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Word Sense Disambiguation 
(WSD)

• Given a word in context, predict which sense is 
being used. 

‣ Evaluated on corpora such as SemCor, which is fully 
annotated for WordNet synsets. 

• For example: consider joint POS & WSD 
classification for ‘interest’, with 3 senses: 

‣ N:financial (I repaid the loan with interest) 

‣ N:nonfinancial (I read the news with interest) 

‣ V:nonfinancial (Can I interest you in a dessert?)
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Beyond BoW
• Neighboring words are relevant to this decision. 

• More generally, we can define features of  the input that may help identify 
the correct class. 

‣ Individual words 

‣ Bigrams (pairs of  consecutive words: Wall Street) 

‣ Capitalization (interest vs. Interest vs. INTEREST) 

‣ Metadata: document genre, author, … 

• These can be used in naïve Bayes—“bag of  features” 

‣ With overlapping features, independence assumption is even more naïve: p(y | 
x) ∝ p(y) ··· p(Wall | y) p(Street | y) p(Wall Street | y) 

‣ But other kinds of  feature-based classifiers don’t make this naïve assumption.
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Feature Extraction
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φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns 
about interest rates , politics

…

spelling feature

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated
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• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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vets raise 1 0

x = Wall Street vets raise concerns 
about interest rates , politics

…

unigrams
• Turns the input into a table of  

features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated
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…
bigrams

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

…

bias feature (≈class prior): value of 
1 for every x so the learned weight 
will reflect prevalence of the class

x = Wall Street vets raise concerns 
about interest rates , politics

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x′ = Pet 's best interest in mind , but 
vets must follow law

…

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated

x = Wall Street vets raise concerns 
about interest rates , politics



Choosing Features
• Supervision means that we don’t have to pre-specify the precise 

relationship between each feature and the classification 
outcomes. 

• But domain expertise helps in choosing which kinds of  features to 
include in the model. (words, subword units, metadata, …) 

‣ And sometimes, highly task-specific features are helpful. 

• The decision about what features to include in a model is called 
feature engineering. 

‣ (There are some algorithmic techniques, such as feature selection, that 
can assist in this process.) 

‣ More features = more flexibility, but also more expensive to train, more 
opportunity for overfitting.
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Linear Model
• For each input x (e.g., a document or word token), let φ(x) be 

a function that extracts a vector of  its features. 

‣ Features may be binary (e.g., capitalized?) or real-valued (e.g., 
#word=debt). 

• Each feature receives a real-valued weight parameter w . Each 

candidate label y′ is scored for the token by summing the 

weights for the active features: 

   wy′
Tφ(x)  

= Σj wy′,j · φj(x) 

• For binary classification, equivalent to: sign(wTφ(x)) — +1 or −1
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φ(x) w φ(x′)
bias 1 −3.00 1

capitalized? 0 .22 0
#wordsBefore 6 −.01 3
#wordsAfter 3 .01 8
relativeOffset 0.6

66
1.00 0.2

7leftWord=about 1 .00 0
leftWord=best 0 −2.00 1

rightWord=rates 1 5.00 0
rightWord=in 0 −1.00 1

Wall 1 1.00 0
Street 1 −1.00 0
vets 1 −.05 1
best 0 −1.00 1

in 0 −.01 1
Wall Street 1 4.00 0
Street vets 1 .00 0
vets raise 1 .00 0

x′ = Pet 's best interest in mind , but 
vets must follow law

…

• Weights are learned from data 

• For the moment, assume 
binary classification: financial 
or nonfinancial 

‣ More positive weights more 
indicative of  financial. 

‣ wTφ(x) = 6.59, wTφ(x′) = −6.74

x = Wall Street vets raise concerns 
about interest rates , politics



More then 2 classes

• Simply keep a separate weight vector for each 
label: wy 

• The label y whose weight vector gives the 
highest score wins!
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Linear Classifiers: Geometric View
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Linear Classifiers: Geometric View

x y
decision boundary
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Linear Classifiers: Geometric View
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Linear Classifiers: Geometric View
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Linear Classifiers (> 2 Classes)
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C

return  
arg maxy wyᵀ Φ(x)

x y



The term “feature”
• The term “feature” is overloaded in NLP/ML. Here are 

three different concepts: 

‣ Linguistic feature: in some formalisms, a symbolic property 
that applies to a unit to categorize it, e.g. [−voice] for a 
sound in phonology or [+past] for a verb in morphology. 

‣ Percept (or input feature): captures some aspect of an  
input x; binary- or real-valued. [The term “percept” is 
nonstandard but I think it is useful!] 

‣ Parameter (or model feature): an association between some 
percept and an output class (or structure) y for which a real-
valued weight or score is learned.
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Weights
• So far we have just discussed the classifier, which relies 

on weights. 

• The weights are determined by a learner, which fits them 
to the training data. 

• Naïve Bayes probability estimation can be thought of  as 
learning the weights with bag-of-words features only. 

• Several popular learning algorithms for feature-based 
linear models: perceptron, support vector machine (SVM), 
maximum entropy a.k.a. multiclass logistic regression 

‣ Deep learning models are nonlinear
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Evaluating Multiclass 
Classifiers  

and Retrieval Algorithms
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Accuracy
• Assume we are disambiguating word senses such 

that every token has 1 gold sense label. 

• The classifier predicts 1 label for each token in the 
test set. 

• Thus, every test set token has a predicted label 
(pred) and a gold label (gold). 

• The accuracy of  our classifier is just the % of  
tokens for which the predicted label matched the 
gold label: #pred=gold/#tokens
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Precision and Recall
• To measure the classifier with respect to a certain 

label y, and there are >2, we distinguish precision and 
recall: 

‣ precision = proportion of  times the label was predicted 
and that prediction matched the gold: #pred=gold=y/#pred=y 

‣ recall = proportion of  times the label was in the gold 
standard and was recovered correctly by the classifier: 
#pred=gold=y/#gold=y 

• The harmonic mean of  precision and recall, called F1-
score, balances between the two.  
F1 = 2*precision*recall / (precision + recall)
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Evaluating Retrieval Systems
• Precision/Recall/F-score are also useful for 

evaluating retrieval systems. 

• E.g., consider a system which takes a word as input 
and is supposed to retrieve all rhymes. 

• Now, for a single input (the query), there are often 
many correct outputs. 

• Precision tells us whether most of  the given outputs 
were valid rhymes; recall tells us whether most of  
the valid rhymes in the gold standard were recovered.
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Rhymes for “hinge”
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge



Rhymes for “hinge”
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive  
(Type I error)
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive  
(Type I error)

False Negative 

(Type II error)



Rhymes for “hinge”
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive  
(Type I error)

False Negative 

(Type II error) Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Correctly predicted =  
True Positive 

All other words = 
True Negative



Precision & Recall
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive  
(Type I error)

False Negative 

(Type II error)

Correctly predicted =  
True Positive 

All other words = 
True Negative

Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Precision = TP/(TP+FP)  
= 10/11 = 91%

Recall = TP/(TP+FN)  
= 10/13 = 77%

F1 = 2·P·R/(P+R) = 83%



Perceptron Learner

32



Perceptron Learner
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X
Y

L

w

w ← 0 
for i = 1 … I: 
   for t = 1 … T: 
 select (x, y)t 

 # run current classifier 
 ŷ ← arg maxy′ wy′ᵀ Φ(x) 
  
 if ŷ ≠ y then # mistake 
  wy ← wy + Φ(x)  
            wŷ ← wŷ − Φ(x) 
return w

(assumes all 
classes have the 
same percepts)



Perceptron Learner
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X
Y

L

w

w ← 0 
for i = 1 … I: 
   for t = 1 … T: 
 select (x, y)t 

 # run current classifier 
 ŷ ←              ← x 
  
 if ŷ ≠ y then # mistake 
  wy ← wy + Φ(x)  
            wŷ ← wŷ − Φ(x) 
return w

(assumes all 
classes have the 
same percepts)

C decoding is a 
subroutine of learning



work through example on the board

35



Perceptron Learner
• The perceptron doesn’t estimate probabilities. It just adjusts weights up 

or down until they classify the training data correctly. 

‣ No assumptions of  feature independence necessary! ⇒ Better accuracy than NB 

• The perceptron is an example of  an online learning algorithm because it 
potentially updates its parameters (weights) with each training datapoint. 

• Classification, a.k.a. decoding, is called with the latest weight vector. 
Mistakes lead to weight updates. 

• One hyperparameter: I, the number of  iterations (passes through the 
training data). 

• Often desirable to make several passes over the training data. The number 
can be tuned. Under certain assumptions, it can be proven that the 
learner will converge.
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Perceptron: Avoiding overfitting
• Like any learning algorithm, the perceptron risks 

overfitting the training data. Two main techniques 
to improve generalization: 

‣ Averaging: Keep a copy of  each weight vector as it 
changes, then average all of  them to produce the final 
weight vector. Daumé chapter has a trick to make this 
efficient with large numbers of  features. 

‣ Early stopping: Tune I by checking held-out accuracy 
on dev data (or cross-val on train data) after each 
iteration. If  accuracy has ceased to improve, stop 
training and use the model from iteration I − 1.
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Generative vs. Discriminative
• Naïve Bayes allows us to classify via the joint probability of  x and y: 

‣ p(y | x) ∝ p(y) Πw ∈ x p(w | y)  
               = p(y) p(x | y) (per the independence assumptions of  the model)  
                    = p(y, x) (chain rule) 

‣ This means the model accounts for BOTH x and y. From the joint distribution 
p(x,y) it is possible to compute p(x) as well as p(y), p(x | y), and p(y | x). 

• NB is called a generative model because it assigns probability to 
linguistic objects (x). It could be used to generate “likely” language 
corresponding to some y. (Subject to its naïve modeling assumptions!) 

‣ (Not to be confused with the “generative” school of  linguistics.) 

• Some other linear models, including the perceptron, are discriminative: 
they are trained directly to classify given x, and cannot be used to 
estimate the probability of  x or generate x | y.
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Take-home points
• Feature-based linear classifiers are important to NLP. 

‣ You define the features, an algorithm chooses the weights. 

✴ The weights are real-valued. 

✴ Some classifiers, like logistic regression, are probabilistic: the weights 
correspond to probabilities. 

‣ More features ⇒ more flexibility, also more risk of  overfitting. Because we work 

with large vocabularies, not uncommon to have millions of  features. 

• Some models, like Naïve Bayes, have a closed-form solution for 
parameters. Learning is cheap! 

• The perceptron and other discriminative methods require fancier learning/
optimization algorithms that iterate multiple times over the data, 
adjusting parameters until convergence (or some other stopping criterion). 

‣ The advantage: fewer modeling assumptions. Weights can be interdependent. 
Discriminative methods usually achieve higher accuracy with sufficient training 
data and computation (optimization).

39



Which classifier to use?
• Fast and simple: naïve Bayes 

• Very accurate, still simple: perceptron 

• Very accurate, probabilistic, more complicated to implement: 
MaxEnt 

• Potentially best accuracy, more complicated to implement: SVM 

• All of  these: watch out for overfitting! (NB—smoothing; 
Perceptron—early stopping, averaging; MaxEnt—regularization) 

• Check the web for free and fast implementations,  
e.g. SVM

light
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Further Reading:  
Basics & Examples

• Manning: features in linear classifiers 
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
FeatureClassifiers.pdf  

• Goldwater: naïve Bayes & MaxEnt examples 
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf  

• O’Connor: MaxEnt—incl. step-by-step examples, comparison to naïve 
Bayes 
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf  

• Daumé: “The Perceptron” (A Course in Machine Learning, ch. 3)  
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf   

• Neubig: “The Perceptron Algorithm”  
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf  
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Further Reading:  
Advanced

• Neubig: “Advanced Discriminative Learning”—MaxEnt w/ derivatives, SGD, 
SVMs, regularization  
http://www.phontron.com/slides/nlp-programming-en-06-
discriminative.pdf  

• Manning: generative vs. discriminative, MaxEnt likelihood function and 
derivatives 
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
MEMMs-Smoothing.pdf, slides 3–20 

• Daumé: linear models  
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf   

• Smith: A variety of  loss functions for text classification  
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-
slides.pdf  & http://courses.cs.washington.edu/courses/cse517/16wi/
slides/tc-advanced-slides.pdf  
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