
Algorithms for NLP
Finite State Morphology
Amir Zeldes  
amir.zeldes@georgetown.edu

21 September 2017

mailto:amir.zeldes@georgetown.edu

Regular Expressions – a language?
⦿ By now we’ve all seen  

regular expressions
⦿ Very useful for finding 

phone numbers, URLs
⦿ Or potentially  

catching killers:

XKCD

Regular Expressions – a language?
⦿ Can regex capture the grammar of a language?
⦿ What is the grammatical structure of e-mail?

ComputerHope

From regex to natural language
⦿ Regular expressions describe a simple grammar

• For example, you could think of a regex: 
 /DA*N/

• As describing a Noun Phrase: 
 Determiner (Adj)* Noun  
 The quick brown fox 
 a house  
 my lovely cat

• Just replace each noun with N, each Adj with A…
• We can now recognize noun phrases!  

(why should we?)

From regex to natural language
⦿ In fact, syntax is more complex than what we

can express with regex:

pick the kids up: /VDNP/

• But only certain verbs take certain particles, objects…
• Can’t prevent matching:
sleep the kids up
pick the kids over

From regex to natural language
⦿ But for morphology, word formation is often

describable using something like regex:
• Super anti adverbs: /(super)?(anti)?ADJ(ly)?/  

 super-anti-ingenious-ly
• Noun compounds: /N+N/  

 nightgown
⦿ But what is ADJ? or N?
⦿ Can we do regex with a different 'alphabet'?

⦿ A grammar of expressions using any 'alphabet' is
called a regular language

Regular languages
⦿ In fact we can create a regular language

grammar using:
• Some alphabet Σ with symbols a, b, c…
• Any single symbol is a possible regular grammar (just a)
• Any union (a OR b), concatenation (a THEN b) or Kleene

star (a*) of a symbol or language
⦿ Using these constraints, we can build any

regular grammar using any set of symbols

Finite State Methods
⦿ Another way to look at regular grammars is thinking

of a reader head
⦿ Moving from character to character on a ribbon
⦿ /ba+$/ matches like this:

• Initial state: read till you see a b
• The letter b is reached -> change to state 2
• Move right on the ribbon – look for a
● If a is seen -> stay in the same state, keep going

●Else if non-a is seen -> match fails

●Else if input runs out -> done (successful match)

Finite state automaton - FSA
⦿ This type of computing characterizes an FSA:

• Finite number of states, including start and end
• Transitions depend on input

⦿ More formally:
• FSA ≡ {Q, q0, F, Σ, δ(q,i)}

⦿ Where:
• Q is a set of possible states qi… qn
• q0 is the starting state within Q
• F is a subset of end states within Q
• Σ is the alphabet
• δ(q,i) is a set of allowable transitions from state q given

input i

Finite State Morphology
⦿ Among most successful applications of FSA
⦿ Popular for agglutinative languages (Turkish,

Japanese), and highly inflected concatenative
ones (e.g. Slavic)

⦿ Some approaches to non-concatenative
morphologies (Arabic, Hebrew)

⦿ Basic tasks:
• Morphological parsing
• Generation

From NL input to states
⦿ Famous Turkish example (Jurafsky & Martin 2008,

after Kemal Oflazer):
• Uygarlaştɪramadɪklarɪmɪzdanmɪşsɪnizcasɪna 

civil-bec-caus-npot-part-pl-p1pl-abl-past-2pl-adv 
"such that you can't be made civilized by us" 
(civil-ize-ate-unable-ing-s-our-from-did-you-ly)

⦿ Morphemes follow a particular order
⦿ Many are optional
⦿ Possible word formations can be described via

states…

Morphological parsing
⦿ The task:

• Given some word in language X as input:
• Output lexicon forms of constituent parts (“morphemes”)
• Give morphological analysis to the units

⦿ Ambiguity is possible:
• friendly (ADJ) = friend:N + ly:ADJ
• friendly (ADV) = friend:N + ly:ADJ + 0:ADV  

(for ?friendlyly, Bauer 1992)
⦿ In ambiguous cases: give all possible analyses

English adjectives
⦿ What would we need to model forms like

these?
• happy, happier, unhappy, happily, unhappily
• lucky, luckiest, unlucky, luckily, unluckily
• big, bigger, biggest
• …

⦿ What is the alphabet like?
⦿ What transitions are possible?

First approximation
⦿ A first approach would be to model states for

each morpheme
⦿ Allow transitions based on order (Antworth 1990)

➢Problems?

Problems
⦿ Some ungrammatical forms will be possible:

• bigly
• Unbiggest
• …

⦿ Orthography would need to be handled:
• happyer
• happyly

Solutions
⦿ Automata must become more complex to

model the phenomenon
⦿ Just the beginning:

Writing automata
⦿ Many frameworks exist for FSM
⦿ Influential early framework: Xerox FSM (XFSM)

• Beesley & Karttunen (2003)
⦿ Many (re)implementations:

• HFSM, Foma, OpenFST/PyFST
• Compiled in C++ for performance
• Bindings for Python available (though may be tricky to

compile, OS dependent)
• We will work with Foma today (platform independent)

Running Foma
⦿ You should have Foma for your OS from here:

• https://code.google.com/p/foma/
⦿ To run it, open a terminal window

• Windows: Window key -> cmd
• Mac: run Terminal
• Navigate to directory: cd YOUR_PATH
• Run foma: foma (or foma.exe)

https://code.google.com/p/foma/
https://code.google.com/p/foma/

Running Foma
⦿ Interactive mode is like an interpreter (e.g. in Python):

foma[0]: define Consonant [p|t|k|b|d|g|l|m|n|r|s|z];
defined Consonant: 543 bytes. 2 states, 12 arcs, 12 paths.
foma[0]: define Vowel [a|e|i|o|u];
defined Vowel: 333 bytes. 2 states, 5 arcs, 5 paths.
foma[0]: regex Consonant Vowel+;
757 bytes. 3 states, 22 arcs, Cyclic.
foma[1]: words # Outputs possible inputs which terminate
pa
paa
pae
pe
pea
...

Some regex differences to POSIX
⦿ The regex syntax used in Python is called POSIX
⦿ XFST / Foma syntax has some differences:

• Use spaces to delimit symbols:
● cat = a single symbol, called cat
● c a t = three symbols, called c, a, t
● {cat} = alternative spelling of c, a, t

• The dot is replace by ?:
● {c ? t} = cat, cot, cut …

• Use brackets instead of ? for optional:
● (UN) ADJ

• % is the escape symbol (like \): %? = a real question mark
• \ is negation: \a = not an a
• The only disjunction (OR) is: [x|y] – no ranges like [abc]

Strings and symbol names
⦿ Definitions are most of the work, look like this:

• define NAME DEFINITION;
⦿ Definitions can contain string literals in {…} or

other names:
• define first_name {Amir};
• define last_name {Zeldes};
• define full_name first_name last_name;

Strings and symbol names
⦿ We can also allow alternative values:

define first [{Bobby} | {Amir}];
define last {Zeldes};
define full first last;
regex full;
words;

BobbyZeldes
AmirZeldes

Let's try the English adjectives
⦿ Suppose adjectives look like this:

• Can start with un-
• Have a stem like big or clear
• Can end in -er, -est

⦿ Use:
• define SYMBOL1 [{string1}|{string2}|…];
• regex (SYMBOL1) SYMBOL2 …;
• words;

Solution
foma[0]: define UN {un};
defined UN: 212 bytes. 3 states, 2 arcs, 1 path.
foma[0]: define STEM [{big}|{clear}];
defined STEM: 423 bytes. 8 states, 8 arcs, 2 paths.
foma[0]: define SUFFIX [{er}|{est}];
defined SUFFIX: 303 bytes. 4 states, 4 arcs, 2 paths.
foma[0]: regex (UN) STEM (SUFFIX);
607 bytes. 13 states, 16 arcs, 12 paths.
foma[1]: words
unbig
unbiger
unbigest
unclear
unclearer
unclearest
…

Visualizing automata
⦿ It can be useful to visualize FSAs as graphs
⦿ Generic graph visualization software:

• http://www.graphviz.org/
• Defines a format for graphs
• Graphs are rendered using layouting algorithms
• Several options come with Graphviz, notably dot

⦿ You also need a viewer:
• A simple cross-platform option: ZGR Viewer
• http://zvtm.sourceforge.net/zgrviewer.html

http://www.graphviz.org/
http://www.graphviz.org/
http://zvtm.sourceforge.net/zgrviewer.html
http://zvtm.sourceforge.net/zgrviewer.html

Visualizing automata
⦿ Example: this little NLP logo:

digraph finite_state_machine {  
 rankdir=LR; 
 size="8,5"  
 node [shape = doublecircle]; N P; 
 node [shape = circle]; 
 N -> L [label = "t+1"]; 
 L -> P [label = "t+2"]; 
 P-> P [label = "self"]; 
}

Our syllable example
⦿ Foma [1]: print dot > some_file_name.dot
⦿ Open with a GraphViz viewer (e.g. ZGRViewer)

• Note the states and transitions
• Start and end symbols (0 and double circle)

Script files
⦿ More often we'll define an automaton in a

separate file
⦿ Let's look at a script describing English

numerals:
• Download this script by Lauri Karttunen:

http://corpling.uis.georgetown.edu/amir/public/numeral.script

http://corpling.uis.georgetown.edu/amir/public/numeral.script

An example: English numerals
⦿ Suppose we want to model the grammar of

numbers from 1 – 99
⦿ First we need one – nine:

Excerpt from Karttunen (2004)  
List the numbers from one to nine
define OneToNine [{one} | {two} | {three} | {four} | {five}
| {six} | {seven} | {eight} | {nine}];

An example: English numerals
⦿ We need to deal with teens + multiples of ten
⦿ What kinds of morphemes are there?
⦿ Schematically:

• thir + [{teen}|{ty}]
• four + [{teen}|{ty}]
• fif + [{teen}|{ty}]
• …

⦿ Ten, eleven, twelve and twenty are separate

An example: English numerals
Rules for teens:

define TeenTen [{thir} | {fif} | {six} | {seven} | {eigh} |
{nine}];
define Teens [{ten} | {eleven} | {twelve} |
 [TeenTen | {four}] {teen}];

Now things that can be followed by -ty:
define TenStem [TeenTen | {twen} | {for}];

An example: English numerals
Finally, allow twenty one, twenty two…:
define Tens [TenStem {ty} ({-} OneToNine)];

Now all possible numbers are:
define OneToNinetyNine [OneToNine | Teens | Tens];

Push our automaton to the stack for use
regex OneToNinetyNine;
print random-words
exit

Result
foma[1]: random-words
[1] fifty-five
[1] seven
[2] fifty
[1] forty
[1] fifty-nine
[1] eleven
[1] twenty
[2] thirty
[1] ten
[1] nineteen
[1] two
[1] nine
[1] ninety-seven

Running the script
⦿ To run a script file from the terminal:

• foma -l numeral.script

What next
⦿ This has been a very shallow introduction:

‘regex with morphemes’
⦿ FSMs can go much further
⦿ Usually:

• Two way translation between forms and analyses
• Formally, Finite-State Transducers (FSTs)

What next
⦿ More realistic examples:

398 bytes. 7 states, 7 arcs, 2 paths.
foma[1]: up
apply up> cats
cat+N+Pl
foma[1]: down
apply down> cat+N+Pl
cats

⦿ The basis for generating inflected forms in NLG,
analysis in morphologically rich NLU

Exercise for home – Japanese verbs
⦿ You can practice writing finite-state

morphologies on a language you are less
familiar with

⦿ Try modeling four verbs from the two major
conjugation classes in Japanese:
• -eru/-iru verbs: taberu 'eat', nobiru 'stretch'
• -u verbs: yomu 'read', kaku 'write'

Exercise for home – Japanese verbs
⦿ We can model the causative and passive inflections:

• -iru/-eru verbs:
●Drop 'ru'

●Add saseru (causative) or rareru (passive)
●or both: saserareru (be made to do something)
● tabesaseru: make someone eat; nobirareru: be stretched

• -u verbs:
●Drop 'u'

●Add aseru (causative) or areru (passive)
●or both: aserareru
●yomaserareru: be made to read

tabe

 sase

rare

ru

Exercise for home – Japanese verbs
⦿ Produce a script that:

• Defines the verb stems in each class
• Defines the necessary suffixes
• Combines the suffixes correctly with each class

⦿ Using the words command, you should get all 3
possible inflected forms for all 4 verbs (12 forms):
• tabesaseru, taberareu, tabesaserareru (be made to eat)
• …

⦿ If you want to learn more, send me an e-mail and
stop by LING-362 in two weeks!

