Feature-based Classification with the Perceptron

Nathan Schneider (some slides borrowed from Chris Dyer) ANLP | 11 October 2017

Feature-Based Classification

Word Sense Disambiguation (WSD)

- Given a word in context, predict which sense is being used.
 - Evaluated on corpora such as SemCor, which is fully annotated for WordNet synsets.
- For example: consider joint POS & WSD classification for 'interest', with 3 senses:
 - N:financial (I repaid the loan with interest)
 - N:nonfinancial (I read the news with interest)
 - V:nonfinancial (Can I interest you in a dessert?)

Beyond BoW

- Neighboring words are relevant to this decision.
- More generally, we can define **features** of the input that may help identify the correct class.
 - Individual words
 - Bigrams (pairs of consecutive words: *Wall Street*)
 - Capitalization (interest vs. Interest vs. INTEREST)
 - Metadata: document genre, author, ...
- These can be used in naïve Bayes—"bag of features"
 - With overlapping features, independence assumption is even more naïve: p(y | x) ∝ p(y) … p(Wall | y) p(Street | y) p(Wall Street | y)
 - But other kinds of feature-based classifiers don't make this naïve assumption.

	$\Psi(\Lambda)$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

. . .

 $\phi(\mathbf{x})$

x = Wall Street vets raise concerns about interest rates, politics

spelling feature

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

x = Wall Street vets raise concerns
about interest rates , politics

token positional features

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

e feat from intiate	varac	
	e feat from antiate	

	$\phi(\mathbf{x})$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1
in Wall Street Street vets vets raise	0 1 1 1

. . .

 $\phi(\mathbf{x})$ bias 1 capitalized? ()6 #wordsBefore #wordsAfter З 0.66 relativeOffset leftWord=about 1 leftWord=best $\left(\right)$ rightWord=rates 1 rightWord=in 0 Wall Street vets best 0 ()in Wall Street Street vets vets raise

. . .

x = Wall Street vets raise concerns
about interest rates , politics

immediately neighboring words

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

 $\phi(\mathbf{x})$ bias 1 capitalized? $\left(\right)$ 6 #wordsBefore #wordsAfter 3 0.66 relativeOffset leftWord=about 1 leftWord=best (rightWord=rates 1 rightWord=in 0 Wall Street unigrams vets best $\left(\right)$ ()in Wall Street Street vets vets raise

. . .

x = Wall Street vets raise concerns
about interest rates , politics

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

 $\phi(\mathbf{x})$ bias 1 capitalized? $\left(\right)$ 6 #wordsBefore #wordsAfter 3 0.66 relativeOffset leftWord=about 1 leftWord=best (rightWord=rates 1 rightWord=in ()Wall Street vets best 0 0 in Wall Street bigrams Street vets vets raise

. . .

x = Wall Street vets raise concerns about interest rates , politics

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

	$\Psi(\mathbf{x})$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

. . .

 $h(\mathbf{v})$

x = Wall Street vets raise concerns about interest rates, politics

bias feature (≈class prior): value of 1 for every **x** so the learned weight will reflect prevalence of the class

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

$\phi(\mathbf{x})$	$\phi(\mathbf{x}')$
1	1
0	0
6	3
3	8
0.66	0.27
1	0
0	1
1	0
0	1
1	0
1	0
1	1
0	1
0	1
1	0
1	0
1	0
	φ(x) 1 0 6 3 0.66 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

x = Wall Street vets raise concerns
about interest rates , politics

x' = Pet 's best interest in mind , but
vets must follow law

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

Choosing Features

- Supervision means that we don't have to pre-specify the precise relationship between each feature and the classification outcomes.
- But domain expertise helps in choosing which kinds of features to include in the model. (words, subword units, metadata, ...)
 - And sometimes, highly task-specific features are helpful.
- The decision about what features to include in a model is called feature engineering.
 - (There are some algorithmic techniques, such as *feature selection*, that can assist in this process.)
 - More features = more flexibility, but also more expensive to train, more opportunity for overfitting.

Linear Model

- For each input x (e.g., a document or word token), let $\phi(x)$ be a function that extracts a vector of its features.
 - Features may be binary (e.g., capitalized?) or real-valued (e.g., #word=debt).
- Each feature receives a real-valued weight parameter w. Each candidate label y' is scored for the token by summing the weights for the active features:

 $\mathbf{w}_{y'}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}) = \sum_{j} w_{y',j} \cdot \phi_{j}(\mathbf{x})$

- For binary classification, equivalent to: $\text{sign}(w^{\scriptscriptstyle \mathsf{T}}\varphi(x)) - \texttt{+}1$ or -1

	$\phi(\mathbf{x})$	W	$\phi(\mathbf{x}')$
bias	1	-3.00	1
capitalized?	0	.22	0
#wordsBefore	6	01	3
#wordsAfter	3	.01	8
relativeOffset	0.6	1.00	0.2
leftWord=about	1	.00	0
leftWord=best	0	-2.00	1
rightWord=rates	1	5.00	0
rightWord=in	0	-1.00	1
Wall	1	1.00	0
Street	1	-1.00	0
vets	1	05	1
best	0	-1.00	1
in	0	01	1
Wall Street	1	4.00	0
Street vets	1	.00	0
vets raise	1	.00	0

. . .

x = Wall Street vets raise concerns
about interest rates , politics

x' = Pet 's best interest in mind , but
vets must follow law

- Weights are learned from data
- For the moment, assume binary classification: financial or nonfinancial
 - More positive weights more indicative of financial.
 - $\mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}) = \mathbf{6.59}, \ \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}') = -6.74$

More then 2 classes

- Simply keep a separate weight vector for each label: w_y
- The label y whose weight vector gives the highest score wins!

The term "feature"

- The term "feature" is overloaded in NLP/ML. Here are three different concepts:
 - Linguistic feature: in some formalisms, a symbolic property that applies to a unit to categorize it, e.g. [-voice] for a sound in phonology or [+past] for a verb in morphology.
 - Percept (or input feature): captures some aspect of an input x; binary- or real-valued. [The term "percept" is nonstandard but I think it is useful!]
 - **Parameter** (or **model feature**): an association between some percept and an output class (or structure) y for which a realvalued weight or score is learned. ends in -ing $\wedge y = VERB$

Weights

- So far we have just discussed the classifier, which relies on weights.
- The weights are determined by a learner, which fits them to the training data.
- Naïve Bayes probability estimation can be thought of as learning the weights with bag-of-words features only.
- Several popular learning algorithms for feature-based linear models: perceptron, support vector machine (SVM), maximum entropy a.k.a. multiclass logistic regression
 - Deep learning models are nonlinear

Evaluating Multiclass Classifiers and Retrieval Algorithms

Accuracy

- Assume we are disambiguating word senses such that every token has 1 gold sense label.
- The classifier predicts 1 label for each token in the test set.
- Thus, every test set token has a predicted label (pred) and a gold label (gold).
- The accuracy of our classifier is just the % of tokens for which the predicted label matched the gold label: #pred=gold/#tokens

Precision and Recall

- To measure the classifier with respect to a certain label y, and there are >2, we distinguish precision and recall:
 - precision = proportion of times the label was predicted and that prediction matched the gold: #pred=gold=y/#pred=y
 - recall = proportion of times the label was in the gold standard and was recovered correctly by the classifier: #pred=gold=y/#gold=y
- The harmonic mean of precision and recall, called F₁-score, balances between the two.
 F₁ = 2*precision*recall / (precision + recall)

Evaluating Retrieval Systems

- Precision/Recall/F-score are also useful for evaluating retrieval systems.
- E.g., consider a system which takes a word as input and is supposed to retrieve all rhymes.
- Now, for a single input (the query), there are often many correct outputs.
- Precision tells us whether most of the given outputs were valid rhymes; recall tells us whether most of the valid rhymes in the gold standard were recovered.

Rhymes for "hinge"

Rhymes for "hinge"

Rhymes for "hinge"

Precision & Recall

Perceptron Learner

work through example on the board

Perceptron Learner

- The perceptron doesn't estimate probabilities. It just adjusts weights up or down until they classify the training data correctly.
 - No assumptions of feature independence necessary! ⇒ Better accuracy than NB
- The perceptron is an example of an **online** learning algorithm because it potentially updates its parameters (weights) with each training datapoint.
- Classification, a.k.a. decoding, is called with the latest weight vector. Mistakes lead to weight updates.
- One hyperparameter: I, the number of iterations (passes through the training data).
- Often desirable to make several passes over the training data. The number can be tuned. Under certain assumptions, it can be proven that the learner will converge.

Perceptron: Avoiding overfitting

- Like any learning algorithm, the perceptron risks overfitting the training data. Two main techniques to improve generalization:
 - Averaging: Keep a copy of each weight vector as it changes, then average all of them to produce the final weight vector. <u>Daumé chapter</u> has a trick to make this efficient with large numbers of features.
 - ► Early stopping: Tune I by checking held-out accuracy on dev data (or cross-val on train data) after each iteration. If accuracy has ceased to improve, stop training and use the model from iteration I – 1.

Generative vs. Discriminative

- Naïve Bayes allows us to classify via the **joint probability** of **x** and *y*:
 - $p(y \mid \mathbf{x}) \propto p(y) \prod_{w \in \mathbf{x}} p(w \mid y)$ = $p(y) p(\mathbf{x} \mid y)$ (per the independence assumptions of the model) = $p(y, \mathbf{x})$ (chain rule)
 - This means the model accounts for BOTH x and y. From the joint distribution p(x,y) it is possible to compute p(x) as well as p(y), p(x | y), and p(y | x).
- NB is called a generative model because it assigns probability to linguistic objects (x). It could be used to generate "likely" language corresponding to some y. (Subject to its naïve modeling assumptions!)
 - (Not to be confused with the "generative" school of linguistics.)
- Some other linear models, including the perceptron, are discriminative: they are trained directly to classify given x, and cannot be used to estimate the probability of x or generate x | y.

Take-home points

- Feature based linear classifiers are important to NLP.
 - You define the features, an algorithm chooses the weights.
 - * The weights are real-valued.
 - * Some classifiers, like **logistic regression**, are probabilistic: the weights correspond to probabilities.
 - More features ⇒ more flexibility, also more risk of overfitting. Because we work with large vocabularies, not uncommon to have millions of features.
- Some models, like Naïve Bayes, have a closed-form solution for parameters. Learning is cheap!
- The **perceptron** and other discriminative methods require fancier learning/ optimization algorithms that iterate multiple times over the data, adjusting parameters until convergence (or some other stopping criterion).
 - The advantage: fewer modeling assumptions. Weights can be interdependent.
 Discriminative methods usually achieve higher accuracy with sufficient training data and computation (optimization).

Which classifier to use?

- Fast and simple: **naïve Bayes**
- Very accurate, still simple: **perceptron**
- Very accurate, probabilistic, more complicated to implement: MaxEnt
- Potentially best accuracy, more complicated to implement: SVM
- All of these: watch out for **overfitting**! (NB—smoothing; Perceptron—early stopping, averaging; MaxEnt—regularization)
- Check the web for free and fast implementations, e.g. SVM^{light}

Further Reading: Basics & Examples

- Manning: features in linear classifiers <u>http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-</u> <u>FeatureClassifiers.pdf</u>
- Goldwater: naïve Bayes & MaxEnt examples <u>http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf</u>
- O'Connor: MaxEnt—incl. step-by-step examples, comparison to naïve Bayes <u>http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf</u>
- Daumé: "The Perceptron" (A Course in Machine Learning, ch. 3) <u>http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf</u>
- Neubig: "The Perceptron Algorithm" <u>http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf</u>

Further Reading: Advanced

- Neubig: "Advanced Discriminative Learning"—MaxEnt w/ derivatives, SGD, SVMs, regularization <u>http://www.phontron.com/slides/nlp-programming-en-06-</u> <u>discriminative.pdf</u>
- Manning: generative vs. discriminative, MaxEnt likelihood function and derivatives <u>http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf</u>, slides 3–20
- Daumé: linear models <u>http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf</u>
- Smith: A variety of loss functions for text classification <u>http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf</u> & <u>http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf</u>