
Lecture 22
Neural Networks

Nathan Schneider 

(slides from Chris Manning, Yoav Artzi, Greg Durrett)  
 

ANLP | 29 November 2017

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 1: Introduction

2.	What’s	Deep	Learning	(DL)?

• Deep	learning	is	a	subfield	of	machine	learning

• Most	machine	learning	methods	work	
well	because	of	human-designed	
representations	and	input	features
• For	example:	features	for	finding	
named	entities	like	locations	or	
organization	names	(Finkel et	al.,	2010):

• Machine	learning	becomes	just	optimizing
weights	to	best	make	a	final	prediction

3.3. APPROACH 35

Feature NER TF
Current Word ! !

Previous Word ! !

Next Word ! !

Current Word Character n-gram all length ≤ 6
Current POS Tag !

Surrounding POS Tag Sequence !

Current Word Shape ! !

Surrounding Word Shape Sequence ! !

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two
forms of non-local structure: label consistency in the named entity recognition task, and
template consistency in the template filling task. One could imagine many ways of defining
such models; for simplicity I use the form

PM(y|x)∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation types Λ, and for each violation type λ we
specify a penalty parameter θλ . The exponent #(λ ,s,o) is the count of the number of times
that the violation λ occurs in the state sequence s with respect to the observation sequence
o. This has the effect of assigning sequences with more violations a lower probability.
The particular violation types are defined specifically for each task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do
so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem
for us.

Machine	Learning	vs.	Deep	Learning

Machine Learning in Practice

Describing your data with
features a computer can
understand

Learning
algorithm

Domain	specific,	requires	Ph.D.	
level	talent

Optimizing	the	
weights	on	features

What’s	Deep	Learning	(DL)?

• Representation	learning	attempts	
to	automatically	learn	good	
features	or	representations

• Deep	learning	algorithms	attempt	to	
learn	(multiple	levels	of)	
representation	and	an	output

• From	“raw”	inputs	x	
(e.g.,	sound,	characters,	or	words)

On	the	history	of	and	term	“Deep	Learning”

• We	will	focus	on	different	kinds	of	neural	networks	
• The	dominant	model	family	inside	deep	learning

• Only	clever	terminology	for	stacked	logistic	regression	units?

• Maybe,	but	interesting	modeling	principles	(end-to-end)	and	
actual	connections	to	neuroscience	in	some	cases

• We	will	not	take	a	historical	approach	but	instead	focus	on	
methods	which	work	well	on	NLP	problems	now

• For	a	long	(!)	history	of	deep	learning	models	(starting	~1960s),	
see:	Deep	Learning	in	Neural	Networks:	An	Overview	
by	Jürgen	Schmidhuber

Reasons	for	Exploring	Deep	Learning

• Manually	designed	features	are	often	over-specified,	
incomplete	and	take	a	long	time	to	design	and	validate

• Learned	Features	are	easy	to	adapt,	fast	to	learn

• Deep	learning	provides	a	very	flexible,	(almost?)	universal,	
learnable	framework	for	representing	world,	visual	and	
linguistic	information.

• Deep	learning	can	learn	unsupervised (from	raw	text)	and	
supervised	(with	specific	labels	like	positive/negative)

Reasons	for	Exploring	Deep	Learning

• In	~2010	deep learning	techniques	started	outperforming	other	
machine	learning	techniques.	Why	this	decade?

• Large	amounts	of	training	data	favor	deep	learning

• Faster	machines	and	multicore	CPU/GPUs	favor	Deep	Learning

• New	models,	algorithms,	ideas

• Better,	more	flexible	learning	of	intermediate	representations

• Effective	end-to-end	joint	system	learning

• Effective	learning	methods	for	using	contexts	and	transferring	
between	tasks

à Improved	performance	(first	in	speech	and	vision,	then	NLP)

Deep	Learning	for	Speech

• The	first	breakthrough	results	of	
“deep	learning”	on	large	
datasets	happened	in	speech	
recognition

• Context-Dependent	Pre-trained	
Deep	Neural	Networks	for	Large	
Vocabulary	Speech	Recognition	
Dahl	et	al.	(2010)

Phonemes/Words

Acoustic	model Recog
WER

RT03S	
FSH

Hub5	
SWB

Traditional	
features

1-pass	
−adapt

27.4 23.6

Deep	Learning 1-pass	
−adapt

18.5
(−33%)

16.1
(−32%)

Deep	Learning	for	Computer	Vision

Most	deep	learning	groups
have	focused	on	computer	vision	
(at	least	till	2	years	ago)	

The breakthrough	DL	paper:	
ImageNet	Classification	with	Deep	
Convolutional	Neural	Networks	by	
Krizhevsky,	Sutskever,	&	Hinton,	
2012,	U.	Toronto.	37%	error	red.

17

Zeiler and	Fergus	(2013)

8 Olga Russakovsky* et al.

PASCAL ILSVRC

b
ir
d
s

· · ·

ca
ts

· · ·

d
o
g
s

· · ·

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

7KH�ZHLJKWV�RI�WKLV�QHXURQ�YLVXDOL]HG

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

5.	Deep	NLP	=	Deep	Learning	+	NLP

Combine	ideas	and	goals	of	NLP	with	using	representation	learning	
and	deep	learning	methods	to	solve	them

Several	big	improvements	in	recent	years	in	NLP	with	different	

• Levels:	speech,	words,	syntax,	semantics

• Tools:	parts-of-speech,	entities,	parsing
• Applications:	machine	translation,	sentiment	analysis,	
dialogue	agents,	question	answering

Word	meaning	as	a	neural	word	vector	– visualization

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect		=

Nearest	words	to frog:

1.	frogs
2.	toad
3.	litoria
4.	leptodactylidae
5.	rana
6.	lizard
7.	eleutherodactylus

Word	similarities

litoria leptodactylidae

rana eleutherodactylus

http://nlp.stanford.edu/projects/glove/

Representations	of	NLP	Levels:	Morphology

• Traditional:	Words		are prefix	 stem	 suffix
made	of	morphemes un	 interest		 ed

• DL:	

• every	morpheme	is	a	vector

• a	neural	network	combines	
two	vectors	into	one	vector

• Luong	et	al.	2013

!"
!"#

#$%&!"'&(
$%&

)*
$'(

!"#$%&!"'&()*
$%&

!
!
! "

!

!
!
! "

!

!"#$%&!"'&(
$%&

Figure 1: Morphological Recursive Neural Net-
work. A vector representation for the word “un-
fortunately” is constructed from morphemic vec-
tors: unpre, fortunatestm, lysuf. Dotted nodes are
computed on-the-fly and not in the lexicon.

3 Morphological RNNs

Our morphological Recursive Neural Network
(morphoRNN) is similar to (Socher et al., 2011b),
but operates at the morpheme level instead of at
the word level. Specifically, morphemes, the mini-
mum meaning-bearing unit in languages, are mod-
eled as real-valued vectors of parameters, and are
used to build up more complex words. We assume
access to a dictionary of morphemic analyses of
words, which will be detailed in Section 4.

Following (Collobert and Weston, 2008), dis-
tinct morphemes are encoded by column vectors
in a morphemic embedding matrix We ∈ Rd×|M|,
where d is the vector dimension and M is an or-
dered set of all morphemes in a language.

As illustrated in Figure 1, vectors of morpho-
logically complex words are gradually built up
from their morphemic representations. At any lo-
cal decision (a dotted node), a new parent word
vector (p) is constructed by combining a stem vec-
tor (xstem) and an affix vector (xaffix) as follow:

p = f(Wm[xstem;xaffix] + bm) (1)

Here, Wm ∈ Rd×2d is a matrix of morphemic pa-
rameters while bm ∈ Rd×1 is an intercept vector.
We denote an element-wise activation function as
f , such as tanh. This forms the basis of our mor-
phoRNN models with θ = {We,Wm, bm} being
the parameters to be learned.

3.1 Context-insensitive Morphological RNN
Our first model examines how well morphoRNNs
could construct word vectors simply from the mor-
phemic representation without referring to any
context information. Input to the model is a refer-
ence embedding matrix, i.e. word vectors trained
by an NLM such as (Collobert and Weston, 2008)

and (Huang et al., 2012). By assuming that these
reference vectors are right, the goal of the model
is to construct new representations for morpholog-
ically complex words from their morphemes that
closely match the corresponding reference ones.

Specifically, the structure of the context-
insensitive morphoRNN (cimRNN) is the same as
the basic morphoRNN. For learning, we first de-
fine a cost function s for each word xi as the
squared Euclidean distance between the newly-
constructed representation pc(xi) and its refer-
ence vector pr(xi): s (xi) = ∥pc(xi)− pr(xi)∥22.

The objective function is then simply the sum of
all individual costs over N training examples, plus
a regularization term, which we try to minimize:

J(θ) =
N∑

i=1

s (xi) +
λ

2
∥θ∥22 (2)

3.2 Context-sensitive Morphological RNN

The cimRNN model, though simple, is interesting
to attest if morphemic semantics could be learned
solely from an embedding. However, it is lim-
ited in several aspects. Firstly, the model has
no chance of improving representations for rare
words which might have been poorly estimated.
For example, “distinctness” and “unconcerned”
are very rare, occurring only 141 and 340 times
in Wikipedia documents, even though their corre-
sponding stems “distinct” and “concern” are very
frequent (35323 and 26080 respectively). Trying
to construct exactly those poorly-estimated word
vectors might result in a bad model with parame-
ters being pushed in wrong directions.

Secondly, though word embeddings learned
from an NLM could, in general, blend well both
the semantic and syntactic information, it would
be useful to explicitly model another kind of syn-
tactic information, the word structure, as we train
our embeddings. Motivated by these limitations,
we propose a context-sensitive morphoRNN (csm-
RNN) which integrates RNN structures into NLM
training, allowing for contextual information be-
ing taken into account in learning morphemic
compositionality. Specifically, we adopt the NLM
training approach proposed in (Collobert et al.,
2011) to learn word embeddings, but build rep-
resentations for complex words from their mor-
phemes. During learning, updates at the top level
of the neural network will be back-propagated all
the way till the morphemic layer.

NLP	Tools:	Parsing	for	sentence	structure

Neural	networks	can	accurately	determine	the	
structure	of	sentences,	supporting	interpretation

NLP	Applications:	Sentiment	Analysis

• Traditional:	Curated	sentiment	dictionaries	combined	with	either	
bag-of-words	representations	(ignoring	word	order)	or	hand-
designed	negation	features	(ain’t gonna capture	everything)

• Same	deep	learning	model	that	was	used	for	morphology,	syntax	
and	logical	semantics	can	be	used!	à RecursiveNN

Dialogue	agents	/	Response	Generation

• A	simple,	successful	example	is	the	auto-replies	
available	in	the	Google	Inbox	app

• An	application	of	the	powerful,	general	technique	of	
Neural	Language	Models,	which	are	an	instance	of	
Recurrent	Neural	Networks

Die					 Proteste				waren am		Wochenende	eskaliert <EOS>		 The						protests			escalated			over								the					weekend

0.2
0.6
-0.1
-0.7
0.1

0.4
-0.6
0.2
-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1
-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

-0.1
0.3
-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5
-0.5
0.4
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6
-0.1
-0.7
0.1

0.1
0.3
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6
-0.1
-0.7
0.1

-0.4
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
0.3
0.1

-0.1
0.6
-0.1
0.3
0.1

0.2
0.4
-0.1
0.2
0.1

0.3
0.6
-0.1
-0.5
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1
-0.4
0.2

0.2
0.6
-0.1
-0.7
0.1

0.4
0.4
0.3
-0.2
-0.3

0.5
0.5
0.9
-0.3
-0.2

0.2
0.6
-0.1
-0.5
0.1

-0.1
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.3
0.6
-0.1
-0.7
0.1

0.4
0.4
-0.1
-0.7
0.1

-0.2
0.6
-0.1
-0.7
0.1

-0.4
0.6
-0.1
-0.7
0.1

-0.3
0.5
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

The						protests		escalated				over									the						weekend			<EOS>

Neural	Machine	Translation
Source	sentence	is	mapped	to	vector,	then	output	sentence	generated	
[Sutskever	et	al.	2014,	Bahdanau	et	al.	2014,	Luong	and	Manning	2016]

Sentence	
meaning	
is	built	up

Source	
sentence

Translation	
generated

Feeding	in	
last	word

Now	live	for	some	languages	in	Google	
Translate	(etc.),	with	big	error	reductions!

Neural Networks

Instructor: Yoav Artzi

CS5740: Natural Language Processing
Spring 2017

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov

Neuron
• Neural networks comes with their

terminological baggage

• Parameters:
– Weights: wi and b
– Activation function

• If we drop the activation function, reminds
you of something?

Biological “Inspiration”

Neural Network

Neural Network

Matrix Notation
W00(W0a+ b0) + b00

a1

a2

W0 W0

h1 = W0
11a1 +W0

12a2 + b0
1

h2 = W0
21a1 +W0

22a2 + b0
2

o2 = W

00
21h1 +W

00
22h2 + b

00
2

o1 = W

00
11h1 +W

00
12h2 + b

00
1

Word Representations
• One-hot vectors:

– Problems?
– Information sharing?
• “hotel” vs. “hotels”

hotel = [0 0 0 0 … 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
conference = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
hotels = [0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

Word Embeddings
• Each word is represented using a dense

low-dimensional vector
– Low-dimensional << vocabulary size

• If trained well, similar words will have
similar vectors

• How to train? What objective to maximize?
– Soon …

Word Embeddings as Features
• Example: sentiment classification
– very positive, positive, neutral, negative, very

negative
• Feature-based models: bag of words
• Any good neural net architecture?
– Concatenate all the vectors
• Problem: different document à different length

– Instead: sum, average, etc.

Neural Networks for NLP

Greg Durre3

i256: Applied Natural Language Processing

October 24, 2016

Slides at http://www.cs.utexas.edu/~gdurrett/lectures/

SenEment Analysis

the movie was very good !

SenEment Analysis with Linear Models

the movie was very good

the movie was not bad

!

the movie was very bad "

I[good]

I[bad]

I[not bad]

the movie was not very good " I[not very good]

Unigrams

Unigrams

Bigrams

Trigrams

!

the movie was not really very enjoyable 4-grams!

Label Feature TypeExample

Drawbacks

‣ More complex features capture interacEons but scale badly 
(13M unigrams, 1.3B 4-grams in Google n-grams)

‣ Instead of more complex linear funcEons, let’s use simpler
nonlinear func8ons, namely neural networks

the movie was not really very enjoyable

‣ Can we do be3er than seeing every n-gram once in the training data?

not very good not so great

Neural Networks: XOR

x1

x2

x1 x2

1 1

1

11

1

0

0 0

0

0

0

0

1 0

1

‣ Inputs

‣ Output

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn))
y = x1 XOR x2

‣ Let’s see how we can use neural nets 
to learn a simple nonlinear funcEon

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1

1

11

1

0

0 0

0

0

0

0

1 0

1

“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural Networks: XOR

y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1

1

11

1

0

0 0

0

0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural Networks: XOR

x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

Neural Networks

Taken from h3p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

(Linear model:) y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Taken from h3p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because we

transformed the

space!

Deep Neural Networks

Adopted from Chris Dyer

y1 = g(w1 · x+ b1)

(this was our neural net from the XOR example)

Deep Neural Networks

Adopted from Chris Dyer

y1 = g(w1 · x+ b1)

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input OutputHidden
Layer

Neural Networks

Taken from h3p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because we

transformed the

space!

Neural Network Toolkits

‣ Torch: h3p://torch.ch/

‣ Tensorflow: h3ps://www.tensorflow.org/

‣ Theano: h3p://deeplearning.net/socware/theano/

‣ By Google, acEvely maintained, bindings for many languages

‣ University of Montreal, less and less maintained

‣ Facebook AI Research, Lua

http://torch.ch/

Neural Network Toolkits

http://tmmse.xyz/content/images/2016/02/theano-computation-graph.png

Word Vector Tools

‣ Word2Vec: h3ps://radimrehurek.com/gensim/models/word2vec.html

‣ GLoVe: h3p://nlp.stanford.edu/projects/glove/

‣ Word vectors trained on very large corpora

‣ Python code, acEvely maintained

https://code.google.com/archive/p/word2vec/

ConvoluEonal Networks

‣ CNNs for sentence class.: h3ps://github.com/yoonkim/CNN_sentence

‣ Based on tutorial from: h3p://deeplearning.net/tutorial/lenet.html

‣ Python code

‣ Trains very quickly

Takeaways

‣ Neural networks have several advantages for NLP:

‣ We can use simpler nonlinear func8ons instead of more complex

linear funcEons

‣ We can take advantage of word similarity

‣ We can build models that are both posiEon-dependent (feedforward

neural networks) and posiEon-independent (convoluEonal networks)

‣ NNs have natural applicaEons to many problems

‣ While convenEonal linear models ocen sEll do well, neural nets are

increasingly the state-of-the-art for many tasks

