Evaluation of Hardware Performance for the SHA-3 Candidates Using SASEBO-GII

Abstract

Pairings on elliptic curves over finite fields are crucial for constructing various cryptographic schemes. The ta_T pairing on supersingular curves over GF(3^n) is particularly popular since it is efficiently implementable. Taking into account the Menezes-Okamoto-Vanstone (MOV) attack, the discrete logarithm problem (DLP) in GF(3^{6n}) becomes a concern for the security of cryptosystems using ta_T pairings in this case. In 2006, Joux and Lercier proposed a new variant of the function field sieve in the medium prime case, named JL06-FFS. We have, however, not yet found any practical implementations on JL06-FFS over GF(3^{6n}). Therefore, we first fulfilled such an implementation and we successfully set a new record for solving the DLP in GF(3^{6n}), the DLP in GF(3^{6 cdot 71}) of 676-bit size. In addition, we also compared JL06-FFS and an earlier version, named JL02-FFS, with practical experiments. Our results confirm that the former is several times faster than the latter under certain conditions.

Publication
IACR Eprint archive
Shin'ichiro Matsuo
Shin'ichiro Matsuo
Research Professor of Computer Science

Cryptographer, and the acting co-chair of Blockchain Governance Initiative Network (BGIN).