
Finite-State Transducers
ANLP | 25 September 2017

slides from Marine Carpuat

1

Sheeptalk!
baa!
baaa!
baaaa!
baaaaa!
...

q0 q1 q2 q3 q4

b a a

a

!

/baa+!/

Language:

Regular Expression:

Finite-State Automaton:

Accept or Generate?
• Formal languages are sets of strings

– Strings composed of symbols drawn from a finite alphabet

• Finite-state automata define formal languages
– Without having to enumerate all the strings in the language

• Two views of FSAs:
– Acceptors that can tell you if a string is in the language
– Generators to produce all and only the strings in the language

Exercise

Define an FSA representing the language of
all non-zero binary strings of even length

Exercise

Define an FSA representing the language of
all non-zero binary strings of odd length

Introducing Non-Determinism
• Deterministic vs. Non-deterministic FSAs

• Epsilon (H) transitions

Using NFSAs to Accept Strings
• What does it mean?

– Accept: there exist at least one path (need not be all
paths)

– Reject: no paths exist

• General approaches
– Backup: add markers at choice points, then possibly

revisit unexplored arcs at marked choice point
– Explore paths in parallel
– Recognition with NFSAs as search through state space

What’s the point?
• NFSAs and DFSAs are equivalent

– For every NFSA, there is a equivalent DFSA
(and vice versa)

• Equivalence between regular expressions
and FSA

• Why use NFSAs?

Regular Language: Definition
• � is a regular language
• ∀a ∈ Σ ∪ ε, {a} is a regular language
• If L1 and L2 are regular languages, then so

are:
– L1 · L2 = {x y | x ∈ L1 , y ∈ L2 }, the concatenation

of L1 and L2

– L1 ∪ L2, the union or disjunction of L1 and L2

– L1∗, the Kleene closure of L1

Regular Languages: Starting
Points

Regular Languages:
Concatenation

Regular Languages: Disjunction

Regular Languages: Kleene
Closure

Finite-State Transducers (FSTs)
• A two-tape automaton that recognizes or

generates pairs of strings
• Think of an FST as an FSA with two symbol

strings on each arc
– One symbol string from each tape

Four-fold view of FSTs
• As a recognizer
• As a generator
• As a translator
• As a set relater

Morphological Parsing
• Computationally decompose input forms

into component morphemes
• Components needed:

– A lexicon (stems and affixes)
– A model of how stems and affixes combine
– Orthographic rules

Morphological Parsing: Examples
WORD STEM (+FEATURES)
cats cat +N +PL
cat cat +N +SG
cities city +N +PL
geese goose +N +PL
ducks (duck +N +PL) or (duck +V +3SG)
merging merge +V +PRES-PART
caught (catch +V +PAST-PART) or (catch +V +PAST)

Different Approaches
• Lexicon only
• Rules only
• Lexicon and rules

– finite-state automata
– finite-state transducers

Lexicon-only
• Simply enumerate all surface forms and

analyses
acclaim acclaim N
acclaim acclaim $V+0$
acclaimed acclaim $V+ed$
acclaimed acclaim $V+en$
acclaiming acclaim $V+ing$
acclaims acclaim $N+s$
acclaims acclaim $V+s$
acclamation acclamation N
acclamations acclamation $N+s$
acclimate acclimate $V+0$
acclimated acclimate $V+ed$
acclimated acclimate $V+en$
acclimates acclimate $V+s$
acclimating acclimate $V+ing$

Rule-only
• Cascading set of rules

– s → ε
– ation → e
– ize → ε
– …

• Example
– generalizations

→ generalization
→ generalize
→ general

– organizations
→ organization
→ organize
→ organ

Lexicon + Rules
• FSA: for recognition

– Recognize all grammatical input and only
grammatical input

• FST: for analysis
– If grammatical, analyze surface form into

component morphemes
– Otherwise, declare input ungrammatical

FSA: English Noun Morphology
Lexicon

Rule

reg-noun irreg-pl-noun irreg-sg-noun plural

fox

cat

dog

geese

sheep

mice

goose

sheep

mouse

-s

Note problem with orthography!

FSA: English Noun Morphology

FSA: English Adjectival
Morphology

• Examples:
– big, bigger, biggest
– small, smaller, smallest
– happy, happier, happiest, happily
– unhappy, unhappier, unhappiest, unhappily

• Morphemes:
– Roots: big, small, happy, etc.
– Affixes: un-, -er, -est, -ly

FSA: English Adjectival
Morphology

adj-root1: {happy, real, …}
adj-root2: {big, small, …}

Morphological Parsing with FSTs
• Limitation of FSA:

– Accepts or rejects an input… but doesn’t
actually provide an analysis

• Use FSTs instead!
– One tape contains the input, the other tape as

the analysis

Terminology
• Transducer alphabet (pairs of symbols):

– a:b = a on the upper tape, b on the lower tape
– a:ε = a on the upper tape, nothing on the

lower tape
– If a:a, write a for shorthand

• Special symbols
– # = word boundary
– ^ = morpheme boundary
– (For now, think of these as mapping to ε)

FST for English Nouns
• First try:

• What’s the problem here?

FST for English Nouns

Handling Orthography

Complete Morphological Parser

Regular Relations
⦿ A regular relation describes:

• for every state change in a regular automaton
• a finite set of possible outputs

⦿ Regular relations are like bilingual dictionaries
for two regular languages
• They allow inversion (we can go from L2 <> L1)
• Allow composition (L1 > L2, L2 > L3 ! L1 > L3)

slide from Amir Zeldes

FSTs and Ambiguity
• unionizable

– union +ize +able
– un+ ion +ize +able

• assess
– assess +V
– ass +N +essN

Practical NLP Applications
• In practice, it is almost never necessary to write FSTs by

hand…
• Typically, one writes rules:

– Chomsky and Halle Notation: a → b / c__d
= rewrite a as b when occurs between c and d

– E-Insertion rule

• Rule → FST compiler handles the rest…

ε → e /
x
s
z

^ __ s #

