Pairings on elliptic curves over finite fields are crucial for constructing various cryptographic schemes. The ta_T pairing on supersingular curves over GF(3^n) is particularly popular since it is efficiently implementable. Taking into account the Menezes-Okamoto-Vanstone (MOV) attack, the discrete logarithm problem (DLP) in GF(3^{6n}) becomes a concern for the security of cryptosystems using ta_T pairings in this case. In 2006, Joux and Lercier proposed a new variant of the function field sieve in the medium prime case, named JL06-FFS. We have, however, not yet found any practical implementations on JL06-FFS over GF(3^{6n}). Therefore, we first fulfilled such an implementation and we successfully set a new record for solving the DLP in GF(3^{6n}), the DLP in GF(3^{6 cdot 71}) of 676-bit size. In addition, we also compared JL06-FFS and an earlier version, named JL02-FFS, with practical experiments. Our results confirm that the former is several times faster than the latter under certain conditions.