Lecture 14: Algorithms for HMMs

Nathan Schneider

(some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes)

ANLP | 30 October 2017

Recap: tagging

- POS tagging is a sequence labelling task.
- We can tackle it with a model (HMM) that uses two sources of information:
 - The word itself
 - The tags assigned to surrounding words
- The second source of information means we can't just tag each word independently.

Local Tagging

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
< S>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- Choosing the best tag for each word independently, i.e. not considering tag context, gives the wrong answer (<s> CD NN NN </s>).
- Though NN is more frequent for 'bit', tagging it as VBD may yield a better sequence (<s> CD NN VB </s>)
 - because P(VBD|NN) and P(</s>|VBD) are high.

Recap: HMM

- Elements of HMM:
 - Set of states (tags)
 - Output alphabet (word types)
 - Start state (beginning of sentence)
 - State transition probabilities $P(t_i \mid t_{i-1})$
 - Output probabilities from each state $P(w_i \mid t_i)$

Recap: HMM

• Given a sentence $W=w_1...w_n$ with tags $T=t_1...t_n$, compute P(W,T) as:

$$P(\mathbf{W}, \mathbf{T}) = \prod_{i=1}^{n} P(w_i|t_i)P(t_i|t_{i-1})$$

- But we want to find $\underset{\mathsf{T}}{\operatorname{argmax}} P(\mathbf{T}|\mathbf{W})$ without enumerating all possible tag sequences \mathbf{T}
 - Use a greedy approximation, or
 - Use Viterbi algorithm to store partial computations.

Greedy Tagging

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
< \$>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- For i = 1 to N: choose the tag that maximizes
 - transition probability $P(t_i|t_{i-1}) \times$
 - emission probability $P(w_i|t_i)$
- This uses tag context but is still suboptimal. Why?
 - It commits to a tag before seeing subsequent tags.
 - It could be the case that ALL possible next tags have low transition probabilities. E.g., if a tag is unlikely to occur at the end of the sentence, that is disregarded when going left to right.

Greedy vs. Dynamic Programming

- The greedy algorithm is fast: we just have to make one decision per token, and we're done.
 - Runtime complexity?
 - -O(TN) with T tags, length-N sentence
- But subsequent words have no effect on each decision, so the result is likely to be suboptimal.
- Dynamic programming search gives an optimal global solution, but requires some bookkeeping (= more computation). Postpones decision about any tag until we can be sure it's optimal.

Viterbi Tagging: intuition

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
< \$>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- Suppose we have already computed
 - a) The best tag sequence for $\leq s \geq \dots$ bit that ends in NN.
 - b) The best tag sequence for $\leq s \geq \dots$ bit that ends in VBD.
- Then, the best full sequence would be either
 - sequence (a) extended to include </s>, or
 - sequence (b) extended to include </s>.

Viterbi Tagging: intuition

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
< \$>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- But similarly, to get
 - a) The best tag sequence for $\leq s > \dots$ bit that ends in NN.
- We could extend one of:
 - The best tag sequence for <s> ... dog that ends in NN.
 - The best tag sequence for ≤s> ... dog that ends in VB.
- And so on...

Viterbi: high-level picture

- Want to find $\operatorname{argmax}_{\mathbf{T}} P(\mathbf{T}|\mathbf{W})$
- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
 - Find the best path of length i-1 to each state.
 - Consider extending each of those by 1 step, to state t.
 - Take the best of those options as the best path to state t.

Viterbi algorithm

- Use a chart to store partial results as we go
 - T × N table, where v(t, i) is the probability* of the best state sequence for $w_1...w_i$ that ends in state t.

^{*}Specifically, v(t,i) stores the max of the joint probability $P(w_1...w_i,t_1...t_{i-1},t_i=t|\lambda)$

Viterbi algorithm

- Use a chart to store partial results as we go
 - T × N table, where v(t, i) is the probability* of the best state sequence for $w_1...w_i$ that ends in state t.
- Fill in columns from left to right, with

$$v(t,i) = \max_{t'} v(t',i-1) \cdot P(t|t') \cdot P(w_i|t_i)$$

- The max is over each possible previous tag t'
- Store a **backtrace** to show, for each cell, which state at i-1 we came from.

^{*}Specifically, v(t,i) stores the max of the joint probability $P(w_1...w_i,t_1...t_{i-1},t_i=t \mid \lambda)$

Transition and Output Probabilities

Transition matrix: $P(t_i | t_{i-1})$:

	Noun	Verb	Det	Prep	Adv	
<s></s>	.3	.1	.3	.2	.1	0
Noun	.2	.4	.01	.3	.04	.05
Verb	.3	.05	.3	.2	.1	.05
Det	.9	.01	.01	.01	.07	0
Prep	.4	.05	.4	.1	.05	0
Adv	.1	.5	.1	.1	.1	.1

Emission matrix: $P(w_i | t_i)$:

	a	cat	doctor	in	is	the	very
Noun	0	.5	.4	0	.1	0	0
Verb	0	0	.1	0	.9	0	0
Det	.3	0	0	0	0	.7	0
Prep	0	0	0	1.0	0	0	0
Adv	0	0	0	.1	0	0	.9

Example

Suppose W=the doctor is in. Our initially empty table:

V	w_1 =the	w ₂ =doctor	$w_3=is$	$w_4=in$	
Noun					
Verb					
Det					
Prep					
Adv					

Filling in the first column

Suppose W=the doctor is in. Our initially empty table:

V	w ₁ =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0				
Verb	0				
Det	.21				
Prep	0				
Adv	0				

$$v(\text{Noun, the}) = P(\text{Noun}|<\text{s}>)P(\text{the}|\text{Noun})=.3(0)$$

$$v(\text{Det, the}) = P(\text{Det}|<\tilde{\text{s}}>)P(\text{the}|\text{Det})=.3(.7)$$

```
v(\text{Noun, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Noun}|t') \cdot P(\text{doctor}|\text{Noun})
```

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	?			
Verb	0				
Det	.21				
Prep	0				
Adv	0				

P(Noun|Det) P(doctor|Noun)=.3(.4)

```
v(Noun, doctor)
        = \max_{t'} v(t', \text{the}) \cdot P(\text{Noun}|t') \cdot P(\text{doctor}|\text{Noun})
        = \max \{ 0, 0, .21(.36), 0, 0 \} = .0756
           w_1=the |w_2=doctor |w_3=is |w_4=in |</s>
                            .0756
 Noun
                0
 Verb
               .21
 Det
 Prep
 Adv
```

P(Noun|Det) P(doctor|Noun) = .9(.4)

```
v(\text{Verb, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Verb}|t') \cdot P(\text{doctor}|\text{Verb})
= \max \{ 0, 0, .21(.001), 0, 0 \} = .00021
```

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756			
Verb	0	.00021			
Det	.21				
Prep	0				
Adv	0				

P(Verb|Det) P(doctor|Verb) = .01(.1)

```
v(\text{Verb, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Verb}|t') \cdot P(\text{doctor}|\text{Verb})
= \max \{ 0, 0, .21(.001), 0, 0 \} = .00021
```

V	w_1 =the	w ₂ =doctor	$w_3 = is$	w ₄ =in	
Noun	0	.0756			
Verb	0	.00021			
Det	.21	0			
Prep	0	0			
Adv	0	0			

P(Verb|Det) P(doctor|Verb) = .01(.1)

The third column

```
v(\text{Noun, is})
= \max_{t'} v(t', \text{doctor}) \cdot P(\text{Noun}|t') \cdot P(\text{is}|\text{Noun})
= \max \{ .0756(.02), .00021(.03), 0, 0, 0 \} = .001512
```

V	w ₁ =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756 ←	001512		
Verb	0	.00021			
Det	.21	0			
Prep	0	0			
Adv	0	0			

$$P(\text{Noun}|\text{Noun}) P(\text{is}|\text{Noun})=.2(.1)=.02$$

 $P(\text{Noun}|\text{Verb}) P(\text{is}|\text{Noun})=.3(.1)=.03$

The third column

```
v(Verb, is)
= \max_{t'} v(t', doctor) \cdot P(Verb|t') \cdot P(is|Verb)
= \max \{ .0756(.36), .00021(.045), 0, 0, 0 \} = .027216
```

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756	001512		
Verb	0	.00021	.027216		
Det	.21	0	0		
Prep	0	0	0		
Adv	0	0	0		

$$P(\text{Verb}|\text{Noun}) P(\text{is}|\text{Verb}) = .4(.9) = .36$$

 $P(\text{Verb}|\text{Verb}) P(\text{is}|\text{Verb}) = .05(.9) = .045$

The fourth column

```
v(Prep, in)
       = \max_{t'} v(t', is) \cdot P(\text{Prep}|t') \cdot P(in|\text{Prep})
       = \max \{.001512(.3), .027216(.2), 0, 0, 0\} = .005443
           w_1=the w_2=doctor w_3=is w_4=in
                                 .001512
                          .0756
 Noun
                          .00021
               0
                                     .027216
 Verb
              .21
                                        0
 Det
                                               .005443
 Prep
                                        0
```

$$P(\text{Prep}|\text{Noun}) P(\text{in}|\text{Prep})=.3(1.0)$$

 $P(\text{Prep}|\text{Verb}) P(\text{in}|\text{Prep})=.2(1.0)$

Adv

The fourth column

```
v(Prep, in)
       = \max_{t'} v(t', is) \cdot P(\text{Prep}|t') \cdot P(in|\text{Prep})
       = \max \{.000504(.004), .027216(.01), 0, 0, 0\} = .000273
           w_1=the w_2=doctor w_3=is w_4=in
                                 .001512
                          .0756
 Noun
                          .00021
                                     .027216
               0
                                                   0
 Verb
              .21
                                        0
 Det
```

 $\mathbf{0}$

.005443

.000272

0

$$P(\text{Adv}|\text{Noun}) P(\text{in}|\text{Adv}) = .04(.1)$$

 $P(\text{Adv}|\text{Verb}) P(\text{in}|\text{Adv}) = .1(.1)$

0

Prep

Adv

End of sentence

```
v(</s>)
= \max_{t'} v(t', \text{in}) \cdot P(</s>|t')
= \max\{0, 0, 0, .005443(0), .000272(.1)\} = .0000272
```

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756	001512	0	
Verb	0	.00021	.027216	0	
Det	.21	0	0	0	.000027
Prep	0	0	0	.005443	
Adv	0	0	0	.000272	

$$P(|Prep)=0$$

 $P(|Adv)=.1$

Completed Viterbi Chart

<i>V</i>	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756	001512	0	
Verb	0	.00021	.027216	0	
Det	.21	0	0	0	.000027
Prep	0	0	0	.005443	
Adv	0	0	0	.000272	

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756	001512	0	
Verb	0	.00021	.027216	0	
Det	.21	0	0	0	.000027
Prep	0	0	0	.005443	
Adv	0	0	0	.000272	

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756	001512	0	
Verb	0	.00021	.027216	0	
Det	.21	0	0	0	.000027
Prep	0	0	0	.005443	
Adv	0	0	0	.000272	

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756	001512	0	
Verb	0	.00021	.027216	0	
Det	.21	0	0	0	.000027
Prep	0	0	0	.005443	
Adv	0	0	0	.000272	

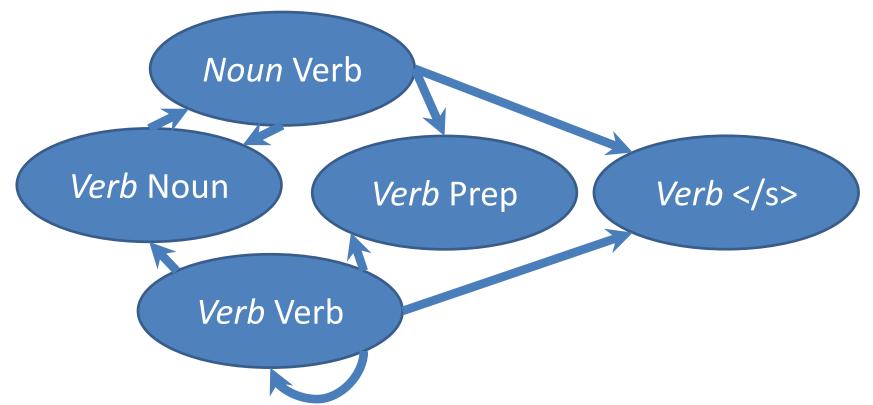
V	w ₁ =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0756	001512	0	
Verb	0	.00021	.027216	0	
Det	.21	0	0	0	.000027
Prep	0	0	0	.005443	
Adv	0	0	0	.000272	
	Det	Noun	Verb	Prep	

Implementation and efficiency

- For sequence length N with T possible tags,
 - Enumeration takes $O(T^N)$ time and O(N) space.
 - Bigram Viterbi takes $O(T^2N)$ time and O(TN) space.
 - Viterbi is exhaustive: further speedups might be had using methods that prune the search space.
- As with N-gram models, chart probs get really tiny really fast, causing underflow.
 - So, we use costs (neg log probs) instead.
 - Take minimum over sum of costs, instead of maximum over product of probs.

Higher-order Viterbi

- For a tag **trigram** model with T possible tags, we effectively need T^2 states
 - n-gram Viterbi requires T^{n-1} states, takes $O(T^nN)$ time and $O(T^{n-1}N)$ space.



HMMs: what else?

- Using Viterbi, we can find the best tags for a sentence (**decoding**), and get P(W, T).
- We might also want to
 - Compute the **likelihood** $P(\mathbf{W})$, i.e., the probability of a sentence regardless of its tags (a language model!)
 - learn the best set of parameters (transition & emission probs.) given only an *unannotated* corpus of sentences.

Computing the likelihood

From probability theory, we know that

$$P(\mathbf{W}) = \sum_{\mathbf{T}} P(\mathbf{W}, \mathbf{T})$$

- There are an exponential number of Ts.
- Again, by computing and storing partial results, we can solve efficiently.
- (Advanced slides show the algorithm for those who are interested!)

Summary

- HMM: a generative model of sentences using hidden state sequence
- Greedy tagging: fast but suboptimal
- Dynamic programming algorithms to compute
 - Best tag sequence given words (Viterbi algorithm)
 - Likelihood (forward algorithm—see advanced slides)
 - Best parameters from unannotated corpus (forward-backward algorithm, an instance of EM see advanced slides)

Advanced Topics

(the following slides are just for people who are interested)

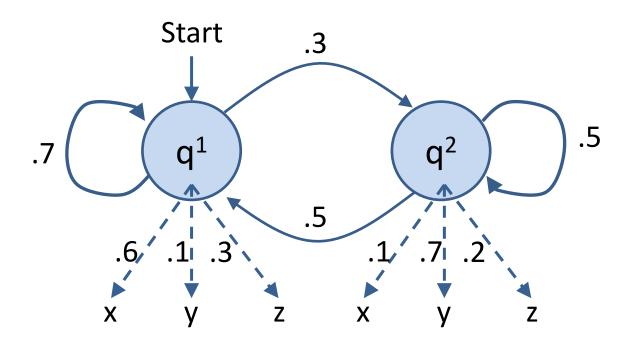
Notation

- Sequence of observations over time o₁, o₂, ..., o_N
 - here, words in sentence
- Vocabulary size V of possible observations
- Set of possible states $q^1, q^2, ..., q^T$ (see note next slide)
 - here, tags
- A, an $T \times T$ matrix of transition probabilities
 - a_{ii} : the prob of transitioning from state i to j.
- B, an T×V matrix of output probabilities
 - $-b_i(o_t)$: the prob of emitting o_t from state i.

Note on notation

- J&M use $q_1, q_2, ..., q_N$ for set of states, but *also* use $q_1, q_2, ..., q_N$ for state sequence over time.
 - So, just seeing q_1 is ambiguous (though usually disambiguated from context).
 - I'll instead use q^i for state names, and q_n for state at time n.
 - So we could have $q_n = q^i$, meaning: the state we're in at time n is q^i .

HMM example w/ new notation



- States $\{q^1, q^2\}$ (or $\{\langle s \rangle, q^1, q^2\}$): think *NN*, *VB*
- Output symbols {x, y, z}: think chair, dog, help

HMM example w/ new notation

A possible sequence of outputs for this HMM:

A possible sequence of states for this HMM:

• For these examples, N = 9, $q_3 = q^2$ and $o_3 = y$

Transition and Output Probabilities

Transition matrix A:

$$a_{ij} = P(q^j \mid q^i)$$

Ex:
$$P(q_n = q^2 | q_{n-1} = q^1) = .3$$

	q^1	q^2
<s></s>	1	0
q^1	.7	.3
q^2	.5	.5

Output matrix B:

$$b_i(o) = P(o \mid q^i)$$

Ex:
$$P(o_n = y | q_n = q^1) = .1$$

	X	y	Z
q^1	.6	.1	.3
q^2	.1	.7	.2

Forward algorithm

• Use a table with cells $\alpha(j,t)$: the probability of being in state j after seeing $o_1...o_t$ (forward probability).

$$\alpha(j,t) = P(o_1, o_2, \dots ot, qt = j|\lambda)$$

Fill in columns from left to right, with

$$\alpha(j,t) = \sum_{i=1}^{N} \alpha(i,t-1) \cdot a_{ij} \cdot b_{j}(o_{t})$$

Same as Viterbi, but sum instead of max (and no backtrace).

Note: because there's a sum, we can't use the trick that replaces probs with costs. For implementation info, see http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms.

Example

Suppose 0=xzy. Our initially empty table:

	$o_1 = x$	$o_2 = z$	$o_3 = y$
q^1			
q^2			

Filling the first column

	$o_1=x$	$o_2=z$	$o_3=y$
q^1	.6		
q^2	0		

$$\alpha(1,1) = a_{~~1} \cdot b_1(x) = (1)(.6)~~$$

$$\alpha(2,1) = a_{~~2} \cdot b_2(x) = (0)(.1)~~$$

Starting the second column

	$o_1=x$	$o_2=z$	$o_3=y$
q^1	.6	.126	
q^2	0		

$$\alpha(1,2) = \sum_{i=1}^{N} \alpha(i,1) \cdot a_{i1} \cdot b_{1(Z)}$$

$$= \alpha(1,1) \cdot a_{11} \cdot b_{1}(z) + \alpha(2,1) \cdot a_{21} \cdot b_{1}(z)$$

$$= (.6)(.7)(.3) + (0)(.5)(.3)$$

$$= .126$$

Finishing the second column

	$o_1=x$	$o_2=z$	$o_3=y$
q^1	.6	.126	
q^2	0	.036	

$$\alpha(2,2) = \sum_{i=1}^{N} \alpha(i,1) \cdot a_{i2} \cdot b_{2(Z)}$$

$$= \alpha(1,1) \cdot a_{12} \cdot b_{2}(Z) + \alpha(2,1) \cdot a_{22} \cdot b_{2}(Z)$$

$$= (.6)(.3)(.2) + (0)(.5)(.2)$$

$$= .036$$

Third column and finish

	$o_1=x$	$o_2=z$	$o_3=y$
q^1	.6	.126	.01062
q^2	0	.036	.03906

 Add up all probabilities in last column to get the probability of the entire sequence:

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha(i,T)$$

Learning

- Given *only* the output sequence, learn the best set of parameters $\lambda = (A, B)$.
- Assume 'best' = maximum-likelihood.
- Other definitions are possible, won't discuss here.

Unsupervised learning

- Training an HMM from an annotated corpus is simple.
 - Supervised learning: we have examples labelled with the right 'answers' (here, tags): no hidden variables in training.
- Training from unannotated corpus is trickier.
 - Unsupervised learning: we have no examples labelled with the right 'answers': all we see are outputs, state sequence is hidden.

Circularity

• If we know the state sequence, we can find the best λ .

- E.g., use MLE:
$$P(q^j|qi) = \frac{C(qi \rightarrow qj)}{C(qi)}$$

- If we know λ , we can find the best state sequence.
 - use Viterbi

But we don't know either!

Expectation-maximization (EM)

As in spelling correction, we can use EM to bootstrap, iteratively updating the parameters and hidden variables.

- Initialize parameters $\lambda^{(0)}$
- At each iteration k,
 - E-step: Compute expected counts using $\lambda^{(k-1)}$
 - M-step: Set $\lambda^{(k)}$ using MLE on the expected counts
- Repeat until λ doesn't change (or other stopping criterion).

Expected counts??

Counting transitions from $q^i \rightarrow q^j$:

- Real counts:
 - count 1 each time we see $q^i \rightarrow q^j$ in true tag sequence.
- Expected counts:
 - With current λ , compute probs of all possible tag sequences.
 - If sequence Q has probability p, count p for each $q^i \rightarrow q^j$ in Q.
 - Add up these fractional counts across all possible sequences.

Example

Notionally, we compute expected counts as follows:

Possible				Probability of
sequence				sequence
$Q_1 =$	q^1	q^1	q^1	p_1
$Q_2 =$	q^1	q^2	q^1	p_2
$Q_3 =$	q^1	q^1	q^2	p_3
$Q_4 =$	q^1	q^2	q^2	p_4
Observs:	X	Z	y	

Example

Notionally, we compute expected counts as follows:

Possible				Probability of
sequence				sequence
$Q_1 =$	q^1	q^1	q^1	p_1
$Q_2 =$	q^1	q^2	q^1	p_2
$Q_3 =$	q^1	q^{1}	q^2	p_3
$Q_4 =$	q^1	q^2	q^2	p_4
Observs:	X	Z	y	

$$\hat{C}(q^1 \to q^1) = 2p_1 + p_3$$

Forward-Backward algorithm

- As usual, avoid enumerating all possible sequences.
- Forward-Backward (Baum-Welch) algorithm computes expected counts using forward probabilities and backward probabilities:

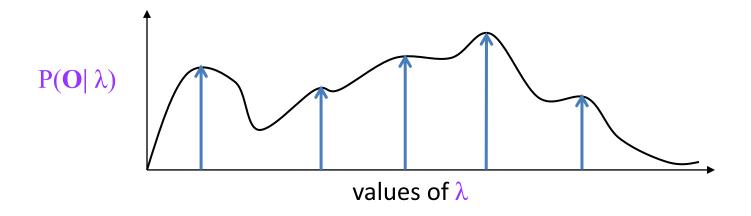
$$\beta(j,t) = P(qt = j, o_{t+1}, o_{t+2}, \dots oT | \lambda)$$

Details, see J&M 6.5

 EM idea is much more general: can use for many latent variable models.

Guarantees

• EM is guaranteed to find a **local** maximum of the likelihood.



- Not guaranteed to find global maximum.
- Practical issues: initialization, random restarts, early stopping.
 Fact is, it doesn't work well for learning POS taggers!