Lecture 22 Neural Networks

Nathan Schneider

(slides from Chris Manning, Yoav Artzi, Greg Durrett)

ANLP | 29 November 2017

Natural Language Processing with Deep Learning CS224N/Ling284

Christopher Manning and Richard Socher Lecture 1: Introduction

2. What's Deep Learning (DL)?

- **Deep learning** is a subfield of **machine learning**
- Most machine learning methods work well because of human-designed representations and input features
 - For example: features for finding named entities like locations or organization names (Finkel et al., 2010):
- Machine learning becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	\checkmark
Previous Word	\checkmark
Next Word	\checkmark
Current Word Character n-gram	all
Current POS Tag	\checkmark
Surrounding POS Tag Sequence	\checkmark
Current Word Shape	\checkmark
Surrounding Word Shape Sequence	\checkmark
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

Machine Learning vs. Deep Learning

What's Deep Learning (DL)?

 Representation learning attempts to automatically learn good features or representations

- Deep learning algorithms attempt to learn (multiple levels of) representation and an output
- From "raw" inputs x

 (e.g., sound, characters, or words)

On the history of and term "Deep Learning"

- We will focus on different kinds of **neural networks**
- The dominant model family inside deep learning
- Only clever terminology for stacked logistic regression units?
 - Maybe, but interesting modeling principles (end-to-end) and actual connections to neuroscience in some cases
- We will not take a historical approach but instead focus on methods which work well on NLP problems now
- For a long (!) history of deep learning models (starting ~1960s), see: <u>Deep Learning in Neural Networks: An Overview</u> by Jürgen Schmidhuber

Reasons for Exploring Deep Learning

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- Deep learning can learn unsupervised (from raw text) and supervised (with specific labels like positive/negative)

Reasons for Exploring Deep Learning

- In ~2010 deep learning techniques started outperforming other machine learning techniques. Why this decade?
- Large amounts of training data favor deep learning
- Faster machines and multicore CPU/GPUs favor Deep Learning
- New models, algorithms, ideas
 - Better, more flexible learning of intermediate representations
 - Effective end-to-end joint system learning
 - Effective learning methods for using contexts and transferring between tasks

→ Improved performance (first in speech and vision, then NLP)

Deep Learning for Speech

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition Dahl et al. (2010)

Acoustic model	Recog	RT03S	Hub5
	WER	FSH	SWB
Traditional features	1-pass –adapt	27.4	23.6
Deep Learning	1-pass	18.5	16.1
	–adapt	(-33%)	(-32%)

Deep Learning for Computer Vision

Most deep learning groups have focused on computer vision (at least till 2 years ago)

The breakthrough DL paper: ImageNet Classification with Deep Convolutional Neural Networks by Krizhevsky, Sutskever, & Hinton, 2012, U. Toronto. 37% error red.

Equptian cat

flamingo

cock

lynx

Zeiler and Fergus (2013)

5. Deep NLP = Deep Learning + NLP

Combine ideas and goals of NLP with using representation learning and deep learning methods to solve them

Several big improvements in recent years in NLP with different

- Levels: speech, words, syntax, semantics
- **Tools:** parts-of-speech, entities, parsing
- **Applications**: machine translation, sentiment analysis, dialogue agents, question answering

Word meaning as a neural word vector – visualization

Word similarities

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

litoria

leptodactylidae

rana

eleutherodactylus

http://nlp.stanford.edu/projects/glove/

Representations of NLP Levels: Morphology

 Traditional: Words are made of morphemes prefix stem suffix un interest ed

• DL:

- every morpheme is a vector
- a neural network combines two vectors into one vector
- Luong et al. 2013

NLP Tools: Parsing for sentence structure

Neural networks can accurately determine the structure of sentences, supporting interpretation

NLP Applications: Sentiment Analysis

- Traditional: Curated sentiment dictionaries combined with either bag-of-words representations (ignoring word order) or handdesigned negation features (ain't gonna capture everything)
- Same deep learning model that was used for morphology, syntax and logical semantics can be used! → RecursiveNN

Dialogue agents / Response Generation

- A simple, successful example is the auto-replies available in the Google Inbox app
- An application of the powerful, general technique of Neural Language Models, which are an instance of Recurrent Neural Networks

Neural Machine Translation

Source sentence is mapped to **vector**, then output sentence generated [Sutskever et al. 2014, Bahdanau et al. 2014, Luong and Manning 2016]

Now live for some languages in Google Translate (etc.), with big error reductions!

CS5740: Natural Language Processing Spring 2017

Neural Networks

Instructor: Yoav Artzi

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Neuron

Neural networks comes with their terminological baggage

- Parameters:
 - Weights: w_i and b
 Activation function
- If we drop the activation function, reminds you of something?

Biological "Inspiration"

Neural Network

Neural Network

hidden layer 1 hidden layer 2

Word Representations

• One-hot vectors:

- Problems?
- Information sharing?
 - "hotel" vs. "hotels"

Word Embeddings

- Each word is represented using a dense low-dimensional vector
 - Low-dimensional << vocabulary size</p>
- If trained well, similar words will have similar vectors
- How to train? What objective to maximize?
 Soon ...

Word Embeddings as Features

- Example: sentiment classification
 - very positive, positive, neutral, negative, very negative
- Feature-based models: bag of words
- Any good neural net architecture?
 Concatenate all the vectors
 - Problem: different document \rightarrow different length
 - Instead: sum, average, etc.

Neural Networks for NLP

Slides at http://www.cs.utexas.edu/~gdurrett/lectures/

Greg Durrett i256: Applied Natural Language Processing October 24, 2016

Sentiment Analysis

the movie was very good

Sentiment Analysis with Linear Models

Example

the movie was very good the movie was very bad the movie was not bad the movie was not very good the movie was not really very

L	abel	Feature	e	Туре
		∏[goo a	/]	Unigrar
		∏[bad]	Unigrar
		∏[not b d	ad]	Bigran
d		∏[not very	rgood]	Trigra
У У	enjoy	vable	4-gra	ms!

- More complex features capture interactions but scale badly (13M unigrams, 1.3B 4-grams in Google *n*-grams)
- Can we do better than seeing every *n*-gram once in the training data? not very good not so great
- Instead of more complex linear functions, let's use simpler nonlinear functions, namely neural networks
- the movie was not really very enjoyable

Drawbacks

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1 , x_2
 - (generally $\mathbf{x} = (x_1, \ldots, x_m)$)
- \triangleright Output y(generally $\mathbf{y} = (y_1, \ldots, y_n)$)

Neural Networks: XOR

Neural Networks: XOR

 $y = a_1 x_1 + a_2 x_2$

 $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$ "or"

(looks like action potential in neuron)

Neural Networks: XOR

Neural Networks: XOR

(Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$)

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Linear classifier

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Neural network

...possible because we transformed the space!

Deep Neural Networks

Adopted from Chris Dyer

Deep Neural Networks

Adopted from Chris Dyer

Deep Neural Networks

y = g(Wx + b) $\mathbf{z} = g(\mathbf{V}g(\mathbf{W}\mathbf{x} + \mathbf{b}) + \mathbf{c})$ output of first layer $\mathbf{z} = g(\mathbf{V}\mathbf{y} + \mathbf{c})$

Adopted from Chris Dyer

Linear classifier

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Neural network

...possible because we transformed the space!

Neural Network Toolkits

- Tensorflow: https://www.tensorflow.org/
 By Google, actively maintained, bindings for many languages
- Theano: http://deeplearning.net/software/theano/
 University of Montreal, less and less maintained
- Torch: http://torch.ch/
 Facebook AI Research, Lua

Neural Network Toolkits


```
import theano
import theano.tensor as T
# Define symbolic variables
x = T.matrix('x')
y = T.matrix('y')
z = T.matrix('z')
a = x + y
b = a * z
c = a + b
 = theano.function(
      inputs=[x, y, z],
      outputs=c
# on some real values
xx = np.random.randn(4, 5)
yy = np.random.randn(4, 5)
zz = np.random.randn(4, 5)
print f(xx, yy, zz)
# Repeat the same computation
 explicitly using numpy ops
   = xx + yy
bb = aa * zz
cc = aa + bb
```

http://tmmse.xyz/content/images/2016/02/theano-computation-graph.png

Compute some other values symbolically

Compile a function that computes c

Compile a function that produces c from x, y, z (generates code)

Evaluate the compiled function

Word Vector Tools

 Word2Vec: https://radimrehurek.com/gensim/models/word2vec.html https://code.google.com/archive/p/word2vec/
 Python code, actively maintained

GLoVe: http://nlp.stanford.edu/projects/glove/
 Word vectors trained on very large corpora

Convolutional Networks

- - Python code
 - Trains very quickly

CNNs for sentence class.: https://github.com/yoonkim/CNN_sentence Based on tutorial from: http://deeplearning.net/tutorial/lenet.html

- Neural networks have several advantages for NLP:
 - > We can use *simpler nonlinear functions* instead of more complex linear functions
 - We can take advantage of word similarity
 - We can build models that are both position-dependent (feedforward neural networks) and position-independent (convolutional networks)
- NNs have natural applications to many problems
- While conventional linear models often still do well, neural nets are increasingly the state-of-the-art for many tasks

