
Dependency 
Parses/Parsing



Dependency Parse

saw
����

HHHH

kids birds

fish

with

saw

�����������

HHHHHHHHHHH

kids birds binoculars

with

Linguists have long observed that the meanings of words within
a sentence depend on one another, mostly in asymmetric, binary

relations.

• Though some constructions don’t cleanly fit this pattern: e.g.,
coordination, relative clauses.

Nathan Schneider ANLP (COSC/LING-272) Lecture 16 14



Dependency Parse
saw

����
HHHH

kids birds

fish

with

saw

�����������

HHHHHHHHHHH

kids birds binoculars

with

Equivalently, but showing word order (head ! modifier):

kids saw birds with fish

Because it is a tree, every word has exactly one parent.

Nathan Schneider ANLP (COSC/LING-272) Lecture 16 15



Content vs. Functional Heads

Some treebanks prefer content heads:

Little kids were always watching birds with fish

Others prefer functional heads:

Little kids were always watching birds with fish

Nathan Schneider ANLP (COSC/LING-272) Lecture 16 16



Edge Labels

It is often useful to distinguish di↵erent kinds of head ! modifier
relations, by labeling edges:

kids saw birds with fish

ROOT

SBJ DOBJ

POBJ

PREP

Important relations for English include subject, direct object,
determiner, adjective modifier, adverbial modifier, etc. (Di↵erent
treebanks use somewhat di↵erent label sets.)

• How would you identify the subject in a constituency parse?

Nathan Schneider ANLP (COSC/LING-272) Lecture 16 17



Dependency Paths

For information extraction tasks involving real-world relationships
between entities, chains of dependencies can provide good features:

British o�cials in Tehran have been meeting with their Iranian counterparts

amod

nsubj

prep pobj

aux

aux prep

pobj

poss

amod

(example from Brendan O’Connor)

Nathan Schneider ANLP (COSC/LING-272) Lecture 16 18



Projectivity

• A sentence’s dependency parse is said to be projective if every
subtree (node and all its descendants) occupies a contiguous span

of the sentence.

• = The dependency parse can be drawn on top of the sentence
without any crossing edges.

A hearing on the issue is scheduled today

ROOT

ATT ATT

SBJ

VC TMP

PC

ATT

Nathan Schneider ANLP (COSC/LING-272) Lecture 16 19



Nonprojectivity

• Other sentences are nonprojective:

A hearing is scheduled on the issue today

ROOT

ATT

ATT

SBJ VC

TMP

PC

ATT

• Nonprojectivity is rare in English, but quite common in many
languages.

Nathan Schneider ANLP (COSC/LING-272) Lecture 16 20



A quick dependency parse:
The dog bit the boy



The dog bit the boy

root

nsubjdet

dobj

det



Why is this useful?



Why is this useful?
- Conveys some level of semantic meaning
- Good for languages with freer word order



Transition Based Dependency Parsing
- High level idea

- Process words from left to right



Transition Based Dependency Parsing
- High level idea

- Process words from left to right
- At each stage, decide if two words should be attached



Transition Based Dependency Parsing
- Similar to shift-reduce parsing for programming languages
- 3 components

- Input buffer (the words of the sentence)
- Stack (where the words are moved to and manipulated)
- Dependency relations (the list of relations between words that becomes the dependency 

parse)

- Configuration: some state of the 3 components
- Parsing consists of a sequence of transitions between configurations until all 

the words have been accounted for
- The available transitions define the type of approach



The Arc-Standard Approach

- LEFTARC: Assert a head-dependent relation between the word at the top of 
the stack and the word directly beneath it; remove the lower word from the 
stack

- RIGHTARC: Assert a head-dependent relation between the second word on 
the stack and the word at the top; remove the word at the top of the stack

- SHIFT: Remove the word from the front of the input buffer and push it onto 
the stack



Restrictions
- LEFTARC cannot be applied when the root is the second element of the stack 

(the root cannot be a dependent)
- LEFTARC & RIGHTARC can only be applied if there are 2 or more elements 

on the stack. 



She gave me the book



She gave me the book

root

nsubj

dobj

iobj
det



STACK
[root]

WORD LIST
[She, gave, me, the, book]

RELATIONS



STACK
[root]

[root, She]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]

RELATIONS

Operation: SHIFT



STACK
[root]

[root, She]
[root, She, gave]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]

RELATIONS

Operation: SHIFT



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

RELATIONS

(She ← gave)

Operation: LEFTARC



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]
[me, the, book]

RELATIONS

(She ← gave)
(root → gave)

Operation: RIGHTARC?



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]

RELATIONS

(She ← gave)

Operation: SHIFT!



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

RELATIONS

(She ← gave)

(gave → me)

Operation: RIGHTARC



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]

RELATIONS

(She ← gave)

(gave → me)

Operation: SHIFT



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]

RELATIONS

(She ← gave)

(gave → me)

Operation: SHIFT



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]
[root, gave, book]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]
[]

RELATIONS

(She ← gave)

(gave → me)

(the ← book)

Operation: LEFTARC



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]
[root, gave, book]

[root, gave]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]
[]
[]

RELATIONS

(She ← gave)

(gave → me)

(the ← book)
(gave → book)

Operation: RIGHTARC



STACK
[root]

[root, She]
[root, She, gave]

[root, gave]
[root, gave, me]

[root, gave]
[root, gave, the]

[root, gave, the, book]
[root, gave, book]

[root, gave]
[root]

WORD LIST
[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[book]
[]
[]
[]
[]

RELATIONS

(She ← gave)

(gave → me)

(the ← book)
(gave → book)
(root → gave)

Operation: RIGHTARC



Run time



Run time
- Linear in the size of the sentence



Run time
- Linear in the size of the sentence
- A head decision for each word uniquely defines a tree



How to decide what to do at each step? 



How to decide what to do at each step? 
- Build an oracle



How to decide what to do at each step? 
- Build an oracle with machine learning!
- Need something that maps configurations to transitions



How to decide what to do at each step? 
- Build an oracle with machine learning!
- Need something that maps configurations to transitions
- Data comes from Treebanks



How to decide what to do at each step? 
- Build an oracle with machine learning!
- Need something that maps configurations to transitions
- Data comes from Treebanks

- Corpora annotated with gold trees
- http://universaldependencies.org/

http://universaldependencies.org/


How to decide what to do at each step? 
- Build an oracle with machine learning!
- Need something that maps configurations to transitions
- Data comes from Treebanks

- Corpora annotated with gold trees
- http://universaldependencies.org/

- Best results have historically come from multinomial logistic regression and 
SVM models. 

http://universaldependencies.org/


How to decide what to do at each step? 
- Build an oracle with machine learning!
- Need something that maps configurations to transitions
- Data comes from Treebanks

- Corpora annotated with gold trees
- http://universaldependencies.org/

- Best results have historically come from multinomial logistic regression and 
SVM models. 

- Recently, Neural Networks have been performing well

http://universaldependencies.org/


How to decide what to do at each step? 
- Build an oracle with machine learning!
- Need something that maps configurations to transitions
- Data comes from Treebanks

- Corpora annotated with gold trees
- http://universaldependencies.org/

- Best results have historically come from multinomial logistic regression and 
SVM models. 

- Recently, Neural Networks have been performing well.
- Naturally lend themselves to the task

- Forms analysis before reading in the whole sentence
- Neural networks model a sequence of decisions, which is exactly how the parsing 

operates

http://universaldependencies.org/


Possible features?



Possible features?
- Some obvious ones, the word currently at the top of the stack, etc.



Possible features?
- Some obvious ones, the word currently at the top of the stack, etc.
- POS tags are also very useful



Possible features?
- Some obvious ones, the word currently at the top of the stack, etc.
- POS tags are also very useful

- Usually a POS tagged is run and used as input to the dependency parser



Edge Labels
- The example only dealt with connections
- Can modify the oracle to learn and output the transition, as well as the arc 

label at each step (if RIGHTARC or LEFTARC is called)



Possible Weaknesses? 



Possible Weaknesses? 
- Can only produce projective parses



Weaknesses of Dependency Parses



Weakness of Dependency Parses
- Head-modifier relation doesn’t always work neatly
- Coordination

- “Cats and dogs ran.”

- Auxiliaries
- “Do you want coffee?”

- Relative clauses
- “I met the girl who started this year”

- Prepositional phrases: 
- “I saw a cow in the barn”



Advanced Methods
- Arc Eager transition system

 





Advanced Methods
- Arc Eager transition system

- We couldn’t add the arc between root and gave because gave still needed to point to other 
words

- In general, the longer a word has to wait to get assigned its head the more opportunities there 
are for something to go awry

 



Advanced Methods
- Arc Eager transition system

- We couldn’t add the arc between root and gave because gave still needed to point to other 
words

- In general, the longer a word has to wait to get assigned its head the more opportunities there 
are for something to go awry

- Solution: Change the set of operators

 



New Operators
- LEFTARC: Assert a head-dependent relation between the word at the front of 

the input buffer and the word at the top of the stack; pop the stack.
- RIGHTARC: Assert a head-dependent relation between the word on the top 

of the stack and the word at the front of the input buffer; shift the word at the 
front of the input buffer to the stack.

- SHIFT: Remove the word from the front of the input buffer and push it onto 
the stack (stays the same). 

- REDUCE: Pop the stack.



Advanced Methods
- Arc Eager transition system

- We couldn’t add the arc between root and gave because gave still needed to point to other 
words

- In general, the longer a word has to wait to get assigned its head the more opportunities there 
are for something to go awry

- Graph based methods
- Can think of dependency parses as a directed graph with arc labels
- Other methods use graph based algorithms to find the best dependency parse

 


