 0 0 0 1 0 0 0 …]
è “feline” = [0 0 0 0 0 0 0 1 0 …]
è They are orthogonal; dot product is 0
è Length is size of the vocabulary

Distributional Hypothesis

Idea: Similar linguistic objects have similar contents (for documents,
paragraphs, sentences) or contexts (for words)

è “Differences of meaning correlates with differences of distribution”
(Harris, 1970)
è
è “You shall know a word by the company it keeps!” (Firth, 1957)

Example

è He handed her a glass of bardiwac

è Beef dishes are made to complement the bardiwac

è Nigel staggered to his feet, face flushed from too much bardiwac.

è Malbec, one of the lesser-known bardiwac grapes, responds well to
Australia’s sunshine

è I dined off bread and cheese and this excellent bardiwac

è The drinks were delicious: bold bardiwac as well as light, sweet
 Rhenish.

Word Vectors

l A word type may be represented as a vector of features indicating
the contexts in which it occurs in a corpus.

Context Features

Word Co-occurrence within a window:

Grammatical Relations:

Context Features

Feature Values:
èBoolean

èRaw Counts

è Weighting Scheme (e.g. tf-idf)

èAssociation Values

Association Value: Pointwise Mutual Information

l Measures how often a target word w and a feature f occur together
compared to what we would expect if the two were independent

è PMI ranges from -inf to +inf, but negative values are generally
unreliable (Jurafsky & Martin, 2017:275).
è Use positive PMI and clip at zero.

Computing Similarity

Semantic similarity boils down to computing some measure of
spatial similarity between context vectors in vector space.

Words in a vector space

l In 2 dimensions:
l V = ‘cat’

l W = ‘computer’

Euclidean Distance

l Formula:

è Can be oversensitive to extreme
values

Cosine Similarity

l Formula:

è Typically better than Euclidean
distance for vector space semantics

Vector Sparseness

l Co-occurrence based context vectors tend to very long and very
sparse.
è len(word_vec) == len(vocab)

l short (dim. of around 50-300) and dense context vectors are
usually preferable.
è Easier to include as features in machine learning systems
è Fewer parameters = better generalization & less over-fitting
è Better at capturing synonymy

Dense Vectors

2 Main methods of producing short, dense vectors:

 (1) Dimensionality reduction

 (2) Neural Language Models

Dimensionality Reduction

Methods:
èPrincipal Component Analysis
(PCA)

èt-Distributed Stochastic Neighbor
Embedding (t-SNE)

èLatent Semantic Analysis (LSA)

è...

Neural Network Embeddings

Idea: Train a neural network to predict context words based on
current ‘target’ word.

l Similar input words → similar context word prediction
l Similar input words → similar corresponding rows in the weight

matrix of the trained network.

We don’t actually care about context word prediction!
l Rows in the trained weight matrix become our context vectors (aka

word vectors, aka word embeddings)

Neural Network Embeddings

• This idea marked a transition from count-based methods to
prediction-based methods for obtaining word embeddings,
and prediction-based methods are shown to be better (Baroni
et al., 2014, Don’t count, predict!)

• This means that we can use any language models’ weights to
represent a word, but let’s see the first of its kind, word2vec

Neural Network Embeddings

Most popular family of methods: word2vec (Mikolov et al. 2013, Mikolov et al. 2013a)

1) Skip-gram: predict context from word

2) Continuous Bag of Words (CBOW): predict word from context

Neural LM architectures: which to use?

l CBOW and Skip-Gram typically produce similar embeddings, but:
l CBOW is several times faster to train, better accuracy for frequent words

l Skip-Gram works well with small amounts of training data, and does well
with representing rare words

l Mikolov: “Best practice is to try a few experiments and see what
works the best for you”

l https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/ESld8LcDxlAJ

https://groups.google.com/forum/

Properties of dense word embeddings

Dense word embeddings encode:
è Semantic Relationships

è Syntactic Relationships

Can probe relations between words using vector arithmetic:
è king – male + female = ?

è walked – walk + fly = ?

Type-based vector to token-based vector

Now we’ve got one vector for each word type… what’s next?
• Did you hear the sound?

• He arrived home safe and sound.

… do you see the problem?

• As mentioned earlier, we can use any language model’s weights to represent a
word

Type-based vector to token-based vector

Language models have evolved to capture this difference
• ELMo (Peters et al., 2017)

• BERT (Devlin et al., 2018)

• … (more on neural architecture later in this course!)

• These models generate contextualized (or dynamic, as opposed to static) word
embeddings (CWEs).

• Some models are even multilingual!

Type-based vector to token-based vector

Cao et al. (2020)

• t-SNE-ed snapshot
of some words from
Europarl corpus in
multilingual BERT’s
embedding space

• Each word type
occurs multiple
times because this is
contextualized
(token-based word
embeddings)

Train your own word embeddings:

TensorFlow: https://www.tensorflow.org/tutorials/word2vec

Gensim: https://rare-technologies.com/word2vec-tutorial/

FastText: https://github.com/facebookresearch/fastText

https://www.tensorflow.org/tutorials/word2vec
https://rare-technologies.com/word2vec-tutorial/
https://github.com/facebookresearch/fastText

Pretrained Word embeddings:

Word2Vec: https://code.google.com/archive/p/word2vec/
è Trained on 100 billion tokens from Google News corpus

GloVe: https://nlp.stanford.edu/projects/glove/
è6B wikipedia, 42-840B tokens Common Crawl, 27B tokens Twitter

LexVec: https://github.com/alexandres/lexvec
è 58B tokens Common Crawl, 7B tokens Wikipedia + NewsCrawl

Nowadays… https://huggingface.co/models
è500k+ models including ELMo, BERT, GPTs, and you can also train them from
scratch with enough GPU!

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://github.com/alexandres/lexvec
https://huggingface.co/models

Word embeddings: Evaluation

How to judge the quality of embeddings?

l ‘Relatedness’ scores for given word pairs

è Compare model’s relatedness scores to human relatedness scores

l Analogy tests
è Find x such that x : y best resembles a sample relationship a : b

lCategorization
è Recover a known clustering of words into different categories.

Document features

l So far: Features in word-vectors can be: context counts, PMI
scores, weights from neural LMs…

l Can also be features of the docs in which the words occur.

l Document occurrence features are useful for topical/thematic
similarity

Document-Term Matrix

D1 D2 D3 D4

W1 23 17 0 0

W2 102 0 14 24

W3 14 57 0 2

W4 0 0 18 38

Term Frequency – Inverse Document Frequency
(tf-idf)

l Common in IR tasks
l Popular method to weight term-document matrices in general

Tf: relative frequency of term in document

è tf(t,d) = f(t,d)

Idf: inverse of the proportion of docs containing the term
è N / nt (N = total # of docs, nt = # of docs term t appeared in)

Document-Term Matrix

D1 D2 D3 D4

W1 23 17 0 0

W2 102 0 14 24

W3 14 57 0 2

W4 0 0 18 38

Tf-idf weighted Document-Term Matrix

D1 D2 D3 D4

W1 .12 .16 0 0

W2 .21 0 .13 .11

W3 .03 .22 0 .01

W4 0 0 .39 .41

Tf-idf weighted Document-Term Matrix

D1 D2 D3 D4

W1 .12 .16 0 0

W2 .21 0 .13 .11

W3 .03 .22 0 .01

W4 0 0 .39 .41

Word
Vectors

Tf-idf weighted Document-Term Matrix

D1 D2 D3 D4

W1 .12 .16 0 0

W2 .21 0 .13 .11

W3 .03 .22 0 .01

W4 0 0 .39 .41

Document
Vectors

Topic Models

Latent Dirichlet Allocation (LDA) and variants known as topic
models.

èLearned on large document collection (unsupervised)

èLatent probabilistic clustering of words that tend to occur in the same
document. Each ‘topic’ cluster is a distribution over words.

èGenerative Model: Each document is a sparse mixture of topics. Each word in
the doc is chosen by sampling a topic from the doc-specific topic distribution,
then sampling a word from that topic.

Topic Models

https://cacm.acm.org/magazines/2012/4/147361-probabilistic-topic-models/fulltext

https://cacm.acm.org/magazines/2012/4/147361-probabilistic-topic-models/fulltext

Visualizing Topics

https://dhs.stanford.edu/algorithmic-literacy/using-word-clouds-for-topic-modeling-results/

https://dhs.stanford.edu/algorithmic-literacy/using-word-clouds-for-topic-modeling-results/

Neural Language Models (again!)

l At word level, we saw count-based -> prediction-based
l At document level, we saw count-based (tf-idf)… so what about

prediction-based?
l Document-level prediction tasks are not as straightforward as

word/sentence level prediction tasks (as opposed to binary
prediction in word2vec or NWP/NSP in modern LMs).

Neural Language Models (again!)

l Use word representations
l Concatenate CWEs of tokens in a document
l Max/average-pooling
l …

l Document/span specific models
l doc2vec (Le& Mikolov, 2014)

l Document embeddings trained to predict next word in the
document

l SpanBERT (Joshi et al., 2019)
l Longformer (Beltagy et al., 2020)
l BigBird (Zaheer et al., 2020)
l HiPool (Li et al., 2023)

Questions?

