
Feature-based
Classification with the

Perceptron
Nathan Schneider 

(some slides borrowed from Chris Dyer)
ANLP | 11 October 2017

1

Feature-Based
Classification

2

Word Sense Disambiguation
(WSD)

• Given a word in context, predict which sense is
being used.

‣ Evaluated on corpora such as SemCor, which is fully
annotated for WordNet synsets.

• For example: consider joint POS & WSD
classification for ‘interest’, with 3 senses:

‣ N:financial (I repaid the loan with interest)

‣ N:nonfinancial (I read the news with interest)

‣ V:nonfinancial (Can I interest you in a dessert?)

3

Beyond BoW
• Neighboring words are relevant to this decision.

• More generally, we can define features of the input that may help identify
the correct class.

‣ Individual words

‣ Bigrams (pairs of consecutive words: Wall Street)

‣ Capitalization (interest vs. Interest vs. INTEREST)

‣ Metadata: document genre, author, …

• These can be used in naïve Bayes—“bag of features”

‣ With overlapping features, independence assumption is even more naïve: p(y |
x) ∝ p(y) ··· p(Wall | y) p(Street | y) p(Wall Street | y)

‣ But other kinds of feature-based classifiers don’t make this naïve assumption.

4

Feature Extraction

5

φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

spelling feature

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

6

φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

token positional features

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

7

φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

immediately neighboring words

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

8

φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

unigrams
• Turns the input into a table of

features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

9

φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…
bigrams

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

10

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

…

bias feature (≈class prior): value of
1 for every x so the learned weight
will reflect prevalence of the class

x = Wall Street vets raise concerns
about interest rates , politics

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

11

φ(x) φ(x′)
bias 1 1

capitalized? 0 0
#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x′ = Pet 's best interest in mind , but
vets must follow law

…

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

x = Wall Street vets raise concerns
about interest rates , politics

Choosing Features
• Supervision means that we don’t have to pre-specify the precise

relationship between each feature and the classification
outcomes.

• But domain expertise helps in choosing which kinds of features to
include in the model. (words, subword units, metadata, …)

‣ And sometimes, highly task-specific features are helpful.

• The decision about what features to include in a model is called
feature engineering.

‣ (There are some algorithmic techniques, such as feature selection, that
can assist in this process.)

‣ More features = more flexibility, but also more expensive to train, more
opportunity for overfitting.

12

Linear Model
• For each input x (e.g., a document or word token), let φ(x) be

a function that extracts a vector of its features.

‣ Features may be binary (e.g., capitalized?) or real-valued (e.g.,
#word=debt).

• Each feature receives a real-valued weight parameter w . Each

candidate label y′ is scored for the token by summing the

weights for the active features:

 wy′
Tφ(x)  

= Σj wy′,j · φj(x)

• For binary classification, equivalent to: sign(wTφ(x)) — +1 or −1

13

14

φ(x) w φ(x′)
bias 1 −3.00 1

capitalized? 0 .22 0
#wordsBefore 6 −.01 3
#wordsAfter 3 .01 8
relativeOffset 0.6

66
1.00 0.2

7leftWord=about 1 .00 0
leftWord=best 0 −2.00 1

rightWord=rates 1 5.00 0
rightWord=in 0 −1.00 1

Wall 1 1.00 0
Street 1 −1.00 0
vets 1 −.05 1
best 0 −1.00 1

in 0 −.01 1
Wall Street 1 4.00 0
Street vets 1 .00 0
vets raise 1 .00 0

x′ = Pet 's best interest in mind , but
vets must follow law

…

• Weights are learned from data

• For the moment, assume
binary classification: financial
or nonfinancial

‣ More positive weights more
indicative of financial.

‣ wTφ(x) = 6.59, wTφ(x′) = −6.74

x = Wall Street vets raise concerns
about interest rates , politics

More then 2 classes

• Simply keep a separate weight vector for each
label: wy

• The label y whose weight vector gives the
highest score wins!

15

Linear Classifiers: Geometric View

16

C
x y

C

u : wᵀu = 0

w

17

Linear Classifiers: Geometric View

x y
decision boundary

18

C

u : w
ᵀu = 0

w

Linear Classifiers: Geometric View

x y

19

C

u : w
ᵀu = 0

Linear Classifiers: Geometric View

x y

Linear Classifiers (> 2 Classes)

20

C

return  
arg maxy wyᵀ Φ(x)

x y

The term “feature”
• The term “feature” is overloaded in NLP/ML. Here are

three different concepts:

‣ Linguistic feature: in some formalisms, a symbolic property
that applies to a unit to categorize it, e.g. [−voice] for a
sound in phonology or [+past] for a verb in morphology.

‣ Percept (or input feature): captures some aspect of an
input x; binary- or real-valued. [The term “percept” is
nonstandard but I think it is useful!]

‣ Parameter (or model feature): an association between some
percept and an output class (or structure) y for which a real-
valued weight or score is learned.

21

ends in -ing

ends in -ing ʌ y=VERB

Weights
• So far we have just discussed the classifier, which relies

on weights.

• The weights are determined by a learner, which fits them
to the training data.

• Naïve Bayes probability estimation can be thought of as
learning the weights with bag-of-words features only.

• Several popular learning algorithms for feature-based
linear models: perceptron, support vector machine (SVM),
maximum entropy a.k.a. multiclass logistic regression

‣ Deep learning models are nonlinear

22

Evaluating Multiclass
Classifiers  

and Retrieval Algorithms

23

Accuracy
• Assume we are disambiguating word senses such

that every token has 1 gold sense label.

• The classifier predicts 1 label for each token in the
test set.

• Thus, every test set token has a predicted label
(pred) and a gold label (gold).

• The accuracy of our classifier is just the % of
tokens for which the predicted label matched the
gold label: #pred=gold/#tokens

24

Precision and Recall
• To measure the classifier with respect to a certain

label y, and there are >2, we distinguish precision and
recall:

‣ precision = proportion of times the label was predicted
and that prediction matched the gold: #pred=gold=y/#pred=y

‣ recall = proportion of times the label was in the gold
standard and was recovered correctly by the classifier:
#pred=gold=y/#gold=y

• The harmonic mean of precision and recall, called F1-
score, balances between the two.  
F1 = 2*precision*recall / (precision + recall)

25

Evaluating Retrieval Systems
• Precision/Recall/F-score are also useful for

evaluating retrieval systems.

• E.g., consider a system which takes a word as input
and is supposed to retrieve all rhymes.

• Now, for a single input (the query), there are often
many correct outputs.

• Precision tells us whether most of the given outputs
were valid rhymes; recall tells us whether most of
the valid rhymes in the gold standard were recovered.

26

Rhymes for “hinge”

27

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

Rhymes for “hinge”

28

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive  
(Type I error)

Rhymes for “hinge”

29

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive  
(Type I error)

False Negative 

(Type II error)

Rhymes for “hinge”

30

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive  
(Type I error)

False Negative 

(Type II error) Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Correctly predicted =  
True Positive

All other words = 
True Negative

Precision & Recall

31

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive  
(Type I error)

False Negative 

(Type II error)

Correctly predicted =  
True Positive

All other words = 
True Negative

Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Precision = TP/(TP+FP)  
= 10/11 = 91%

Recall = TP/(TP+FN)  
= 10/13 = 77%

F1 = 2·P·R/(P+R) = 83%

Perceptron Learner

32

Perceptron Learner

33

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← arg maxy′ wy′ᵀ Φ(x)

 if ŷ ≠ y then # mistake
 wy ← wy + Φ(x)  
 wŷ ← wŷ − Φ(x)
return w

(assumes all
classes have the
same percepts)

Perceptron Learner

34

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← ← x

 if ŷ ≠ y then # mistake
 wy ← wy + Φ(x)  
 wŷ ← wŷ − Φ(x)
return w

(assumes all
classes have the
same percepts)

C decoding is a
subroutine of learning

work through example on the board

35

Perceptron Learner
• The perceptron doesn’t estimate probabilities. It just adjusts weights up

or down until they classify the training data correctly.

‣ No assumptions of feature independence necessary! ⇒ Better accuracy than NB

• The perceptron is an example of an online learning algorithm because it
potentially updates its parameters (weights) with each training datapoint.

• Classification, a.k.a. decoding, is called with the latest weight vector.
Mistakes lead to weight updates.

• One hyperparameter: I, the number of iterations (passes through the
training data).

• Often desirable to make several passes over the training data. The number
can be tuned. Under certain assumptions, it can be proven that the
learner will converge.

36

Perceptron: Avoiding overfitting
• Like any learning algorithm, the perceptron risks

overfitting the training data. Two main techniques
to improve generalization:

‣ Averaging: Keep a copy of each weight vector as it
changes, then average all of them to produce the final
weight vector. Daumé chapter has a trick to make this
efficient with large numbers of features.

‣ Early stopping: Tune I by checking held-out accuracy
on dev data (or cross-val on train data) after each
iteration. If accuracy has ceased to improve, stop
training and use the model from iteration I − 1.

37

http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

Generative vs. Discriminative
• Naïve Bayes allows us to classify via the joint probability of x and y:

‣ p(y | x) ∝ p(y) Πw ∈ x p(w | y)  
 = p(y) p(x | y) (per the independence assumptions of the model)  
 = p(y, x) (chain rule)

‣ This means the model accounts for BOTH x and y. From the joint distribution
p(x,y) it is possible to compute p(x) as well as p(y), p(x | y), and p(y | x).

• NB is called a generative model because it assigns probability to
linguistic objects (x). It could be used to generate “likely” language
corresponding to some y. (Subject to its naïve modeling assumptions!)

‣ (Not to be confused with the “generative” school of linguistics.)

• Some other linear models, including the perceptron, are discriminative:
they are trained directly to classify given x, and cannot be used to
estimate the probability of x or generate x | y.

38

Take-home points
• Feature-based linear classifiers are important to NLP.

‣ You define the features, an algorithm chooses the weights.

✴ The weights are real-valued.

✴ Some classifiers, like logistic regression, are probabilistic: the weights
correspond to probabilities.

‣ More features ⇒ more flexibility, also more risk of overfitting. Because we work

with large vocabularies, not uncommon to have millions of features.

• Some models, like Naïve Bayes, have a closed-form solution for
parameters. Learning is cheap!

• The perceptron and other discriminative methods require fancier learning/
optimization algorithms that iterate multiple times over the data,
adjusting parameters until convergence (or some other stopping criterion).

‣ The advantage: fewer modeling assumptions. Weights can be interdependent.
Discriminative methods usually achieve higher accuracy with sufficient training
data and computation (optimization).

39

Which classifier to use?
• Fast and simple: naïve Bayes

• Very accurate, still simple: perceptron

• Very accurate, probabilistic, more complicated to implement:
MaxEnt

• Potentially best accuracy, more complicated to implement: SVM

• All of these: watch out for overfitting! (NB—smoothing;
Perceptron—early stopping, averaging; MaxEnt—regularization)

• Check the web for free and fast implementations,  
e.g. SVM

light

40

Further Reading:  
Basics & Examples

• Manning: features in linear classifiers 
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
FeatureClassifiers.pdf

• Goldwater: naïve Bayes & MaxEnt examples 
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf

• O’Connor: MaxEnt—incl. step-by-step examples, comparison to naïve
Bayes 
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf

• Daumé: “The Perceptron” (A Course in Machine Learning, ch. 3)  
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

• Neubig: “The Perceptron Algorithm”  
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf

41

http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-FeatureClassifiers.pdf
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf

Further Reading:  
Advanced

• Neubig: “Advanced Discriminative Learning”—MaxEnt w/ derivatives, SGD,
SVMs, regularization  
http://www.phontron.com/slides/nlp-programming-en-06-
discriminative.pdf

• Manning: generative vs. discriminative, MaxEnt likelihood function and
derivatives 
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
MEMMs-Smoothing.pdf, slides 3–20

• Daumé: linear models  
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf

• Smith: A variety of loss functions for text classification  
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-
slides.pdf & http://courses.cs.washington.edu/courses/cse517/16wi/
slides/tc-advanced-slides.pdf

42

http://www.phontron.com/slides/nlp-programming-en-06-discriminative.pdf
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf

