WordNet Similarity & Edit Distance

Nathan Schneider ANLP | 18 September 2017

Most slides from Jurafsky & Martin SLP3 lectures

Computing with a thesaurus

Word Similarity: Thesaurus Methods

Word Similarity

- Synonymy: a binary relation
 - Two words are either synonymous or not
- Similarity (or distance): a looser metric
 - Two words are more similar if they share more features of meaning
- Similarity is properly a relation between **senses**
 - The word "bank" is not similar to the word "slope"
 - Bank¹ is similar to fund³
 - Bank² is similar to slope⁵
- But we'll compute similarity over both words and senses

Why word similarity

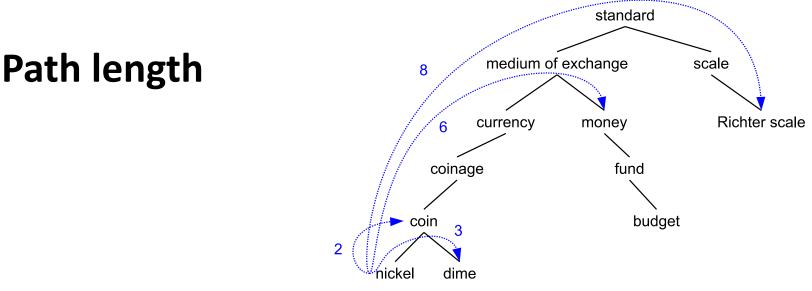
- A practical component in lots of NLP tasks
 - Question answering
 - Natural language generation
 - Automatic essay grading
 - Plagiarism detection
- A theoretical component in many linguistic and cognitive tasks
 - Historical semantics
 - Models of human word learning
 - Morphology and grammar induction

Word similarity and word relatedness

- We often distinguish word similarity from word relatedness
 - Similar words: near-synonyms
 - Related words: can be related any way
 - car, bicycle: similar
 - car, gasoline: **related**, not similar

Two classes of similarity algorithms

- Thesaurus-based algorithms
 - Are words "nearby" in hypernym hierarchy?
 - Do words have similar glosses (definitions)?
- Distributional algorithms
 - Do words have similar distributional contexts?
 - Distributional (Vector) semantics on Thursday!



- Two concepts (senses/synsets) are similar if they are near each other in the thesaurus hierarchy
 - =have a short path between them
 - concepts have path 1 to themselves

Path similarity

- pathlen(c₁, c₂) = 1 + number of edges in the shortest path in the hypernym graph between sense nodes c₁ and c₂
- ranges from 0 to 1 (identity):

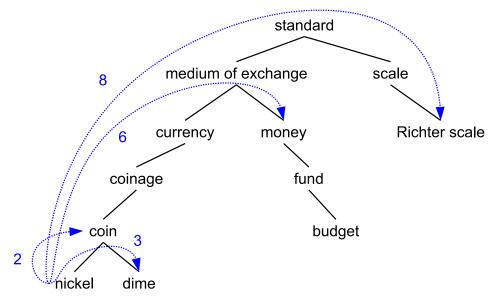
• simpath(
$$c_1, c_2$$
) = $\frac{1}{\text{pathlen}(c_1, c_2)}$

• wordsim $(w_1, w_2) = \max_{c_1 \in \text{senses}(w_1), c_2 \in \text{senses}(w_2)} \sin(c_1, c_2)$

Example: path-based similarity

 $\operatorname{simpath}(c_1, c_2) = 1/\operatorname{pathlen}(c_1, c_2)$

simpath(*nickel,coin*) = 1/2 = .5simpath(*fund,budget*) = 1/2 = .5simpath(*nickel,currency*) = 1/4 = .25simpath(*nickel,money*) = 1/6 = .17simpath(*coinage,Richter scale*) = 1/6 = .17

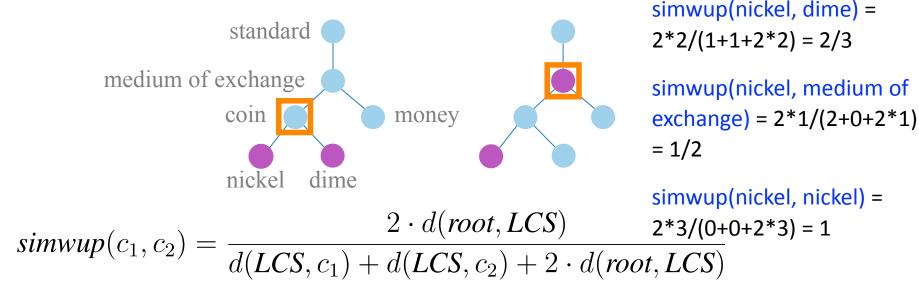


Problem with basic path-based similarity

- Assumes each link represents a uniform distance
 - But *nickel* to *money* seems to us to be closer than *nickel* to *standard*
 - Nodes high in the hierarchy are very abstract
- We instead want a metric that
 - Represents the cost of each edge independently
 - Words connected only through abstract nodes
 - are less similar

Wu-Palmer similarity

- Let depth in the hierarchy inform semantic closeness
 - Least Common Subsumer (LCS) of two nodes: the most specific common ancestor in the hierarchy



Similarity & Distance: Form vs. Meaning

- Path similarity, Wu-Palmer similarity defined on [0,1]
 - Higher = more similar; 1 = identical
 - (There are other ways of measuring semantic similarity between words, as we will see later in the course!)
- With *distance* measures, higher = more different
- WordNet measures are about meaning. It is also useful measuring similarity/distance with respect to form.

Minimum Edit Distance

Definition of Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe"Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

• Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other

Minimum Edit Distance

• Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

Minimum Edit Distance

INTE * NTION | | | | | | | | | * EXECUTION dss is

- If each operation has cost of 1 (Levenshtein)
 - Distance between these is 5
- If substitutions cost 2
 - Distance between them is 8

Alignment in Computational Biology

• Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• An alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

• Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

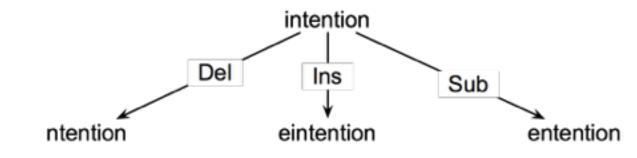
- Evaluating Machine Translation and speech recognition
- R Spokesman confirms senior government adviser was shot
 H Spokesman said the senior adviser was shot dead
 S I D I
- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - **Operators**: insert, delete, substitute

20

- **Goal state**: the word we're trying to get to
- Path cost: what we want to minimize: the number of edits



Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states.

Defining Min Edit Distance

- For two strings
 - X of length *n*
 - Y of length m
- We define D(*i,j*)
 - the edit distance between X[1..*i*] and Y[1..*j*]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Minimum Edit Distance

Computing Minimum Edit Distance Dynamic Programming for Minimum Edit Distance

- **Dynamic programming**: A tabular computation of D(*n*,*m*)
- Solving problems by combining solutions to subproblems.
- Bottom-up
 - We compute D(*i*,*j*) for small *i*,*j*
 - And compute larger D(*i*,*j*) based on previously computed smaller values
 - i.e., compute D(*i*,*j*) for all *i* (0 < *i* < n) and *j* (0 < j < m)

Defining Min Edit Distance

• Initialization

D(i,0) = i D(0,j) = j

• Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$
 $D(i,j) = min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & \text{ff } X(i) \neq Y(j) \\ 0; & \text{ff } X(i) = Y(j) \end{cases}$

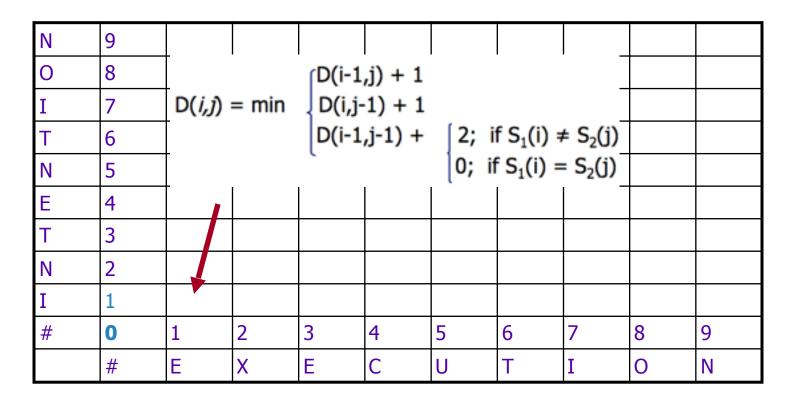
Termination:

D(N,M) is distance

The Edit Distance Table

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
E	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

The Edit Distance Table



Edit Distance $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
E	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \\ 0; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$$

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

Minimum Edit Distance

Backtrace for Computing Alignments

Computing alignments

- Edit distance isn't sufficient
 - We often need to **align** each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \\ 0; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
E	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

MinEdit with Backtrace

n	9	↓ 8	∠⇔↓ 9	∠⇔↓ 10	∠⇔↓ 11	∠⊢↓ 12	↓ 11	↓ 10	↓ 9	_/ 8	
0	8	↓ 7	∠⇔↓ 8	.∠←↓9	∠←↓ 10	∠←↓ 11	↓ 10	↓9	28	← 9	
i	7	16	∠⊢↓7	∠⇔↓ 8	∠⇔↓ 9	∠⇔↓ 10	↓ 9	2 8	← 9	$\leftarrow 10$	
t	6	↓ 5	∠⊢↓6	∠⊢↓7	.∠-↓8	.∠←↓ 9	_ / 8	← 9	$\leftarrow 10$	⊢↓ 11	
n	5	↓ 4	∠⇔, 5	∠⇔↓6	∠⇔, 7	.∠←↓ 8	∠⇔↓ 9	∠⊢↓ 10	∠⊶, 11	∠↓ 10	
e	4	23	← 4	∠	← 6	← 7	$\leftarrow \downarrow 8$.∠-↓9	∠⇔, 10	. ↓ 9	
t	3	∠⊢↓4	∠⇔ , 5	∠⊢↓6	∠⊢↓7	∠←↓ 8	∠7	6 ⊥→	∠⇔↓ 9	↓ 8	
n	2	.∠-↓3	∠⊣,4	∠⇔, 5	∠⇔, 6	∠←↓7	∠←↓ 8	↓7	∠⇔↓ 8	27	
i	1	∠⊢↓ 2	∠←↓ 3	∠⊶↓4	∠←↓ 5	∠⊢↓6	∠⇔↓ 7	26	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	x	e	c	u	t	i	0	n	

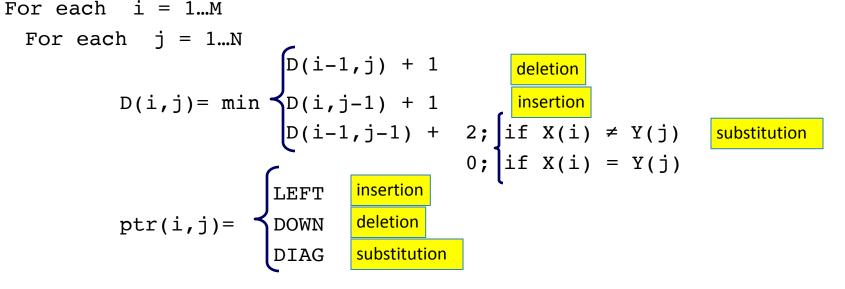
Adding Backtrace to Minimum Edit Distance

Base conditions:

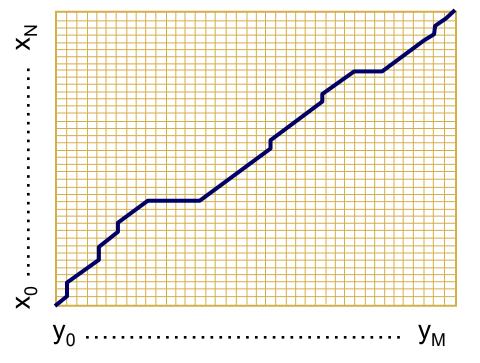
D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

```
Termination:
```



The Distance Matrix



Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Slide adapted from Serafim Batzoglou

Result of Backtrace

• Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

Performance

• Time:

O(nm)

O(nm)

• Backtrace

O(n+m)

Minimum Edit Distance

Weighted Minimum Edit Distance

Weighted Edit Distance

- Why would we add weights to the computation?
 - Spell Correction: some letters are more likely to be mistyped than others
 - Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

	sub[X, Y] = Substitution of X (incorrect) for Y (correct) X																									
x												Y	(co	rrect)	•											
_	a	b	c	d	c	f	g	h	1		k	1	m	<u>n</u>	0	p	q	r	\$	1	u	v	w	x	<u>y</u>	Z
a	0	0	7		342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
ſ	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0		146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	- 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	-	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
P	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
8	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
ι	3	4	9	42	7	5	19	5	0	1	0	14	9	5		6	0	11	37	0	0	2	19	0	7	0
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted Min Edit Distance

• Initialization:

D(0,0) = 0 $D(i,0) = D(i-1,0) + del[x(i)]; \qquad 1 < i \le N$ $D(0,j) = D(0,j-1) + ins[y(j)]; \qquad 1 < j \le M$

• Recurrence Relation:

$$D(i,j) = \min \begin{cases} D(i-1,j) + del[x(i)] \\ D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}$$

• Termination:

D(N,M) is distance

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely **dynamic**... it's impossible to use the word, **dynamic**, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.