Finite-State Transaucers

ANLP | 25 September 2017

slides from Marine Carpuat

Sheeptalk!

Language:

Regular Expression:
/baa+!/

Finite-State Automaton:
a a

Accept or Generate?

- Formal languages are sets of strings
— Strings composed of symbols drawn from a finite alphabet

 Finite-state automata define formal languages
— Without having to enumerate all the strings in the language

« Two views of FSAs:
— Acceptors that can tell you if a string is in the language
— Generators to produce all and only the strings in the language

Exercise

Define an FSA representing the language of
all non-zero binary strings of even length

Exercise

Define an FSA representing the language of
all non-zero binary strings of odd length

Introducing Non-Determinism

e Deterministic vs. Non-deterministic FSAs

b a a !
ORORORO
b a . a !
)) &)
. EpS|Ion (€) transmons

Using NFSAs to Accept Strings

 What does it mean?

— Accept: there exist at least one path (need not be all
paths)

— Reject: no paths exist

* General approaches

— Backup: add markers at choice points, then possibly
revisit unexplored arcs at marked choice point

— Explore paths in parallel
— Recognition with NFSAs as search through state space

What's the point?

* NFSAs and DFSAs are equivalent

— For every NFSA, there is a equivalent DFSA
(and vice versa)

» Equivalence between regular expressions
and FSA

* Why use NFSAs?

Reqgular Language: Definition

* s aregular language
* Ya €2 U Eg, {a}is areqgular language

 If L, and L, are regular languages, then so
are:

-L,-L={xyl|x€eL,,y€L} the concatenation
of L, and L,

— L, U L,, the union or disjunction of L, and L,
— L%, the Kleene closure of L,

Reqular Languages: Starting
PoINtS

(a) r=€ (b) r=0& (c) r=a

Regular Langu

Concatenatl

- — S

Regular Languages: Disjunction

Regular Languages: Kleene
Closure

Finite-State Transducers (FSTs)

» A two-tape automaton that recognizes or
generates pairs of strings

* Think of an FST as an FSA with two symbol
strings on each arc

aa:b b€
b:a

Yo bT

a:b

Four-fold view of FSTs

As a recognizer
As a generator
As a translator
As a set relater

Lexical i cl a ‘ t |+N +P|_I

Smﬁrcei c| a ‘ t | s ‘

Morphological Parsing

« Computationally decompose input forms
Into component morphemes

« Components needed:
— A lexicon (stems and affixes)

— A model of how stems and affixes combine
— Orthographic rules

Morphological Parsing: Examples

WORD STEM (+FEATURES)

cats cat +N +PL

cat cat +N +SG

cities city +N +PL

geese goose +N +PL

ducks (duck +N +PL) or (duck +V +3SG)

merging merge +V +PRES-PART
caught (catch +V +PAST-PART) or (catch +V +PAST)

Ditfferent Approaches

_exicon only
Rules only

_exicon and rules
— finite-state automata
— finite-state transducers

Lexicon-only

» Simply enumerate all surface forms and
analyses

acclaim acclaim SN$
acclaim acclaim $SV+0$
acclaimed acclaim S$V+ed$S
acclaimed acclaim $V+en$
acclaiming acclaim $V+ings$
acclaims acclaim S$SN+s$
acclaims acclaim S$V+s$
acclamation acclamation S$NS
acclamations acclamation SN+s$
acclimate acclimate SV+05S
acclimated acclimate SV+eds$S
acclimated acclimate SV+ens$S
acclimates acclimate SV+sS
acclimating acclimate SV+ing$

Rule-only

« (Cascading set of rules « Example
— S € — generalizations
— ation — e — generalization
— ize - ¢ — generalize
— general

— organizations
— organization
— organize
— organ

Lexicon + Rules

» FSA: for recognition

— Recognize all grammatical input and only
grammatical input

« FST: for analysis

— If grammatical, analyze surface form into
component morphemes

— Otherwise, declare input ungrammatical

FSA: English Noun Morphology

reg-noun irreg-pl-noun irreg-sg-noun plural
fox geese goose -S

cat sheep sheep

dog mice mouse

Note problem with orthography!
reg—noun plural (—s)

irreg—pl-noun

irreg—sg—noun

FSA: English Noun Morphology
f ﬂ_o X

FSA: English Adjectival
Morphology

* Examples:

— big, bigger, biggest

— small, smaller, smallest

— happy, happier, happiest, happily

— unhappy, unhappier, unhappiest, unhappily
* Morphemes:

— Roots: big, small, happy, etc.

— Affixes: un-, -er, -est, -ly

FSA: English Adjectival
\/Iorpho\ogy

adj—root

oWo

adj-root,: {happy, real, ...}
adj-root,: {big, small, }

Morphological Parsing with FSTs

e Limitation of FSA:

— Accepts or rejects an input... but doesn’t
actually provide an analysis

 Use FSTs instead!

— One tape contains the input, the other tape as
the analysis

Lexica/§ clal|t |+N[+PI f

Surfaceé cla|t]|s f

Terminology

 Transducer alphabet (pairs of symbols):
—a:b = a on the upper tape, b on the lower tape

— a:€ = g on the upper tape, nothing on the
lower tape

— If a:a, write a for shorthand

» Special symbols
— # = word boundary
— A = morpheme boundary
— (For now, think of these as mapping to €)

FST for English Nouns

reg-noun

irreg-sg-noun_ d, +N ds +Sg

irreg-pl-noun

* What's the problem here?

FST for English Nouns

Handling Ort

nography

Lexical 3 c|a +N |+PI f
Surface 3 c|a S f
Surface <§ i X | e 5

Name Description of Rule Example

Consonant 1-letter consonant doubled before -ing/-ed beg/begging
doubling

E deletion silent e dropped before -ing and -ed make/making

E insertion e added after -s,-z,-x,-c/, -sh before -s watch/watches

Y replacement -y changes to -ie before -s, -i before -ed try/tries

K insertion

verbs ending with vowel + -c add -k

panic/panicked

Complete Mor

nhologica

Parser

%

flo|x|+N[+PL
' LEXICON-FST
{ flo|x|”|s
FST,| 00T FsT
§ flo|x|e|s

Regular Relations

® A regular relation describes:

e for every state change in a regular automaton
e a finite set of possible outputs
® Regular relations are like bilingual dictionaries

for two regular languages
 They allow inversion (we can go from L2 <> L1)
* Allow composition (L1 > L2, L2 >L3 - L1 > L3)

(:)}—'*Q}—»(?) slide from Amir Zeldes

FSTs and Ambiguity

* unionizable
— union +ize +able
— un+ ion +ize +able
® aSSess

— assess +V
— ass +N +essN

Practical NLP Applications

 |n practice, it is almost never necessary to write FSTs by
hand...

« Typically, one writes rules:

— Chomsky and Halle Notation:a - b/ c_d
= rewrite a as b when occurs between c and d

— E-Insertion rule

X

c—5>e/ < S ¢ A S #
Z

* Rule = FST compiler handles the rest...

