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Learning Paradigms
Rule-based (“symbolic”) 

• e.g. finite-state morphology, WordNet similarity 

‣ Non-statistical: Expert specification of exact relationship between inputs and 
outputs, possibly established in a linguistic resource 

Statistical 

• Supervised: language modeling (n-gram), classification (naïve Bayes, perceptron), 
tagging (HMM), statistical parsing (PCFG) 

‣ General specification of factors that should influence the algorithm’s decision-
making; learning algorithm uses labeled data to determine which factors are 
predictive of which outputs (probabilities, feature weights) 

• Unsupervised: word alignment, clustering (today) 

‣ General specification of factors that should influence the algorithm’s decision-
making; learning algorithm mines unlabeled data for latent structure/correlations, 
but sees no examples of desired outputs
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Today: Semantics without 
Annotations

• Lexical semantics 

‣ Word similarity 

‣ Distributional hypothesis 

‣ Vector representations 

‣ Clustering 

• Document “semantics”
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Word Similarity
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https://hackernoon.com/more-than-a-million-pro-repeal-net-neutrality-comments-were-likely-faked-e9f0e3ed36a6


Intuition of Semantic Similarity
Semantically close

– bank–money
– apple–fruit 
– tree–forest
– bank–river
– pen–paper
– run–walk 
– mistake–error
– car–wheel

Semantically distant
– doctor–beer
– painting–January
– money–river
– apple–penguin
– nurse–fruit
– pen–river
– clown–tramway
– car–algebra
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Why are 2 words similar?
• Meaning

– The two concepts are close in terms of their 
meaning

• World knowledge
– The two concepts have similar properties, 

often occur together, or occur in similar 
contexts

• Psychology
– We often think of the two concepts together
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Why do this?
• Task: automatically compute semantic 

similarity between words
• Can be useful for many applications:

– Detecting paraphrases (i.e., automatic essay 
grading, plagiarism detection)

– Information retrieval
– Machine translation

• Why? Because similarity gives us a way to 
generalize beyond word identities
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Evaluation: Correlation with 
Humans

• Ask automatic method to rank word pairs 
in order of semantic distance

• Compare this ranking with human-created 
ranking

• Measure correlation
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Evaluation: Word-Choice 
Problems

Identify that alternative which is closest in meaning to 
the target:

accidental
wheedle
ferment
inadvertent
abominate

imprison
incarcerate
writhe
meander
inhibit
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Thesauri

• Previously we talked about dictionaries/thesauri 
that can help. 

• But thesauri are not always available for the 
language of interest, or may not contain all the 
words in a corpus.
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Distributional Similarity

“Differences of meaning correlates with differences 
of distribution” (Harris, 1970) 

• Idea: similar linguistic objects have similar 
contents (for documents, sentences) or contexts 
(for words)
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Two Kinds of Distributional 
Contexts

1. Documents as bags-of-words 

• Similar documents contain similar words;  
similar words appear in similar documents 

2. Words in terms of neighboring words 

• “You shall know a word by the company it 
keeps!” (Firth, 1957) 

• Similar words occur near similar sets of other words 
(e.g., in a 5-word window)
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Word Vectors

• A word type can be represented as a vector of 
features indicating the contexts in which it occurs 
in a corpus

15

Distributional Approaches: 
Intuition

“You shall know a word by the company it keeps!”  
(Firth, 1957)
“Differences of meaning correlates with differences 
of distribution” (Harris, 1970)
• Intuition:

– If two words appear in the same context, then 
they must be similar

• Basic idea: represent a word w as a feature 
vector ),...,, 321 Nfff(fw  

&
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Context Features
• Word co-occurrence within a window:

• Grammatical relations:



Context Features
• Feature values

– Boolean
– Raw counts
– Some other weighting scheme (e.g., idf, tf.idf)
– Association values (next slide)
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Association Metric
• Commonly-used metric: Pointwise Mutual 

Information

• Can be used as a feature value or by itself

)()(
),(

log),(nassociatio 2PMI fPwP
fwPfw  
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Computing Similarity
• Semantic similarity boils down to 

computing some measure on context 
vectors

• Cosine distance: borrowed from 
information retrieval
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Words in a Vector Space

• In 2 dimensions:  
v = “cat”  
w = “computer”
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v = (v1, v2)

w = (w1, w2)



Euclidean Distance

•  √Σi (vi − wi)² 

• Can be oversensitive to  
extreme values
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Cosine Similarity
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Computing Similarity
• Semantic similarity boils down to 

computing some measure on context 
vectors

• Cosine distance: borrowed from 
information retrieval
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Distributional Approaches: 
Discussion

• No thesauri needed: data driven
• Can be applied to any pair of words
• Can be adapted to different domains
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Distributional Profiles: Example
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Distributional Profiles: Example
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Problem?
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Using syntax to define a word’s context

• Zellig Harris (1968) 
“The meaning of entities, and the meaning of grammatical relations 
among them, is related to the restriction of combinations of these 
entities relative to other entities” 

• Two words are similar if they have similar syntactic 
contexts 

                                                                 



Syntactic context intuition

• Duty and responsibility have similar syntactic 
distribution:

Modified by adjectives additional, administrative, assumed, collective, 
congressional, constitutional …

Objects of verbs assert, assign, assume, attend to, avoid, become, breach..



Co-occurrence vectors based on syntactic dependencies

• Each dimension: a context word in one of R grammatical 
relations 
– Subject-of- “absorb” 

• Instead of a vector of |V| features, a vector of R|V| 
• Example: counts for the word cell 

Dekang Lin, 1998 “Automatic Retrieval and Clustering of Similar Words”



What else can you do with 
word vectors/similarity?
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• Machine learning task of grouping similar data 
points together 

‣ Hard clustering: every data point goes in exactly 
1 cluster
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Clustering



Clustering

32 (Faruqui & Dyer 2014)



Clustering A

33 (Faruqui & Dyer 2014)



Clustering B

34 (Faruqui & Dyer 2014)



• Machine learning task of grouping similar data 
points together 

‣ Hard clustering: every data point goes in exactly 
1 cluster 

‣ How many clusters to predict? Some algorithms 
have K as a hyperparameter, others infer it. 

‣ Which clustering is better? May depend on the 
beholder/application.
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Clustering



Clustering for Sentiment

36 (Faruqui & Dyer 2014)



Brown Clustering
• Algorithm that produces hierarchical clusters based on 

word context vectors 

• Words in similar parts of hierarchy occur in similar contexts
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Brown'Clusters'as'vectors

• By,tracing,the,order,in,which,clusters,are,merged,,the,model,
builds,a,binary,tree,from,bottom,to,top.

• Each,word,represented,by,binary,string,=,path,from,root,to,leaf
• Each,intermediate,node,is,a,cluster,
• Chairman,is,0010,,“months”,=,01,,and,verbs,=,1
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Brown Algorithm

• Words merged according to contextual 
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

Brown clusters created from Twitter data:  
http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html


Word Embeddings

• Dense word vectors: e.g., 100 or 200 dimensions 
(rather than the size of the vocabulary) 

• Can be produced by dimensionality reduction of 
the full word-context matrix 

• Or with neural network algorithms such as 
word2vec (Mikolov et al. 2013)
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DIMENSIONALITY REDUCTION
Slides based on presentation by 
Christopher Potts
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Why dimensionality reduction?
• So far, we’ve defined word representations as 

rows in F, a m x n matrix
– m = vocab size
– n = number of context dimensions / features

• Problems: n is very large, F is very sparse

• Solution: find a low rank approximation of F
– Matrix of size m x d where d << n



Methods
• Latent Semantic Analysis
• Also:

– Principal component analysis
– Probabilistic LSA
– Latent Dirichlet Allocation
– Word2vec
– …
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Latent Semantic Analysis
• Based on Singular Value Decomposition
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LSA illustrated: 
SVD + select top k dimensions



Word embeddings based on 
neural language models

• So far: Distributional vector representations constructed 
based on counts (+ dimensionality reduction) 

• Recent finding: Neural networks trained to predict 
neighboring words (i.e., language models) learn 
useful low-dimensional word vectors 

‣ Dimensionality reduction is built into the NN learning 
objective 

‣ Once the neural LM is trained on massive data, the 
word embeddings can be reused for other tasks
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Word vectors as a 
byproduct of language modeling

A neural probabilistic Language Model. Bengio et al. JMLR 200345
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Using neural word 
representations in NLP 

• word representations from neural LMs
– aka distributed word representations
– aka word embeddings

• How would you use these word vectors?
• Turian et al. [2010]

– word representations as features consistently 
improve performance of
• Named-Entity Recognition
• Text chunking tasks
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Word2vec claims
Useful representations for NLP applications

Can discover relations between words using vector 
arithmetic

king – male  + female =  queen

Paper+tool received lots of attention even outside 
the NLP research community

try it out at “word2vec playground”:
http://deeplearner.fz-qqq.net/48



Two Kinds of Distributional 
Contexts

1. Documents as bags-of-words 

• Similar documents contain similar words;  
similar words appear in similar documents 

2. Words in terms of neighboring words 

• “You shall know a word by the company it 
keeps!” (Firth, 1957) 

• Similar words occur near similar sets of other words 
(e.g., in a 5-word window)
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Document-Word Models

• Features in the word vector can be word context 
counts or PMI scores 

• Also, features can be the documents in which this 
word occurs 

‣ Document occurrence features useful for topical/
thematic similarity
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Topic Models
• Latent Dirichlet Allocation (LDA) and variants are known as topic 

models

‣ Learned on a large document collection (unsupervised) 

‣ Latent probabilistic clustering of words that tend to occur in the 
same document. Each topic cluster is a distribution over words. 

‣ Generative model: Each document is a sparse mixture of 
topics. Each word in the document is chosen by sampling a 
topic from the document-specific topic distribution, then 
sampling a word from that topic. 

‣ Learn with EM or other techniques (e.g., Gibbs sampling)
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Topic Models

52

http://cacm
.acm

.org/m
agazines/2012/4/147361-probabilistic-topic-m

odels/fulltext 

http://cacm.acm.org/magazines/2012/4/147361-probabilistic-topic-models/fulltext


Visualizing Topics
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Summary
• Given a large corpus, the meanings of words can be approximated in 

terms of words occurring nearby: distributional context. Each word 
represented as a vector of integer or real values. 

‣ Different ways to choose context, e.g. context windows 

‣ Different ways to count cooccurrence, e.g. (positive) pointwise 
mutual information 

‣ Vectors can be sparse (1 dimension for every context) or dense 
(reduced dimensionality, e.g. with Brown clustering or word2vec) 

• This facilities measuring similarity between words—useful for many 
purposes! 

‣ Different similarity measures, e.g. cosine (= normalized dot 
product) 

‣ Evaluations: human relatedness judgments; extrinsic tasks
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