Lecture 11a: Discriminative Sequence Tagging

Nathan Schneider ENLP | 24 February 2020

HIMI + features

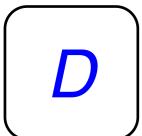
- There are variants of the generative HMM that emit features instead of just words.
- However, these suffer from similar problems as features in naïve Bayes (too strong independence assumptions).
- Can we be discriminative instead?
 - Yes! In fact, we can reuse the same machinery for discriminative learning with **linear models**.

Recasting HMM as a Linear Model

- Recall that a linear model is one that scores candidate outputs y with $\mathbf{w}^{\mathsf{T}}\mathbf{\phi}(\mathbf{x},y)$. Decoding = arg $\max_{y'} \mathbf{w}^{\mathsf{T}}\mathbf{\phi}(\mathbf{x},y')$.
- Not just classification: we can be predicting a structured output y. Thus arg $\max_{y'} \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}, \mathbf{y}')$.
- How can we express an HMM in this framework?
 - transitions = features over tag n-grams
 - emissions = tag + word features
 - weights = log probabilities
 - arg maxy' = Viterbi decoding

Viterbi for Linear Models

- Essentially, the Viterbi algorithm stays the same:
 - transition probabilities replaced by linear score of transition (multi-tag) features
 - emission probabilities replaced by linear score of non-transition (single-tag) features



Generative → Discriminative

- If we want to estimate the weights without making independence assumptions about the features...
- ...we can use a discriminative learning algorithm!
- However, the algorithm has to take the structure of the output into account. Tag n-gram features mean the prediction of one tag influences what the model thinks about other tags.
- Machine learning with models where the outputs are interrelated is called structured prediction.

Review: Perceptron Learner

```
for t = 1 ... T:
       select (\mathbf{x}, y)_t
       # run current classifier
       \hat{y} \leftarrow \arg\max_{y'} \mathbf{w}^{\mathsf{T}} \mathbf{\Phi}(\mathbf{x}, y')
       if \hat{y} \neq y then # mistake
                \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Phi}(\mathbf{x}, \mathbf{y}) - \mathbf{\Phi}(\mathbf{x}, \hat{\mathbf{y}})
return <mark>w</mark>
```

Review: Perceptron Learner

```
for t = 1 ... T:
     select (\mathbf{x}, y)_t
     # run current classifier
               C ← x decoding is a subroutine of learning
     if \hat{y} \neq y then # mistake
           \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Phi}(\mathbf{x}, y) - \mathbf{\Phi}(\mathbf{x}, \hat{y})
return w
```

Structured Perceptron Learner

```
for t = 1 ... T:
     select (\mathbf{x}, \mathbf{y})_t
     # run structured decoding
                 if \hat{\mathbf{y}} \neq \mathbf{y} then # mistake
            \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Phi}(\mathbf{x}, \mathbf{y}) - \mathbf{\Phi}(\mathbf{x}, \mathbf{\hat{y}})
return <mark>w</mark>
```

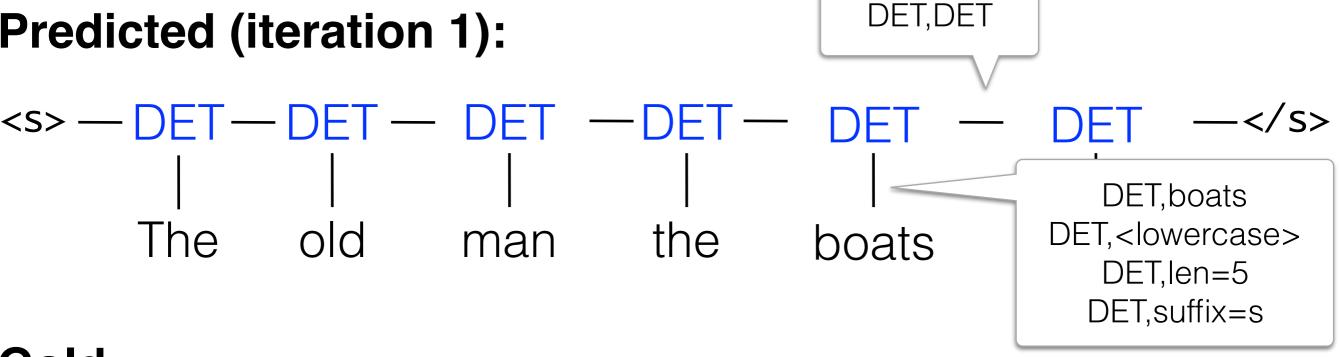
Structured Perceptron Learner

```
for t = 1 ... T:
     select (\mathbf{x}, \mathbf{y})_t
     # run structured decoding
              if \hat{\mathbf{y}} \neq \mathbf{y} then # mistake: incorrect tag(\mathbf{s})
           \mathbf{w} \leftarrow \mathbf{w} + \mathbf{\Phi}(\mathbf{x}, \mathbf{y}) - \mathbf{\Phi}(\mathbf{x}, \mathbf{\hat{y}})
return w update affects weights of features
                   that fire for mistagged tokens
```

Structured Perceptron

- What are the constraints on the kinds of features we can use? (tag bigrams? trigrams? word bigrams? trigrams?)
 - Remember that discriminative = we don't care about modeling the probability of the language. Thus, every model feature should involve at least one tag.
 - As a sequence model, **Markov order** is still relevant: if we want to use the bigram Viterbi algorithm, which is $O(T^2N)$, we can have features over tag bigrams, but not trigrams.
 - **local feature** = feature which respects the independence assumptions of the decoding algorithm (e.g., tag bigram Viterbi). Using nonlocal features would require fancier algorithms.
 - Unlike the generative HMM, **no constraint on which words** can be in a feature. E.g., there could be a feature that relates the first tag to the last token! (In POS tagging, perhaps ending with "?" correlates with certain kinds of initial words.)

Gold:



Gold:

Unlike the generative HMM, each connection can involve multiple weighted features.

Gold:

Update parameters!

correct tags: no change to weights

Gold:

Update parameters!

weights for incorrectly predicted tags get more negative, weights for gold tags get more positive

Discriminative Classifiers: Non-probabilistic

- The structured counterpart of the perceptron classifier is called...the structured perceptron.
 - Also: structural SVM (max-margin).

Discriminative Classifiers: Probabilistic

- The structured counterpart of the logistic regression classifier: conditional random field (CRF).
 - Most common: linear-chain structure, i.e., sequence
 - Probabilistic—linear score is exponentiated & normalized
 - Training requires forward-backward algorithm (expensive!)
 - Downloadable implementations include CRF++
 - If you want the gory details: Sutton & McCallum, http:// homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
- There is also the Maximum Entropy Markov Model (MEMM), which makes simplifying assumptions to reduce computation and is nearly as accurate in practice.